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PREFACE 

The versatile photophysical properties of lanthanide ions (Ln3+) have inspired vigorous 

research activities because of the wide range of photonic applications, such as tunable lasers, 

amplifiers for optical communications, luminescent probes for analytes and components of the 

emitting materials in multilayer organic light emitting diodes. Unfortunately, due to the Laporte 

forbidden character and intraconfigurational nature of the 4f transitions, the molar absorption 

coefficients of lanthanide transitions are typically very small (less than 10 L M-1 cm-1). To 

obviate this problem, organic ligands with large molar absorption coefficients can be 

coordinated to the lanthanide ion, resulting in sensitized emission by means of the so-called 

‘‘antenna effect’’. The β-diketone ligand class is emerging as one of the important ‘‘antennas’’ 

in terms of high harvest emissions due to the effectiveness of the energy transfer from this 

ligand type to the Ln3+ cation. However, the use of fluorinated β-diketones as a sensitizer for 

Ln3+ cation luminescence is very scarce. Earlier reports demonstrated that the replacement of C-

H bonds in a β-diketone with low-energy oscillators (C-F) is able to lower the vibrational 

energy of the ligand, which minimizes the energy loss caused by ligand vibration and enhances 

the luminescent intensity of the Ln3+ ion. Further, because of the heavy-atom effect, which 

facilitates intersystem crossing, the lanthanide-centered luminescent properties are enhanced. 

Thus, the primary objective of the present work is to design and develop a novel class of 

fluorinated β-diketonate molecules with conjugated motifs for the sensitization of Eu3+ ions. 

The thesis comprises of five chapters. 

The introductory chapter highlights the need for the development of new class of antenna 

molecules for the sensitization of Eu3+ ions based on fluorinated β-diketonates. Further, a 

detailed literature review on the recent developments in the photophysical properties of Eu3+-β-

diketonates has been brought out towards the end of this chapter. 

xiv 
 



The second chapter describes the results on the synthesis, characterization and 

photophysical properties of Eu3+- 4,4,5,5,5-pentafluoro-1-(9H-fluoren-2-yl)-1,3-pentanedione 

(Hpffpd) complex  in the presence of 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene oxide 

(DDXPO) as an ancilliary ligand 

[Eu(pffpd)3(DDXPO)] 2. For 

comparison, the [Eu(pffpd)3(DPEPO)] 

3 complex was also synthesized 

involving a known chelate phosphine 

oxide, bis(2-

(diphenylphosphino)phenyl) ether oxide (DPEPO).The single-crystal X-ray diffraction  

analyses of 2 and 3 revealed that these complexes are mononuclear, and that the central Eu3+ 

ion is surrounded by eight oxygen atoms, six of which are from the three bidentate fluorinated 

β-diketonates, and the other two oxygen atoms from the chelate phosphine oxide. Compound 2 

has a solid-state photoluminescence quantum yield of 48%, which is about two times higher 

than that of compound 3 (28%). This may be due to the fact that DDXPO in 2 has the mezzo 

first triplet excited state energy level (T1) between the first singlet excited energy level (S1) and 

T1 of Hpffpd, which may support one more additional energy transfer from the T1 energy level 

of DDXPO to that of Hpffpd, and consequently improves the energy transfer in the Eu3+ 

complex. (These results were published in Dalton Trans., 2009, 7519-7528). 

 

A novel efficient antenna complex of Eu3+ [Eu(CPFHP)3(DDXPO)] supported by a highly 

fluorinated carbazole-substituted β-diketonate ligand, namely, 1-(9H-carbazol-2-yl)-4,4,5,5,5-

pentafluoro-3-hydroxypent-2-en-1-one (CPFHP) and the 4,5-bis(diphenylphosphino)-9,9-

dimethylxanthene oxide (DDXPO) ancillary ligand, has been synthesized, structurally 

characterized, and its photoluminescent behaviour examined. These results have been 

incorporated in chapter 3. The photophysical properties of Eu(CPFHP)3(DDXPO) benefit from 

adequate protection of the metal by the ligands with respect to non-radiative deactivation as 
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well as an efficient ligand-to-metal energy transfer process which exceeds 66% in chloroform 

solution with a quantum yield of 47%. As an integral part of this work, the synthesis, 

characterization, and luminescent properties of poly(methyl methacrylate) (PMMA) polymer 

films doped with Eu(CPFHP)3(DDXPO) are also reported. The luminescent efficiencies of the 

doped films (photoluminescence quantum yields 79−84%) are dramatically enhanced in 

comparison with that of the precursor complex. The new luminescent PMMA-doped complex 

therefore shows considerable promise for polymer light-emitting diode and active polymer 

optical fiber applications. (These results were published in Inorg. Chem., 2010, 49, 9055-

9063.)  

The fourth chapter deals with the results on the role of ancilliary ligands, various bidentate 

nitrogen donors on the sensitization of Eu3+ in the presence of a new β-diketone, 4,4,5,5,5-

pentafluoro-1-(naphthalen-2-yl)pentane-1,3-dione (HPFNP), which contains polyfluorinated 

alkyl group, as well as the long conjugated naphthyl group. The single-crystal X-ray diffraction 

analysis of Eu(PFNP)3(bpy) revealed that the complex is mononuclear, the central Eu3+ ion is 

coordinated by six oxygen atoms furnished by three β-diketonate ligands, and two nitrogen 

atoms from a bidentate bipyridyl ligand, in an overall distorted square prismatic geometry. 

Further, analysis of the X-ray crystal data of the above complex also revealed interesting 1D, 

2D, and 3D networks based on intra- and intermolecular hydrogen bonds. The results 

demonstrate that the substitution of solvent molecules by bidentate nitrogen ligands in 

Eu(PFNP)3(H2O)(EtOH) greatly enhances the quantum yields and lifetime values. (These 

results were published in Inorg. Chem., 2008, 47, 8091-8100). 
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The fifth chapter describes the results of a highly luminescent Eu3+ ternary complex which 

has been covalently immobilized in the ordered MCM-41 mesoporous host through 

modification of a novel polyfluorinated β-diketone with 3-(triethoxysilyl)propylisocyanate by a 

co-condensation route. X-Ray diffraction confirms that this luminescent material has ordered 

hexagonal mesoporosity. Dynamic light scattering and SEM studies indicate that the newly 

designed mesoporous luminescent material has particle size in the range 250–300 nm. The 

photoluminescent properties of Eu(PFNP-Si)3(bath)/MCM-41 mesoporous material indicates 

that the present hybrid material exhibits higher 5D0 quantum efficiency (ΦLn = 81%) and longer 

lifetime (1.05 ms) values. Moreover, the MCM-based material provides several additional 

advantages, such as being able to be processed as silica based templates for optical centers 

(compatible with the silicon devices technology), opening up the possibility of designing new 

luminescent displays with highly oriented MCM-41 films impregnated with emitting centers 

showing enhanced antenna effects (These results were published in J. Mater. Chem., 2009, 19, 

7976–7983).   

 The contributions to the new knowledge arising out of this thesis have been highlighted in the 

concluding chapter. The relevant references have been cited towards the end of the thesis 
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Chapter 1 

sharp emission bands originating from the metal ion are detected after rapid internal conversion 

to the emitting level (Figure 1.3). The phenomenon is termed sensitization of the metal-centered 

luminescence (also referred to as “antenna effect”) and is quite complex (Figure 1.4).  

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Type of emission and related applications of lanthanides. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Modified Jablonski diagram for the sensitization pathway in luminescent Ln3+ 

complexes. 
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Chapter 1 

Second, Ln3+ ions are usually good quenchers of triplet states so that photobleaching is 

substantially reduced. 

The overall quantum yield (Φoverall) for a sensitized Ln3+ complex is given by the equation: 

Φoverall = ΦISCΦETΦLn            (1) 

where ΦISC and ΦET are the respective efficiencies of intersystem crossing (ISC) and ligand-to-

Ln3+ energy transfer (ET), and ΦLn is the intrinsic quantum yield of the Ln3+ ion. In terms of 

ligand design, this means that the antenna chromophore should  

(i) be efficient at absorbing light (i.e., have large ε values),  

(ii) have an ISC quantum yield near unity,  

(iii) have a triplet state that is close enough in energy to the Ln3+ emitting state to allow 

for effective ligand-to-Ln3+ energy transfer (but not so close that thermal back 

transfer competes effectively with Ln3+ emission), and  

(iv) protect the Ln3+ from the quenching effects of bound water molecules. 

A wide array of antenna chromophores that yield emissive Ln3+ complexes have been 

studied extensively, including bipyridines [aAlpha et al. 1987; bAlpha et al. 1987; Mukkala and 

Kankare 1992; Sabbatini et al. 1993], calixarenes [Bünzli et al. 1993; Bünzli and Ihringer 1996; 

Charbonniere et al. 1998], dipicolinic acids [Lamture et al. 1995; George et al. 2006] and β-

diketonates [de Sa et al. 2000; Binnemans 2005; Binnemans 2009], to highlight a few. The β-

diketone ligand class is emerging as one of the important “antennas” in terms of high harvest 

emissions due to the effectiveness of the energy transfer from this ligand type to the Ln3+ cation 

[de Sa et al. 2000; Binnemans 2005; Binnemans 2009]. In part, this is due to the fact that the 

π−π* transition for β-diketones is intense and occurs over a significant range of wavelengths 

that is appropriate for sensitization of Ln3+ cation luminescence. An additional and practical 

advantage of the use of β-diketone ligands is that they form stable complexes with Ln3+ cations 

[de Sa et al. 2000; Binnemans 2005; Eliseeva et al. 2006; Sun et al. 2006; Binnemans 2009].  
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Figure 1.7. Strructure of LLn(tta)3(dpbtt) complex (where Ln == Eu, Gd, TTb). 
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Figure 1.8
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Chapter 1 

ligands [Xu et al. 2007; Xu et al. 2008]. The investigation indicated that by taking advantage of 

the modification inertia of the phosphine oxide ligands, the direct introduction of the hole-

transport groups as chromophore made TAPO, NaDAPO, and CPPO to obtain the most 

compact structure and mezzo S1 and T1 energy levels, which improved the intramolecular 

energy transfer in these Eu3+ complexes. 
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Figure 1.9. Molecular structures of the ligands used by Xu et al. 

Carbazole-based compounds are excellent optical and electronic materials and their metal 

complexes show interesting and unique chemical and physical properties. Hence, carbazole-

containing β-diketones and their Eu3+ complexes have been investigated intensively [Robinson 

et al. 2000; Li et al. 2006]. Two novel carbazole-based β-diketones with 2- or 2,7-substituted 

groups in the carbazole ring, 2-(4´4´4´-trifluoro-1´3´-dioxobutyl)-carbazole (2-TFDBC) and 

2,7-bis(4´4´4´-trifluoro-1´3´-dioxobutyl)-carbazole (2,7-BTFDBC), and their Eu3+ ternary 

complexes Eu(2-TFDBC)3phen and Eu2(2,7-BTFDBC)3(phen)2 (Figure 1.10) were synthesized 

via a dexterously designed routine, charectarized and investigated their photophysical 

properties [aHe et al. 2009]. PL measurement results indicated that suitably expanded π-

conjugation in the complex molecules makes the excitation band redshifted to the visible 
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region, and both the Eu3+ complexes exhibit intense red emission under blue-light excitation. 

The triplet state energy levels of 2-TFDBC and 2,7-BTFDBC in the complexes are found to be 

higher than that of the lowest excited level of Eu3+ ion, 5D0, so the photoluminescence 

mechanism of the Eu3+ complexes was proposed as a ligand-sensitized luminescence process. 

All of the results indicate that Eu(2-TFDBC)3phen and Eu2(2,7-BTFDBC)3(phen)2 are 

promising candidates as visible-light excitable red phosphor for luminescence applications.  
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Figure 1.10. Molecular structures of the complexes by aHe et al. 2009. 

In their subsequent studies, these authors have investigated the effect of different alkyl group at 

the N-position on the luminescence of carbazole based β-diketonate Eu3+ complexes [bHe et al. 

2009] and fabricated bright red LEDs. There exists a competition between the absorption 

capacity and the energy transfer efficiency as the alkyl substituent at the N-position in the 

carbazole ring of the complexes (Figure 1.11) changes, and as a consequence, the total 

sequence of the emission intensity is Eu(N-C2)3(phen) > Eu(N-C3)3(phen) > Eu(N-C5)3(phen) 

> Eu(N-C1)3(phen).  

 

 

 

 

Figure 1.11. Structure of Eu(β-diketonate)3(phen) complex. 

R = CH3: N-C1 
R = C2H5: N-C2 
R = C3H7: N-C3 
R = C5H11: N-C5 
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Chapter 1 

Tb1···Tb2 separation of 3.684 Å. The Eu3+ and Tb3+ dimers display metal-centered 

luminescence with quantum yields of 58% for [Eu2(HFA)6(O(CH2)2NHMe2)2] and 0.04% for 

[Tb2(HFA)6(O(CH2)2NHMe2)2], respectively. Consideration of energy migration paths within 

the dimers, based on the study of both pure and Eu3+- or Tb3+-doped (0.01-0.1 mol %) Lu3+ 

analogues, leads to the conclusion that the β-diketone and N,N-dimethylaminoethanol ligands 

contribute significantly to the sensitization process of the Eu3+ luminescence. The ancillary 

ligand increases considerably the luminescence of [Eu2(HFA)6(O(CH2)2NHMe2)2], compared to 

[Eu(HFA)3(H2O)2], through the formation of intra-ligand states while it is detrimental to Tb3+ 

luminescence. 
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Figure 1.15. Structural formulas of the Ln3+ complexes [Ln2(HFA)6(μ2-O(CH2)2NHMe2)2]; (Ln 

= Eu3+,  Tb3+). 

 

A novel ligand, 4,4,5,5,5-pentafluoro-1-(1′,10′-phenanthrolin-2′-yl)-pentane-1,3-dionate 

having four coordination sites was designed as a bridge to link the Ir3+ center and the Eu3+ 

center and iridium-europium bimetallic complexes, {[(dfppy)2Ir(μ-phen5f)]3EuCl}Cl2 and 

(dfppy)2Ir(μ-phen5f)Eu(TFAcA)3 [dfppy represents 2-(4′,6′-difluorophenyl)-pyridinato-N,C2′, 

phen5f stands for 4,4,5,5,5-pentafluoro-1-(1′,10′-phenanthrolin-2′-yl)-pentane-1,3-dionate and 

TFA represents trifluoroacetylacetonate] shown in Figure 1.16, were successfully synthesized 

and evaluated their luminescent properties [Chen et al. 2008]. Photophysical studies implied 

that the high efficient red luminescence from the Eu3+ was sensitized by the 3MLCT (metal-to-

15 
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ligand charge transfer) energy based on an Ir3+ complex-ligand in a d-f bimetallic assembly. The 

excitation window for the new bimetallic complex extends up to 530 nm (1 × 10-3 M in 

ethanol), indicating that this bimetallic complex can emit red light under the irradiation of 

sunlight. 
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Figure 1.16. Structural formulas of the ligand 4,4,5,5,5-pentafluoro-1-(1′,10′-phenanthrolin-2′-

yl)-pentane-1,3-dione (Hphen5f) and bimetallic complex. 

 

In order to shift the excitation wavelength of lanthanide β-diketonate complexes to longer 

wavelengths, the ferrocene-derivatives bis(ferrocenyl-ethynyl)-1,10-phenanthroline (Fc2phen) 

and ferrocenoyltrifluoroacetone (Hfta) have been synthesized and used for the design of two 

ferrocene containing lanthanide β-diketonate complexes [Yuan et al. 2007]. The complexes 

[Ln(TTA)3(Fc2phen)] and [Ln(fta)3(phen)] (where Ln = La, Nd, Eu and Yb) depicted in Figure 

1.17 showed structural similarities to the parent [Ln(TTA)3(phen)] complexes. The presence of 

the ferrocene moiety improves the solubility of the complexes in organic solvents like 

dichloromethane, chloroform, and toluene. The best luminescence properties were found for the 

[Ln(TTA)3(Fc2phen)] complexes of the ferrocene-substituted 1,10-phenanthroline ligand. Here, 

visible light with a wavelength up to 420 nm (blue light) could be used for excitation of Eu3+ 

(red emission) and of Nd3+ and Yb3+ (both near-infrared emission). 
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Figure 1.17. Structural formulas of the complexes [Ln(tta)3(Fc2phen)] and [Ln(fta)3(phen)], 

with Ln = La, Nd, Eu and Yb. 

 

The reaction of lanthanide hexafluoroacetylacetonates [Ln(HFA)3(H2O)2] (Ln = Sm3+–Ho3+ 

and Tm3+) with 4-cyanopyridine N-oxide (4-cpyNO) in a 1:1 ratio results in the formation of 

[Ln(HFA)3(4-cpyNO)]2 dimers as shown in Figure 1.18, in which the two metal ions are 

separated by about 3.99-4.13 Å [Eliseeva et al. 2006]. The substitution of water molecules in 

the parent hydrated complexes Ln(HFA)3(H2O)2] by 4-cpyNO has a large effect on the 

luminescence properties. Such a combination of organic ligands is able to sensitize the metal-

centered luminescence of Sm3+, Eu3+, Tb3+, Dy3+ and Tm3+ ions that emit pink, red, green, 

yellow and blue light, respectively, i.e. within the entire spectral visible range. The introduction 

of the ancillary ligand leads to substantial and varying changes in the luminescence quantum 

yields. The greatest effect occurs for [Eu(HFA)3(4-cpyNO)]2, with a ten-fold increase in the 

absolute quantum yield (from 2.6 to 25.7%) with respect to the hydrated complex. In the case of 

corresponding terbium dimer increases only a factor of 2. On the other hand, a decrease in the 

quantum yield is observed for Sm3+, Dy3+ and Tm3+ dimers with respect to the hydrated 

chelates. 
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Figure 1.18. Molecular structures of the Ln3+ complexes [Ln(hfa)3(4-cpyNO)]2. (Ln = Sm3+–

Ho3+ and Tm3+) 

Figure 1.18. Molecular structures of the Ln3+ complexes [Ln(hfa)3(4-cpyNO)]2. (Ln = Sm3+–

Ho3+ and Tm3+) 

  

Bright photoluminescence as well as efficient electroluminescence has been reported with 

lanthanide complexes Ln(HFNH)3(phen) [HFNH = 4,4,5,5,6,6,6-heptafluoro-1-(2-

naphthyl)hexane-1,3-dione; phen = 1,10-phenanthroline; Ln = Eu3+, Sm3+] depicted in Figure 

1.19 [Yu et al. 2005]. By the comparison of the electroluminescent properties of devices based 

on Eu(TTA)3(phen) (TTA = 2-thenoyltrifluoroacteonate) and Eu(HFNH)3(phen), it has been 

concluded that the polyfluorination on the alkyl group of the ligand and the introduction of the 

long conjugate naphthyl group into the ligand improve the efficiency of Eu(HFNH)3(phen) 

doped devices, especially at high current densities. 

Bright photoluminescence as well as efficient electroluminescence has been reported with 

lanthanide complexes Ln(HFNH)3(phen) [HFNH = 4,4,5,5,6,6,6-heptafluoro-1-(2-

naphthyl)hexane-1,3-dione; phen = 1,10-phenanthroline; Ln = Eu3+, Sm3+] depicted in Figure 

1.19 [Yu et al. 2005]. By the comparison of the electroluminescent properties of devices based 

on Eu(TTA)3(phen) (TTA = 2-thenoyltrifluoroacteonate) and Eu(HFNH)3(phen), it has been 

concluded that the polyfluorination on the alkyl group of the ligand and the introduction of the 

long conjugate naphthyl group into the ligand improve the efficiency of Eu(HFNH)3(phen) 

doped devices, especially at high current densities. 
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Figure 1.19. Structure of the Ln3+ complexes Ln(HFNH)3(phen); (Ln = Eu3+, Sm3+). Figure 1.19. Structure of the Ln3+ complexes Ln(HFNH)3(phen); (Ln = Eu3+, Sm3+). 
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enhances the quantum efficiency of the emitter 5D0 level. The luminescence intensity decreases, 

however, with increasing precursor concentration in the doped polymer to greater than 5% 

where a saturation effect is observed at this specific doping percentage, indicating that changes 

in the polymeric matrix improve the absorption property of the film, consequently quenching 

the luminescent effect. 

 

Photoluminescent properties of Eu3+ fluorinated β-diketonate complexes covalently 

grafted on to the mesoporous hybrid materials: Recent developments 

Inorganic-organic hybrid materials have attracted considerable attention with the expansion 

of soft inorganic chemistry processes and provided a wealth of opportunities for combination of 

organic and inorganic networks to exhibit their extraordinary properties such as luminescent 

systems in lighting displays, optical amplifiers, and lasers [Molina et al. 2001; Suratwala et al 

1998]. According to the interaction between the organic and inorganic components or phases, 

these hybrid materials can be divided into two major classes. One is so-called physically mixed 

by weak interactions (hydrogen bonding, van der Waals force, or weak static effects) between 

the organic and inorganic phases; the other is chemically bonded by powerful covalent bonds 

[Harreld et al. 2003; Minoofar et al. 2002]. In the first class, although the metal complex, 

especially lanthanide organic complexes that have been doped into a silica matrix, have shown 

superior emission intensities and organic components are considered to be efficient sensitizers 

for the lanthanide ions, this kind of material cannot solve the problems of the quenching effect 

of luminescent centers, inhomogeneous dispersion of two phases, or leaching of the photoactive 

molecules with a low concentration of the complex. Moreover, because the latter class hybrid 

material belongs to the molecular-based composite material with excellent chemical stability 

and a monophasic appearance even with a high concentration of lanthanide complexes [aLi et 

al. 2001; Li et al. 2002], we can tailor the multifunctional advanced materials for different 
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1.3. Objectives of the present investigation 

 

The fascinating optical properties of europium(III) ions have promoted the use of their 

complexes in an increasing number of technological applications ranging from biomedical 

analysis to materials science. An exciting physicochemical feature of Eu3+ β-diketonates is their 

bright luminescence [Filipescu and Mushrush 1966], which motivated Weissman to propose the 

concept of population of the emitting 4f levels through energy transfer from the ligand 

(sensitization process) [Weissman 1942]. In part, this is due to the fact that the π−π* transition 

for β-diketones is intense and occurs over a significant range of wavelengths that is appropriate 

for sensitization of Eu3+ cation luminescence. Eu3+ β-diketonate compounds usually crystallize 

with solvent molecules, which are detrimental to their photophysical properties. To overcome 

the solvent-quenching problem, neutral chromophoric ligands may be used as ancillary ligands 

to saturate the inner coordination sphere of the metal ion. As a consequence, the sensitization of 

Eu3+ luminescence can be additionaly improved when the ancilliary ligands possesses suitable 

energy levels to provide an effective intra-molecular energy transfer from the ligand to the 

central Eu3+ ion.  

It is well documented that the replacement of the C-H bonds of a β-diketone ligand with 

lower-energy C-F oscillators is capable of lowering the vibrational energy of the ligand. In turn, 

this decreases the energy loss because of ligand vibration and therefore enhances the emission 

intensity of the Eu3+ ion. Furthermore, because of the heavy-atom effect, which facilitates 

intersystem crossing, the lanthanide-centered luminescent properties are also improved. 

Therefore, the primary objective of the present work is to design and develop a novel class of 

fluorinated β-diketonate molecules with conjugated motifs for the sensitization of Eu3+ ions.  

Another objective of the present work is to design and develop a novel chelating phosphine 

oxide and to investigate its role as an ancilliary ligand on the photosensitization of Eu3+ 

fluorinated β-diketonate complexes. Yet another objective of the present investigation is the 
26 
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structural authentification of the designed Eu3+ antenna complexes by X-ray single crystal 

analysis. The structure property correlations of the designed complexes with that of the 

photophysical properties will also be evaluated. 

It has always been a challenging task to synthesize Eu3+ complexes with high quantum 

yields that will also be thermodynamically stable and compatible with advanced 

microelectronic technologies for thin film production [Kuriki et al. 2002]. Upon inheriting the 

advantages of both the luminescence characteristics of Eu3+ ions and the material properties of 

plastics, Eu3+ metal-containing polymers have also attracted attention in the past decade. In 

comparison with small molecular weight Eu3+ complexes, besides the advantage of the desired 

mechanical flexibility, polymer-based Eu3+ luminescent materials can be solution or fused 

processable, this is more attractive for optical and electronic applications. Furthermore, the 

dissociation may be minimal in the solid polymer complexes, where Eu3+ complex units should 

be, to a certain extent, locked into a specific configuration due to the synergistic effects of metal 

complexes with polymers. Therefore, in the present study an attempt has also been made to 

incorporate the designed highly luminescent Eu3+complexes into poly-(methyl methacrylate) 

(PMMA) and investigated their photophysical properties.  

Lanthanide-containing hybrid materials have stimulated great research interest for their 

excellent luminescent properties and the special functions make them widely applied in various 

fields such as photonic crystal, optical glasses and fluorescent or laser systems [Carlos et al. 

2009]. Hence, in the present study an effort also has been made to synthesize a highly 

luminescent novel organic-inorganic hybrid material by covalently anchoring the newly 

designed Eu3+ fluorinted antenna complex to the functionalized ordered mesoporous silica host 

MCM-41 and investigated its photophysical properties.   
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4,4,5,5,5-Pentafluoro-1-(9H-fluoren-2-yl)-1,3-pentanedione complex of Eu3+ 

with 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene oxide as a promising 

light-conversion molecular device 

 

 

 

 

 

 

 

2.1. Summary. A novel β-diketone ligand, 4,4,5,5,5-pentafluoro-1-(9H-fluoren-2-yl)-1,3-
pentanedione (Hpffpd), which contains a polyfluorinated alkyl group, as well as a long 
conjugated fluorene unit, and a chelate phosphine oxide ligand, 4,5-bis(diphenylphosphino)-
9,9-dimethylxanthene oxide (DDXPO) were synthesized and utilized for the synthesis of two 
new europium complexes [Eu(pffpd)3(C2H5OH)(H2O)] 1 and [Eu(pffpd)3(DDXPO)] 2. For 
comparison, the [Eu(pffpd)3(DPEPO)] 3 complex was also synthesized involving a known 
chelate phosphine oxide, bis(2-(diphenylphosphino)phenyl)ether oxide (DPEPO). The 
synthesized complexes have been characterized by various spectroscopic techniques and their 
solid-state photophysical properties were investigated. The single-crystal X-ray diffraction 
analyses of 2 and 3 revealed that these complexes are mononuclear, and that the central Eu3+ 
ion is surrounded by eight oxygen atoms, six of which are from the three bidentate fluorinated 
β-diketonates, and the other two oxygen atoms from the chelate phosphine oxide. The 
coordination polyhedra can be described as distorted square antiprism. Compound 2 has a solid-
state photoluminescence quantum yield of 50%, which is about two times higher than that of 
compound 3 (28%). This may be due to the fact that DDXPO in 2 has the mezzo first triplet 
excited state energy level (T1) between the first singlet excited energy level (S1) and T1 of 
Hpffpd, which may support one more additional energy transfer from the T1 energy level of 
DDXPO to that of Hpffpd, and consequently improves the energy transfer in the Eu3+ complex. 
Furthermore, DDXPO (average Eu–O = 2.34 Å) in complex 2 coordinates more strongly with 
the central Eu3+ as compared to DPEPO in complex 3 (average Eu–O = 2.38 Å) which can 
improve the energy transfer between the ligands and central metal ion, and consequently 
enhances the photoluminescence efficiency of the corresponding Eu3+ complex. 

 

D.B. Ambili Raj et al., Dalton Trans., 2009, 7519-7528. 
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2.2.Introduction 

Due to the Laporte forbidden character and intra-configurational nature of the 4f transitions, 

luminescence from lanthanide cations is typically highly monochromatic, exhibits long-lived 

excited-state lifetimes when compared to organic compounds, and is usually insensitive to 

quenching by molecular oxygen, making these metal ions ideal for many applications in 

multidisciplinary fields such as materials for telecommunications, lighting devices, and 

luminescent probes for bio-analyses and live cell imaging and sensing [Kido and Okamoto 

2002; Kuriki et al. 2002; Brunet et al. 2007; de Bettencourt-Dias 2007; Eliseeva and Bünzli 

2010]. However, because they are forbidden, these transitions exhibit low extinction 

coefficients (ε < 10 L M−1 cm−1) [Carnall et al. 1962; Carnall 1963; Carnall et al. 1965]. The 

weak absorbance can be overcome by coordinating chromophore-containing ligands to the 

metal ion, which upon irradiation, transfers energy to the metal center, typically via the ligand 

triplet excited state, populating the Ln3+ emitting levels in a process known as the “antenna 

effect” [Lehn 1990]. For this process to be efficient, it is important that the triplet level of the 

ligand is situated slightly above the accepting energy levels of the lanthanide ion (ideally about 

1500 cm−1). Because the accepting energy levels of the visible lanthanide emitters are all 

situated at relatively high energy positions (typically between 17 000 and 23 000 cm−1), it is 

obvious that the absorption bands of the antenna molecules are likely to be located in the UV 

region [Deun et al. 2006].  

The β-diketone ligand class is emerging as one of the important “antennas” in terms of high 

harvest emissions due to the effectiveness of the energy transfer from this ligand type to the 

Ln3+ cation [Binnemans 2009; de Sa et al. 2000]. In part, this is due to the fact that the π–π* 

transition for β-diketones is intense and occurs over a significant range of wavelengths that is 

appropriate for sensitization of Ln3+ cation luminescence. An additional and practical advantage 

of the use of β-diketone ligands is that they form stable complexes with Ln3+ cations [de Sa et 

al. 2000; Biju et al. 2006; Pavithran et al. 2006; Binnemans 2009]. It is well documented that 
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the replacement of C–H bonds in a β-diketone ligand with lower-energy C–F oscillators is able 

to lower the vibration energy of the ligand, which minimizes the energy loss caused by ligand 

vibrations and consequently enhances the emission intensity of the lanthanide ion [Yu et al. 

2005; Eliseeva et al. 2006; Sun et al. 2006; Fratini et al. 2008]. Further, due to the heavy-atom 

effect, which facilitates intersystem crossing, the lanthanide-centered luminescent properties are 

enhanced [Grushin et al. 2001; Omary et al. 2003]. Fluorene and its derivatives have been 

widely studied as building blocks for photoluminescent and electroluminescent materials 

[Wang et al. 2004; Ostrowski et al. 2002] because of their rigid conjugated structures and 

excellent thermal and photochemical stabilities [Werts et al. 2004; Day et al. 2005]. The above 

factors prompted to design a new β-diketone ligand, Hpffpd 4,4,5,5,5-pentafluoro-1-(9H-

fluoren-2-yl)-1,3-pentanedione, which has the polyfluorinated alkyl group, as well as larger 

conjugated fluorene unit. In this work, the new β-diketone ligand Hpffpd is used as the main 

sensitizer for developing new luminescent Eu3+ complexes. 

In general, lanthanide β-diketonate chelates are usually isolated as hydrates in which one or 

two water molecules are included in the first coordination sphere of the central metal ion, 

quenching the emission from the activation of non-radiative decay paths [Gao et al. 1999; 

Robinson et al. 2000]. A way to circumvent these difficulties is to use ancillary ligands bearing 

suitable chromophores that are capable of forming thermodynamically stable complexes with 

lanthanide ions. These ancilliary ligands would also play the antenna role, absorbing light and 

transferring excitation energy to the emitting ion. Additionally, when the Ln3+ cation is 

coordinatively unsaturated by the original ligands, an additional neutral ligand coordinates to 

the lanthanide center to form a highly coordinated complex, thereby excluding the coordination 

of solvent molecules. In this way, not only the volatility and thermal stability can be improved, 

but also the film forming properties and the carrier-transport ability [Robinson et al. 2000; 

Reyes et al. 2002]. As a consequence, a significant number of lanthanide tris(β-diketonates) that 

also feature coordinated nitrogen [Försberg 1973; Fukuda et al. 2002; Bellusci et al. 2005; 
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Chen et al. 2007] and phosphine oxide [Xu et al. 2006; Xu et al. 2007; Xu et al. 2008; Xu et al. 

2010] ligands has been reported to serve as efficient light conversion molecular devices. 

Compared with N-heterocyclic ligands, the aryl phosphine oxide (APO) derivatives seem 

attractive as neutral ligands for light-emitting lanthanide complexes with much stronger 

coordination to lanthanide ions, adaptability of functionalization, and tunable excited energy 

levels. 

 Herein, we have designed and synthesized a new chelate phosphine oxide, 4,5-

bis(diphenylphosphino)-9,9-dimethylxanthene oxide (DDXPO). The corresponding highly 

luminescent tertiary complex [Eu(pffpd)3(DDXPO)] was isolated and structurally characterized 

by single-crystal X-ray analysis. The choice of DDXPO is based on its strong ability to 

coordinate lanthanide ions, its structure rigidity, and its good electron transporting ability. The 

chelate phosphine oxide ligand has the rigid structure, which not only can enforce the rigidity 

and form the more compact complexes so as to improve the triplet energy transporting from 

ligands to the center Ln3+ ion, but also can improve energy transfer between the two diphenyl 

phosphine oxide moieties through the bridge moieties to eliminate the formation of the 

exciplex. 

2.3. Experimental Section 

Materials and Instrumentation. The following chemicals were procured commercially and 

used without subsequent purification: europium(III) nitrate hexahydrate, 99.9% (Treibacher); 

gadolinium(III) nitrate hexahydrate 99.9% (Aldrich); 2-acetylfluoren 98% (Aldrich); methyl 

pentafluoropropionate 99% (Aldrich); sodium hydride 60% dispersion in mineral oil (Aldrich); 

bis(2-(diphenylphosphino)phenyl) ether, 97% (Aldrich); 4,5-bis(diphenylphosphino)-9,9-

dimethylxanthene 97% (Aldrich). All the other chemicals used were of analytical reagent grade.  

Elemental analyses were performed with a Perkin-Elmer Series 2 Elemental Analyzer 2400. 

A Perkin-Elmer Spectrum One FT-IR spectrometer using KBr (neat) was used to obtain the IR 

spectral data. A Bruker 500 MHz NMR spectrometer was used to record the 1H NMR (500 
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MHz), 13C NMR (125.7 MHz), and 31P NMR (202.4 MHz) spectra of the new compounds in 

chloroform-d or acetone-d6 solution. The chemical shifts are reported in parts per million 

relative to tetramethylsilane, SiMe4 for 1H NMR and 13C NMR spectra and with respect to 85% 

phosphoric acid for 31P NMR spectra. The mass spectra were recorded on a JEOL JSM 600 fast 

atom bombardment (FAB) high resolution mass spectrometer (FAB-MS), and the 

thermogravimetric analyses were performed on a TG/DTA-6200 instrument (SII Nano 

Technology Inc., Japan). UV-absorption spectra were recorded with a Shimadzu, UV-2450 

UV−vis spectrophotometer. All spectra were corrected for the background spectrum of the 

solvent. The absorbances of the ligands and complexes were measured in CH3CN solution. The 

PL spectra were recorded on a Spex-Fluorolog FL22 spectrofluorimeter equipped with a double 

grating 0.22 m Spex 1680 monochromator and a 450W Xe lamp as the excitation source 

operating in the front face mode. The lifetime measurements were carried out at room 

temperature using a Spex 1040 D phosphorimeter. 

The overall quantum yields (Φoverall) were measured at room temperature using the 

technique for powdered samples described elsewhere [Bril and De Jager-Veenis 1976], through 

the following expression: 

st
st

x

X

st
overall A

A
r
r

Φ××
−
−

=Φ
1
1  

where rx and rst represent the diffuse reflectance (with respect to a fixed wavelength) of the 

complexes and of the standard phosphor, respectively, and Φst is the quantum yield of the 

standard phosphor. The terms Ax and Ast represent the areas under the complex and the standard 

emission spectra, respectively. To have absolute intensity values, BaSO4 was used as the 

reflecting standard. For measuring Φoverall for Eu3+ complexes, Pyrene was employed as a 

standard, whose emission spectrum comprises an intense broad band peaking around 475 nm, 

with a constant Φ value (61%) for an excitation wavelength of 313 nm [Melhuish 1964]. Three 

measurements were carried out for each sample, and each reported Φoverall value corresponds to 
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the arithmetic mean of the three values. The errors in the quantum yield values associated with 

this technique were estimated to lie within ±10% [Carlos et al. 2003]. The overall quantum 

yields for the Eu3+ complexes were also measured using an integrating sphere in a SPEX 

Fluorolog spectrofluorimeter. The photoluminescence quantum yields in thin films (Φoverall) 

were determined using a calibrated integrated sphere system. The Xe-arc lamp was used to 

excite the thin-film samples placed in the sphere with 320-370 nm as the excitation wavelength. 

Samples were prepared by drop casting the material placed between two quartz cover slips, the 

quantum yield was determined by comparing the spectral intensities of the lamp and the sample 

emission as reported in the literature [de Mello et al. 1997; Palsson and Monkman 2002; Shah 

et al. 2006]. Using this experimental setup and the integrating sphere system, the solid-state 

fluorescence quantum yield of thin film of the standard green OLED material tris-8-

hydroxyquinolinolato aluminum (Alq3) was determined to be 19%, which is consistent with 

previously reported values [Colle et al. 2003; Saleesh Kumar et al. 2008]. Each sample was 

measured several times under slightly different experimental conditions. The estimated error for 

quantum yields is ±10% [Eliseeva et al. 2008]. 

Crystallographic Characterization. Single-crystal X-ray diffraction data were recorded at 257 

K on a Bruker AXS (Kappa Apex II) diffractometer equipped with an Oxford Cryostream low-

temperature device and a graphite-monochromated Mo Kα radiation source (λ = 0.71073 Å). 

Data were processed using SAINTPLUS (SAINTPLUS, program suite for data processing, 

Bruker AXS, Inc., Madison, WI). Structures were solved and refined using SHELXTL. 

Corrections were applied for Lorentz and polarization effects. All of the structures were solved 

by direct methods and refined by full-matrix least-squares cycles on F2. All of the non-

hydrogen atoms were allowed anisotropic thermal motion, and the hydrogen atoms were placed 

in fixed, calculated positions using a riding model (C–H, 0.96 Å). The thermal vibrations of the 

lattice solvents (CHCl3) in 2 were quiet high. Here the C–Cl distances of the three CHCl3 

molecules were restrained to be 1.74(1) Å. This restrain was performed to avoid bad bond 
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distances. The Cl–Cl distances in the CHCl3 molecule (C96, H96, Cl8, Cl9, Cl10) were 

restrained to be 2.89(1) Å. This restrain was applied to maintain the tetrahedral geometry of 

CHCl3 molecule. The CHCl3 molecule (C95, H95, C4, C5, C6) showed one disordered position 

in the Fourier difference map. The four peak positions were assigned as chlorine atoms and 

were refined with sum of their occupancies restrained to be three. 

Crystals of 3 was poorly diffracting at higher values of Bragg angles. Situation did not 

improve even after re-crystallizing and collecting data on fresh crystals. There were no 

reflection with I > 3σ(I) for theta > 21°. The structure has several disorders, which lead to the 

application of 124 restrains during the refinement. Minor disorders are left uncorrected. One of 

the pentafluoroethane groups (C1–C3, F1–F5) suffers two fold disorders. The C–F distances 

were restrained as 1.36(1) Å. At one place the F–F distance is restrained (2.22(1) Å) to preserve 

the tetrahedral geometry of the CF3 group. One of the fluorine ring (C24–C36) had distortion 

from planarity for its phenyl rings. Hence the phenyl rings were idealized as hexagons with 

sides 3.90 Å. All the H atoms were geometrically fixed at chemically meaningful positions and 

were allowed to ride on the parent atom during refinement. The CCDC numbers 722364 for 2 

and 722365 for 3. For crystallographic data in CIF or other electronic format see 

DOI:10.1039/b907031a (Dalton Trans., 2009, 7519-7528). 

Synthesis of 1-(9H-fluoren-2-yl)-4,4,5,5,5-pentafluoropentane-1,3-dione (Hpffpd). A 

modified method of typical Claisen condensation procedure was used for the synthesis of 

Hpffpd as shown in Scheme 2.1. Acetylfluorene (0.002 mmol) and methyl 

pentafluoropropionate (0.002 mmol) was added into 20 mL dry THF and stirred for 10 min at 0 

°C. To this mixture, sodium hydride was added in inert atmosphere and stirred for 12 h. The 

resulting solution was quenched with water, added 2 M HCl (50 mL), and the solution was 

extracted twice with chloroform (70 mL). The organic layer was dried over Na2SO4, and the 

solvent was evaporated. The reaction mixture was then purified by chromatography on a silica 
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gel column with mixture of chloroform and hexane as the eluent to get the yellow solid as the 

product (yield: 80%).  

 

O
H3C

+
NaH/THF
0oC/12h

O

F

F

FF
F

O

O

F

F

F
F

F

H

O

 

 

 

 

 

 
Scheme 2.1. Synthesis of the ligand Hpffpd. 

 

 

Elemental analysis (%): calcd for C18H10 F5O2 (354.06): C 61.02, H 3.13. Found: C 61.28, H 

3.43. 1H NMR (500 MHz, CDCl3) δ (ppm): 15.53 (broad, enol–OH), 8.09 (s, 1H), 7.97–7.96 (d, 

1H), 7.84–7.82 (t, 2H), 7.58–7.56 (d, 1H), 7.43–7.38 (m, 2H), 6.68 (s, 1H) 3.93 (s, 2H). 13C 

NMR (125.7 MHz, CDCl3) δ (ppm): 186.13, 178.42–178.00, 147.86, 144.54, 143.68, 140.09, 

130.77, 128.57, 127.21–127.07, 125.30, 124.29, 121.07, 120.10, 93.43, 37.43–33.44.  FT-IR 

(KBr) νmax: 2924, 1599, 1494, 1454, 1399, 1225, 1167, 1011, 796 cm−1. m/z = 355.22 (M + H)+.  

Synthesis of 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene oxide (DDXPO). 4,5-

Bis(diphenylphosphino)-9,9-dimethylxanthene (5 mmol) was dissolved in 10 mL of 1,4-

dioxane solution, to which 1 mL of 30% H2O2 (10.5 mmol) was added drop wise with vigorous 

stirring (Scheme 2.2). The resultant mixture was then stirred for 2 h and then 10 mL of water 

was added to the reaction mixture to arrest the reaction. The mixture was extracted with 3 × 30 

mL of dichloromethane. The oily phase was then washed with 2 × 30 mL of water to remove 

1,4-dioxane. The dichloromethane layer was dried with Na2SO4. The solvent was removed in 

vacuo. A white powder was obtained with a yield of 99%. The product was recrystallized from 

dichloromethane. DDXPO: elemental analysis (%): calcd for C39H32O3P2 (610.18): C 76.71, H 
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5.28. Found: C 76.52, H 5.40. 1H NMR (CDCl3, 500 MHz) δ (ppm): 7.62–7.61 (d, 2H), 7.43–

7.39 (q, 12H), 7.32–7.28 (q, 8H), 7.00–6.97 (m, 2H), 6.80–6.76 (q, 2H), 1.70 (s, 6H). 31P NMR 

(CDCl3, 202.4 MHz) δ (ppm): 30.97. FT-IR (KBr) νmax: 1727, 1670, 1436, 1401, 1229, 1180, 

1114, 875, 785, 746, 719, 694 cm−1. m/z = 611.31 (M + H)+.  
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Scheme 2.2. Synthesis of the ligand DDXPO. 

Synthesis of bis(2-(diphenylphosphino)phenyl)ether oxide (DPEPO). DPEPO was 

synthesized according to the method reported elsewhere [Xu et al. 2006] (Scheme 2.3). 

DPEPO: elemental analysis (%): calcd for C36H28O3P2 (570.55): C 75.78, H 4.95. Found: C 

75.52, H 4.85.1H NMR (CDC13, 500 MHz) δ (ppm): 7.71–7.62 (m, 9H), 7.49–7.27 (m, 13H), 

7.17–7.14 (t, 2H), 7.08 (t, 2H), 7.10 (q, 2H). 31P NMR (CDCl3, 202.4 MHz) δ (ppm): 26.20.  

FT-IR (KBr) νmax: 1590, 1566, 1461, 1435, 1221, 1197, 1120, 1074, 877, 804, 748, 707, 549 

cm−1. m/z = 571.60 (M + H)+.  
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Scheme 2.3. Synthesis of the DPEPO ligand. 
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Synthesis of Ln(pffpd)3(C2H5OH)(H2O) [Ln = Eu3+ (1), Gd3+(4)]. To an ethanolic solution of 

Hpffpd (0.6 mmol), NaOH (0.6 mmol) is added and stirred for 5 min. To this, a saturated 

ethanolic solution of Ln(NO3)3·6H2O (0.2 mmol) is added drop wise and stirred for 10 h. Water 

is then added to this mixture and the precipitate thus formed is filtered, washed with water, 

dried and purified the product by recrystallization from acetone–water mixture (Scheme 2.4). 

Unfortunately, efforts to grow the single crystals of complexes were not fruitful.  

Elemental analysis (%): calcd for C56H38F15O8Eu (1) (1276.15): C 52.72, H 3.00. Found: C 

52.62, H 3.21. FT-IR (KBr) νmax: 3421, 2925, 1609, 1528, 1463, 1328, 1277, 1199, 1015, 796 

cm−1. m/z = 1235.97 [(M+− H2O, C2H5OH) + Na].  

Elemental analysis (%): calcd for C56H38F15O8Gd (4) (1281.72): C 52.50, H 2.99. Found: C 

52.42, H 3.31. FT-IR (KBr) νmax: 3423, 2925, 1609, 1528, 1464, 1328, 1277, 1197, 1015, 798 

cm−1. m/z = 1239.21 [(M+ − H2O, C2H5OH) + Na].  
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Scheme 2.4. Synthesis of Ln(pffpd)3(H2O)(C2H5OH), Ln = Eu (1), Gd (4). 
 
 

Synthesis of Complexes Eu(pffpd)3(DDXPO) (2) and Eu(pffpd)3(DPEPO) (3). The 

complexes 2–3 were prepared by stirring equimolar solutions of Ln(pffpd)3(H2O)(C2H5OH) and 

phosphine oxide in CHCl3 for 24 h at room temperature (Scheme 2.5). The products were 

obtained after solvent evaporation and are purified by recrystallization from chloroform–hexane 
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Eu(pffpd)3(H2O)(C2H5OH)

mixture. Crystals of complex 2 suitable for single-crystal X-ray diffraction experiments were 

obtained from a saturated solution of the complex from CHCl3–hexane mixture. Crystals of 

complex 3 suitable for analysis were obtained from a 2-methoxy ethanol–CHCl3 medium.  

Eu(pffpd)3(DDXPO) (2). Elemental analysis (%): calcd for C93H62EuF15O9P2 (1822.37): C 

61.29, H 3.43. Found: C 60.92, H 3.44. FT-IR (KBr) νmax: 2923, 1618, 1522, 1403, 1270, 1173, 

1152, 1122, 1075, 1007, 747, 693, 539 cm−1. m/z = 1822.37 [Eu(pffpd)3(DDXPO)]. 31P NMR 

(CDCl3, 202.4 MHz) δ (ppm): −85.38.  

Eu(pffpd)3(DPEPO) (3). Elemental analysis (%): calcd for C90H58EuF15O9P2 (1782.32): C 

60.65, H 3.28. Found: C 61.00, H 3.88. FT-IR (KBr) νmax: 2924, 1619, 1506, 1402, 1270, 1191, 

1004, 693, 545 cm−1. m/z = 1782.34 [Eu(pffpd)3(DPEPO)]+. 31P NMR (CDCl3, 202.4 MHz): δ 

(ppm): −103.84.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 2.5.  Synthesis of complexes 2-3. 
 

Synthesis of Gd(NO3)3(DDXPO) and Gd(NO3)3(DPEPO). 1.0 mmol of Gd(NO3)3(H2O)6 

(dissolved in 0.1 mL of water) was added drop wise to the ethanolic solution of corresponding 

phosphine oxide (1 mmol) under stirring and the mixture was refluxed for 2 h in an oil bath at 
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70 °C. The white precipitate formed from the above reaction mixture was filtered and 

recrystallized from chloroform–hexane mixture.  

Gd(NO3)3(DDXPO). Elemental analysis (%): calcd for C39H32GdN3O12P2 (953.88): C 49.10, H 

3.38, N 4.40. Found: C 49.44, H 3.46, N 4.29. FT-IR (KBr) νmax: 1607, 1473, 1437, 1404, 1358, 

1295, 1235, 1159, 1119, 1100, 875, 789, 723, 693, 556, 540 cm−1. m/z = 894.40 [Gd(NO3)2 

(DDXPO)] + 1.  

Gd(NO3)3(DPEPO). Elemental analysis (%): calcd for C36H28GdN3O12P2 (913.82): C 47.32, H 

3.09, N 4.60. Found: C 47.44, H 3.16, N 4.69. FT-IR (KBr) νmax: 1588, 1565, 1461, 1436, 1386, 

1308, 1234, 1155, 1135, 1111, 879, 722, 717, 693, 550, 514 cm−1 cm−1. m/z = 852.90 

[Gd(NO3)2(DPEPO)] + 1.  

2.4. Results and Discussion 

Structural Characterization of Ln3+ Complexes. The synthesis procedures for the Ln3+ 

complexes 1–4 are shown in Schemes 2.4 and 2.5. The microanalyses and HRMS studies of the 

complexes 1–4 shows that Ln3+ ion has reacted with Hpffpd in a metal-to-ligand molar ratio of 

1 : 3 and in complexes 2 and 3 one molecule of phosphine oxide is also involved. The IR 

spectrum of the complexes 1 and 4 shows a broad absorption in the region 3000–3500 cm−1, 

indicating the presence of solvent molecules in the complex. On the other hand, the absence of 

the broad band in the region 3000–3500 cm−1 for complexes 2–3, suggests that solvent 

molecules have been successfully displaced by the bidentate neutral donors. In addition, the 

carbonyl stretching frequency of the ligand Hpffpd (1599 cm−1) is shifted to higher wave 

numbers in 1–4 (1609 cm−1 in 1; 1618 cm−1 in 2; 1619 cm−1 in 3 and 1609 in 4), thus indicating 

the coordination of the carbonyl oxygen to the Ln3+ cation. The P=O stretching frequency of 

DDXPO, 1180 cm−1 has been shifted to 1173 cm−1 in complex 2 and the value of 1197 cm−1 for 

DPEPO is red shifted to 1191 cm−1 in complex 3, indicating the involvement of P=O in the 

complex formation with Eu3+ ion. Further, as can be noted from the 31P NMR spectra of the 

complexes 2 and 3 the P=O resonances are upfield shifted from the position of this group in the 
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free ligand indicating the involvement of phophoryl oxygen in coordination with the metal ion. 

The thermal behaviour of the new Eu3+ complexes was examined by means of 

thermogravimetric analysis (TGA) under a nitrogen atmosphere and the results are depicted in 

the Figure 2.1. It is clear from the thermogravimetric analysis data that complex 1 undergoes a 

mass loss of about 6% (calcd: 5.5%) in the first step (160 to 220 °C), which corresponds to the 

elimination of the coordinated solvent molecules. On the other hand, complexes 2–3 are more 

stable than the precursor sample 1 and they undergo single step decomposition at 220 °C. 
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Figure 2.1. Thermogravimetric curve for complexes 1-3. 
 

Crystal Structures of [Eu(pffpd)3(DDXPO)] 2 and [Eu(pffpd)3(DPEPO)] 3 complexes. The 

crystal structures of Eu3+ complexes 2 and 3 were determined by single-crystal X-ray 

crystallography and the obtained asymmetric structures are depicted in Figure 2.2 and 2.3. The 

crystal data and the data collection parameters are given in Table 2.1, and the selected bond 

lengths and bond angles are presented in Table 2.2. These compounds crystallize in the triclinic 

space group P . The single-crystal X-ray data indicates that complexes 2 and 3 have no centre 

of inversion in the crystal field, resulting in an increase in electron transitions in the 4f orbitals 

due to odd parity [Hasegawa et al. 2003].  
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Table 2.1.  Crystal data, collection, and structure refinement parameters for the complexes 2· 

2.5CHCl3 and 3· CH3COCH3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters 2 3 

Empirical formula C95.5 H64.5 Cl7.5 Eu F15 O9 P2 C93 H64 Eu F15 O10 P2 
fw 2120.75 1840.34 
Crystal system Triclinic Triclinic  
Space group Pī Pī
Cryst size (mm3) 0.3 x 0.2 x 0.2 0.15 x 0.10 x 0.10  
Temperature (K) 257 (2) 257 (2) 
a/Å 14.3330(3) 15.1515(4) 
b/Å 15.3440(3) 16.0282(4) 
c/Å 23.9480(5) 17.9664(5) 
α (deg) 86.1900(10) 82.9260(10) 
β (deg)   76.4390(10) 74.1250(10) 
γ (deg)?  66.5010(10) 83.8700(10) 
V / Å3 4693.17(17) 4152.58(19) 
Z 2 2 
ρcalcd/Mg m-3 1.501 1.472 
μ/mm-1 1.002 0.887 
F(000) 2130 1860
R1 [I >2σ(I)] 0.0586 0.0679 
wR2 [I >2σ(I)] 0.1673 0.1844 
R1 (all data) 0.0729 0.0848 
wR2 (all data) 0.1795 0.2131 
Number of reflections 87492 52601 
Number of  independent 
reflections 

18809 8841 

R(int) 0.0364 0.0351 
GOF 1.058 1.102

  
Table 2.2.   Selected bond lengths [Å] and angles [°] for complexes 2 and 3. 

 2 3  
Eu(1)-O(1) 2.376(4) Eu(1)-O(1) 2.463(7)
Eu (1)-O(2) 2.325(3) Eu(1)-O(2) 2.346(8)
Eu (1)-O(3) 2.406(4) Eu(1)-O(3) 2.343(8)
Eu (1)-O(4) 2.397(3) Eu(1)-O(4) 2.440(7)
Eu (1)-O(5) 2.448(4) Eu(1)-O(5) 2.375(6)
Eu (1)-O(6) 2.383(4) Eu(1)-O(6) 2.378(7)
Eu (1)-O(7) 2.362(3) Eu(1)-O(7) 2.377(6)
Eu (1)-O(8) 2.325(3) Eu(1)-O(8) 2.381(6)
    
O(1)- Eu (1)-O(2) 71.42(13) O(1)-Eu(1)-O(2) 68.6(3)
O(3)- Eu (1)-O(4) 71.54(12) O(3)-Eu(1)-O(4) 70.2(3) 
O(5)- Eu (1)-O(6) 70.06(12) O(5)-Eu(1)-O(6) 70.0(2) 
O(7)- Eu (1)-O(8) 73.69(12) O(7)-Eu(1)-O(8) 76.7(2)  
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Figure 2.2. Asymmetric unit of complex 2: Thermal ellipsoids drawn with 30% probability, H 

atoms and non-coordinated solvent molecules omitted for clarity. 

 

 

Figure 2.3. Asymmetric unit of complex 3: Thermal ellipsoids drawn with 30% probability, H 

atoms and non-coordinated solvent molecules omitted for clarity. 
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The central Eu3+ ion is surrounded by eight oxygen atoms, six of which are from the three 

bidentate fluorinated β-diketonates, and the other two oxygen atoms from the chelate phosphine 

oxide. The coordination polyhedra can be described as distorted square antiprism. The bridging 

oxygen atom connecting the two triphenyl phosphine oxide units of the chelate phosphine oxide 

is not coordinating to the central Eu3+ ion in either of the complexes. In complex 2, the Eu–O 

bonds adjacent to the fluorene ring are slightly shorter than the others, which may be due to the 

inductive effect of the fluorine atoms present in the Hpffpd. In the β-diketone rings of the Eu3+ 

complexes, the average distances for the C–C and C–O bonds are shorter than a single bond but 

longer than a double bond. This can be explained by the fact that there exists a strong 

conjugation between the fluorene ring and the coordinated β-diketone, which leads to the 

delocalization of electron density of the coordinated β-diketonate chelate ring [Yu et al. 2003; 

Sun et al. 2006]. The two Eu–O bonds with the chelate phosphine oxide ligand (2.36 Å and 

2.33 Å for 2; 2.38 Å and 2.38 Å for 3) were shorter than the six Eu–O bonds with Hpffpd 

ligands (2.33 Å−2.45 Å for 2; 2.34–2.46 for 3), as observed in the in the single-crystal X-ray 

data of the complex, Eu3+-hexafluroacetylacetonato-1,1′-biphenyl-2,2′-

diylbis(diphenylphosphine oxide) [Nakamura et al. 2007] (Eu–O bonds 2.32–2.33 Å in 

BIPHEPO and Eu–O bonds 2.40–2.44 Å in β-diketone). Further, it can also be noted that the 

Eu–O bonds of DDXPO in 2 are shorter than that of Eu–O bonds of DPEPO in 3. Thus the 

chelate phosphine oxide DDXPO strongly coordinates with Eu3+ ion than DPEPO. In DDXPO, 

the two diphenylphosphine oxide units are linked by the xanthene moiety increases the 

conjugated area of the neutral ligand, which can improve carrier injunction and transport in 2. 

Furthermore, the introduction of more conjugated DDXPO ligand makes the complex more 

rigid, which reduces the structure relaxation in the excited state.  

UV-vis Spectra. The UV-vis absorption spectra of the free ligands (Hpffpd, DDXPO and 

DPEPO) and the corresponding Eu3+ complexes were measured in CH3CN solution (c = 2 × 10-

6 M) are displayed in Figure 2.4 and 2.5.  
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Figure 2.4. UV-visible absorption spectra of Hpffpd and complexes 1-3 in CH3CN (c = 2 × 10-6 

M). 

 

 

 

 

 

 

 

 

Figure 2.5.  UV-visible absorption spectra of the neutral ligands in CH3CN. 

 

The spectral shapes of the complexes in CH3CN are similar to that of the free ligands, 

suggesting that the coordination of Eu3+ ion does not have a significant influence on the 1π-π* 

state energy. However, a small blue shift observed in the absorption maximum of all the 

complexes is caused by the perturbation induced by the metal coordination. The ligand Hpffpd 
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exhibits a broad band in the UV corresponding to singlet – singlet π-π* enolic transition [Sun et 

al. 2006] assigned to the β-diketonate ligand, with a lowest energy maximum at 300-425 nm 

(λmax = 356 nm) and a molar absorption coefficient of 6.75 × 104 L mol-1 cm-1. The presence of 

the ancillary ligand (DDXPO or DPEPO) not only enhances the absorption intensity but also 

satisfies the high coordination number of the central Eu3+ ion and thus improves the 

coordination and thermal stabilities of complexes 2 and 3.  The molar absorption coefficient 

values for the complexes 1-3 were calculated at the respective λmax value and were found to be 

1.94 × 105, 2 × 105 and 2 × 105 L mol-1 cm-1, respectively.  The magnitude of these values are 

about three times higher than that of the Hpffpd (6.75 × 104 at 356 nm), indicating the presence 

of three β-diketonate ligands in the corresponding complexes. Further the higher molar 

absorption coefficient of Hpffpd reveals that the β-diketonate ligand has a strong ability of 

absorbing light. 

Photophysical properties of Eu3+ complexes. The room temperature excitation and emission 

spectra of Eu3+ complexes 1–3 in the solid state have been studied and the results are depicted 

in Figure 2.6. The excitation spectra of these complexes were all obtained by monitoring the 

strongest emission wavelength of the Eu3+ at 612 nm. The excitation spectra of all the 

complexes exhibit a broad band between 250 and 450 nm, which is attributed to singlet-singlet 

π–π* enol absorption of the β-diketonate ligand [de Sa et al. 2000; Biju et al. 2006; Pavithran et 

al. 2006; bBiju et al. 2009]. In all cases, the excitation spectra recorded by monitoring the f–f 

transitions matched with the absorption spectra, evidencing that the emission arose from energy 

transfer from the ligand to the metal excited states as a result of the antenna effect [Kawa and 

Frechet 1998; Li et al. 2002]. A series of sharp lines assigned to transition between the 7F0,1 and 

5D2-1 are also seen in the solid state excitation spectra of these complexes. However, these 

transitions are weaker than the absorption of the organic ligands and are overlapped by broad 

excitation band, which proves that luminescence sensitization via excitation of the ligand, is 

much more efficient than the direct excitation of Eu3+ absorption level. 
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Figure 2.6. Solid state excitation and emission spectra for complexes 1 (λex 390 nm), 2 (λex 383 

nm) and 3 (λex 393 nm) at 298 K, emission monitored around 612 nm. 

 

The emission spectra of complexes 1–3 in solid state (Figure 2.6) exhibited the characteristic 

narrow bands arising from the intra-configurational 5D0→7FJ (J = 0–4) transitions of the Eu3+ 

ion [Pavithran et al. 2006; bBiju et al. 2009]. Furthermore, a weak green emission band at 535 

nm occurs, corresponding to the high energy transition of 5D1→7F1 [Dejneka et al 1995; 

Kadjane et al. 2008]. No ligand-based emission is observed, indicating an efficient ligand-to-

metal energy transfer process. The five narrow emission peaks centered at 579, 590, 612, 649 

and 699 nm, assigned to 5D0→7F0, 5D0→7F1, 5D0→7F2, 5D0→7F3, and 5D0→7F4 transitions, 

respectively [Försberg 1973]. Among the peaks, the emission at 612 nm from the 5D0→7F2 

induced electronic dipole transition is the strongest, suggesting the chemical environment 

around Eu3+ ions does not have an inversion center [Lenaerts et al. 2005]. Moreover, the 

presence of only one sharp peak in the region of the 5D0→7F0 transition at 579 nm suggests the 

existence of a single chemical environment around the Eu3+ ion of point group symmetry C1 

[Kai et al. 2008; Liu et al. 2008] which is in good agreement with the X-ray crystal structure of 

complexes 2–3. The experimental data on the Ln3+ complexes indicated that the magnetic dipole 
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transition 5D0→7F1 of Eu3+ is largely independent of the ligand field and therefore can be used 

as an internal standard to account for the ligand differences [Bunzli 1989]. The electric dipole 

transition 5D0→7F2, so-called hypersensitive [Dossing 2005; Beeby et al. 1999] transition, is 

sensitive to the symmetry of the coordination sphere. The intensity ratio of the electric dipole 

transition to the magnetic dipole transition in the lanthanide complex measures the symmetry of 

the coordination sphere [Forsberg 1973]. For the Eu3+ complex 1, in the absence of chelate 

phosphine oxides, the intensity ratio of the transitions of 5D0→7F2/5D0→7F1 (R21) is 10.82 

(Table 2.3). It increases to 13.35 in complex 2 and 13.04 in 3. In short, the presence of chelate 

phosphine oxides increases the luminescent intensity of the hypersensitive transitions of the 

Eu3+ ion. One can easily understand from the Figure 2.6 that the displacement of the solvent 

molecules from the complex Eu(pffpd)3(C2H5OH)(H2O) by the chelating phosphine oxides 

significantly enhances the luminescent intensity. 

The luminescence decay curves of Eu3+ complexes 1–3 were obtained by monitoring the 

emission at the hypersensitive 5D0→7F2 transition (612 nm) and excitation at wavelengths that 

maximizes the Eu3+ emission intensity. These data were adjusted with a first-order exponential 

decay function and the lifetime values (τ) of the emitter 5D0 level of the Eu3+ complexes were 

determined and are listed in Table 2.3. Typical decay profiles of complexes 1–3 are shown in 

Figure 2.7. Decay curves fit to a monoexponential indicating only one species exists in the 

excited state [Biju et al. 2006; Pavithran et al. 2006]. The relatively shorter lifetime observed 

for complex 1 may be due to the dominant non-radiative decay channels associated with 

vibronic coupling induced by the presence of solvent molecules, as well documented in many 

of the hydrated europium β-diketonate complexes [de Sa et al. 2000; Yu et al. 2005; Eliseeva et 

al. 2006; Sun et al. 2006; Fratini et al. 2008]. For Eu3+ the energy gap between the luminescent 

state and the ground state manifold is approximately 12,000 cm−1 [Dossing 2005; Beeby et al. 

1999]. Thus, relatively efficient coupling of the Eu3+ excited states occurs to the third 

vibrational overtone of proximate OH oscillators (νOH~3300–3500 cm−1) consistent with the 
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observed efficient quenching of Eu3+ luminescence. On the other hand, longer lifetime values 

have been observed for complexes 2–3 due to the absence of non-radiative decay pathways. 
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Figure 2.7. Experimental solid state luminescence decay profiles of complexes monitored 

around 612 nm and excited at their maximum emission wavelengths. 

 

Table 2.3. Radiative (ARAD) and nonradiative (ANR) decay rates, 5D0 lifetime (τobs), intrinsic 

quantum yield (ΦLn,%), energy transfer efficiency (Φsens,%), and overall quantum yield 

(Φoverall,%) for complexes 1-3 in solid state. 

 
Complex R21 τobs (µs) ARAD (s-1

) ANR (s-1
) ΦLn(%) Φsens (%) Φoverall (%)

1 10.823 328 ± 3 783 2265 26 13 3 ± 0.3 
2 13.351 820±2 821 398 67 74 48 ± 5 
3 13.036 742± 1 796 552 59 48 28 ± 3  

 

The overall quantum yield (Φoverall) of a Eu3+ coordination compound is the product of the 

intrinsic quantum yield ΦLn (measured upon f–f excitation), which reflects the extent of non-

radiative deactivation processes taking place within the luminescent edifice, and the 

sensitization efficiency of the ligand (Φsens), which reflects the efficacy with which the latter 

transfers its excitation energy onto the metal ion [Xiao and Selvin 2001; Comby et al. 2004].  
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Lnsensoverall Φ×Φ=Φ     (1) 

In the case of Eu3+, simple equations allow one to determine the otherwise difficult-to-measure 

ΦLn from spectral parameters and lifetimes:  

RAD

obs

NRRAD

RAD
Ln AA

A
τ
τ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=Φ        (2) 

The radiative lifetime (τRAD) can be calculated using eqn (3) [Viswanathan and de Bettenacourt-

Dias 2006; Kim et al. 2006], which relates the shape of the emission spectrum of Eu3+ to its 

radiative lifetime and assuming that the energy of the 5D0→7F1 transition (MD) and its 

oscillator strength are constant:  
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   (3) 

In this formula, n is the refractive index of the medium, AMD,0 is the spontaneous emission 

probability for the 5D0→7F1 transition in vacuo, and ITOT/IMD is the ratio of the total area of the 

corrected Eu3+ emission spectrum to the area of the 5D0→7F1 band. From the theoretically 

calculated dipole strength it is found that AMD,0 has a value of 14.65 s−1[Kim et al. 2006; 

Viswanathan and de Bettenacourt-Dias 2006]. An average index of refraction equal to 1.5 was 

considered [Biju et al. 2006; Pavithran et al. 2006]. 

 The overall quantum yield (Φoverall), radiative (ARAD) and non-radiative (ANR) decay rates, 

intrinsic quantum yield (ΦLn) and energy transfer efficiency (Φsens) of complexes 1–3 were 

presented in Table 2.3. At room temperature, the substitution of solvent molecules in 

Eu(pffpd)3(C2H5OH)(H2O) complex by a chelating phosphine oxide, DDXPO leads to a 2.5-

fold increase in observed luminescence lifetime (τobs) values and to an approximately 16-fold 

enhancement in absolute overall quantum yield as determined upon ligand excitation. Similarly, 

a 2.26-fold enhancement in luminescence lifetime and 9-fold enhancement in the absolute 

overall quantum yield has been noted by replacing solvent molecules in the 

Eu(pffpd)3(C2H5OH)(H2O) by DPEPO. According to energy gap theory, radiation less 
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transitions is prompted by ligands and solvents with high frequency vibrational modes. A 

creation of Eu3+ complex with higher quantum yields is directly linked to suppression of 

radiation less transitions caused by vibrational excitations in surrounding media [Wada et al. 

2000; Hasegawa et al. 2003; Peng et al. 2005]. It is clear from the Table 2.3 that complex 1, 

having solvent molecules in the coordination sphere exhibits lower overall quantum yield and 

life time values. This is due to the presence of O–H oscillators in this system, which effectively 

quenches the luminescence of the Eu3+ ion. On the other hand, complexes 2 and 3 exhibit high 

overall quantum yield and lifetime values due to the displacement of solvent molecules from 

the coordination sphere by the bidentate phosphine oxides. Among complexes 2 and 3, 2 

exhibits better quantum yields than 3 due to the extended conjugation and strong coordination 

with the central Eu3+, which might enable efficient energy transfer. Thus the substantial 

contribution of the chelating phosphine oxide to the overall sensitization of the Eu3+-centered 

luminescence in complexes 2 and 3 is confirmed by (i) an increase of the intrinsic quantum 

yield by a factor of 2.58 in 2 and 2.26 in 3, which results from removal of the quenching effect 

of the O–H vibrations, and (ii) the significant enhancement of Φsens from 13 to 74% in 2 (5.69-

fold) and 48% in 3 (3.69-fold). The much larger increase in Φsens, compared with intrinsic 

quantum yield is reflecting the contribution of the ancillary ligand to the energy transfer 

process. 

Intramolecular Energy Transfer in the Eu3+ Complexes. It is well documented that in the 

lanthanide β-diketonate complexes, ancillary ligand often play a role in absorbing and 

transporting energy to the primary ligand β-diketone or to the central Ln3+ ion [Xu et al. 2006]. 

For effective energy transfer to occur, the overlap between the emission spectrum of the donor 

and the absorption spectrum of the acceptor is essential [Berlman 1973]. It is evident from 

Figure 2.8 that the room temperature emission spectrum of chelating ligand (DDXPO) is 

overlapped by the absorption spectrum of the Hpffpd in the region 375–425 nm, and hence it 

means that nearly all the radiation from the singlet state of DDXPO can be absorbed by the 
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Hpffpd ligand. The large area overlap of room temperature emission spectrum of Hpffpd with 

that of low-temperature phosphorescence spectrum of Gd(NO3)3(DDXPO) in the region 450–

600 nm, indicates that energy transfer from singlet state (S1) of Hffpd to the triplet state (T1) of 

DDXPO is effective (Figure 2.8).  
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Figure 2.8. (a) Room-temperature emission spectrum of DDXPO, (b) UV-vis absorption 
spectra of Hpffpd (2×10–5 M in CH3CN), (c) Room-temperature emission spectrum of Hpffpd, 
(d) 77K phosphorescence spectra of Gd (NO3)3(DDXPO), (e) 77K phosphorescence spectra of 
Gd(pffpd)3(H2O)(C2H5OH),.All spectra are normalized to a constant intensity at the maximum. 
 

The overlap of low-temperature phosphorescence spectra of Gd(NO3)3(DDXPO) and 

Gd(pffpd)3(H2O)(C2H5OH) (Figure 2.8) again highlights that the T1 of ancillary ligand can 

transfers energy to the T1 of Hpffpd, which in turn transfers energy to the 5D0 state of the Eu3+ 

ion. Finally, the Eu3+ ion emits when transition to the ground state occurs [Biju et al. 2006; 

Pavithran et al. 2006]. Apart from the above energy transfer pathways, the overlap of room-

temperature emission and low-temperature phosphorescence spectra of DDXPO and Hpffpd, 

indicates that effective intersystem crossing process between S1 and T1 of the ligands (Figure 

2.8). 
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To demonstrate the energy transfer process of the Eu3+ complexes, the energy levels of 

relevant electronic states of the ligands have been determined. The S1 and T1 energy levels of 

Hpffpd and chelating phosphine oxides were estimated by referring to their wavelengths of UV-

vis absorption edges and the lower wavelength emission edges of the corresponding 

phosphorescence spectra of the complexes Gd(pffpd)3(H2O)(C2H5OH), Gd(NO3)3(DDXPO) 

and Gd(NO3)3(DPEPO) (Figure 2.9).  
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Figure 2.9.  Phosphorescence spectra of (a) Gd(NO3)3(DPEPO), (b) Gd(NO3)3(DDXPO) and 

(c) Gd(pffpd)3(H2O)(C2H5OH) at 77K. 

 

The T1 of Hpffpd, DDXPO and DPEPO are found to be 19,450, 23,470, and 25,640 cm−1, 

respectively. The S1 levels of Hpffpd, DDXPO and DPEPO are found to be 23,920, 31,850 and 

32,900 cm−1, respectively. Thus, the energy gap between the Eu3+ core (5D0≈ 17,250 cm−1) and 

the donor ligands T1 levels turns out to be 2200, 6220 and 8390 cm−1 for Hpffpd, DDXPO and 

DPEPO, respectively. This suggests that although the triplet states of the ancillary ligands are 
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energetically compatible with an efficient energy transfer process, the lower lying Hpffpd level 

may undergo thermal back-energy transfer from the central core [Armaroli et al. 1999]. 

Furthermore, the 5D1 Eu3+ emitting state, located at approximately 18,800 cm−1, is critically 

close to the triplet energy level of Hpffpd (19 450 cm−1). On the other hand, in complexes 2 and 

3, the T1 of DDXPO and DPEPO lie well above the higher excited states of Eu3+, such as 5D2 

(21,200 cm−1), and 5D1 (18,800 cm−1). The corresponding energy gaps ΔE(T1−
5D1) = 4670 cm−1 

(DDXPO), 6840 cm−1 (DPEPO) and  ΔE(T1−
5D2) = 2470 cm−1 (DDXPO), 4640 cm−1 (DPEPO) 

are too high to allow thermal back-energy transfer from the central Eu3+ ion [Latva et al. 1997]. 

The T1 of ancillary ligand DDXPO can also transfer energy to the central Eu3+ ion directly or 

through the T1 of Hpffpd (low temperature emission spectra of DDXPO and Hpffpd are 

overlapped; (Figure 2.8). The room-temperature emission spectrum of 2 and 3 exhibits 

transitions from excited 5D1 state to 7F0 at 535 nm (inset as shown in Figure 2.6), which is 

absent in complex 1 indicating the transfer of energy from the T1 of neutral ligand to the higher 

excited states of Eu3+. 

Investigations indicated that DDXPO in complex Eu(pffpd)3(DDXPO) has the mezzo first 

triplet excited energy level (T1) between the first singlet excited energy level (S1) and T1 of 

Hpffpd, which support one more additional energy transfer routines from the T1 level of 

DDXPO to that of Hpffpd, and consequently results in improvement of energy transfer in the 

Eu3+ complex 2 (Φsens= 74%) as compared to Eu(pffpd)3(H2O)(C2H5OH) (Φsens= 13%). On the  

other hand, DPEPO in Eu(pffpd)3(DPEPO) does not show any mezzo state. Here, both the S1 

and T1 of DPEPO lies above the S1 level of the primary ligand. Hence in the present study, 

complex 2 shows higher quantum yield than complex 3 even though the ancillary ligands do not 

differ much in their electronic structure and coordination modes. Based on the preceding 

observations, the schematic representation of energy level diagram showing the possible energy 

transfer pathways for complexes 2 and 3 are depicted in Figures 2.10 and 2.11, respectively. 
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Figure 2.10. Schematic energy level diagram and energy transfer processes for complex 2. S1 
represents the first excited singlet state and T1 represents the first excited triplet state. 
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Figure 2.11. Schematic energy level diagram and energy transfer processes for complex 3. S1 
represents the first excited singlet state and T1 represents the first excited triplet state. 
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2.5. Conclusions 

Based on the designed fluorinated β-diketone (Hpffpd) and highly rigid chelate phosphine oxide 

(DDXPO) ligands, two new europium complexes [Eu(pffpd)3(C2H5OH)(H2O)] 1 and 

[Eu(pffpd)3(DDXPO)] 2 have been successfully synthesized and fully characterized. For 

comparison, [Eu(pffpd)3(DPEPO)] 3 complex was also designed. The structures of the 

complexes 2 and 3 have been determined by single-crystal X-ray diffraction. The luminescent 

study demonstrated that the replacement of solvent molecules in [Eu(pffpd)3(C2H5OH)(H2O)] 

by DDXPO leads to a huge enhancement in overall quantum yield (from 3 to 48%) and 5D0 

lifetime (from 328 to 820 μs). Further, the substantial contribution of ancillary ligand for 

overall sensitization process of Eu3+-centered luminescence in [Eu(pffpd)3(DDXPO)] is 

confirmed by increase of intrinsic quantum yield from 26 to 67% and the substantial 

enhancement of Φsens from 13 to 74%. Investigations indicated that DDXPO has the mezzo first 

triplet excited state energy level (T1) between the first singlet excited energy level (S1) and T1 

of Hpffpd. This may support one more additional energy transfer from the T1 energy level of 

DDXPO to that of Hpffpd, and consequently improves the energy transfer in the Eu3+ complex 

2. These effects makes the [Eu(pffpd)3(DDXPO)] 2 complex has the promising PL efficiency of 

48%.  On the other hand, in [Eu(pffpd)3(DPEPO)] 3, both the S1 and T1 levels of DPEPO lies 

above the S1 of Hpffpd and hence no mezzo state exists, and consequently exhibits lower 

quantum yield (28%) than that of 2.  Most importantly, the DDXPO could serve an effective 

ancillary ligand to afford high luminescence performance in Eu3+-tris-β-diketonate complexes, 

which may find certainly an outstanding candidate for the design of red-emitting 

electroluminescent materials. 
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Highly luminescent poly(methyl methacrylate)-incorporated europium 

complex supported by a carbazole-based fluorinated β-diketonate ligand and 

a 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene oxide co-ligand 

 
 

 
 
 
 
 
 
 

 

 
 
 
3.1. Summary. A novel efficient antenna complex of Eu3+ [Eu(CPFHP)3(DDXPO)] supported 
by a highly fluorinated carbazole-substituted β-diketonate ligand, namely, 1-(9H-carbazol-2-
yl)-4,4,5,5,5-pentafluoro-3-hydroxypent-2-en-1-one (CPFHP) and the 4,5-
bis(diphenylphosphino)-9,9-dimethylxanthene oxide (DDXPO) ancillary ligand, has been 
synthesized, structurally characterized, and its photoluminescent behaviour examined. The 
single-crystal X-ray diffraction analysis of Eu(CPFHP)3(DDXPO) revealed that this complex is 
mononuclear, and that the central Eu3+ ion is surrounded by eight oxygen atoms, six of which 
are provided by the three bidentate β-diketonate ligands. The remaining two oxygen atoms are 
furnished by the chelating phosphine oxide ligand. The coordination polyhedron is best 
described as that of a distorted square antiprism. The photophysical properties of 
Eu(CPFHP)3(DDXPO) benefit from adequate protection of the metal by the ligands with 
respect to non-radiative deactivation as well as an efficient ligand-to-metal energy transfer 
process which exceeds 66% in chloroform solution with a quantum yield of 47%. As an integral 
part of this work, the synthesis, characterization, and luminescent properties of poly(methyl 
methacrylate) (PMMA) polymer films doped with Eu(CPFHP)3(DDXPO) are also reported. 
The luminescent efficiencies of the doped films (photoluminescence quantum yields 79−84%) 
are dramatically enhanced in comparison with that of the precursor complex. The new 
luminescent PMMA-doped Eu(CPFHP)3(DDXPO) complex therefore shows considerable 
promise for polymer light-emitting diode and active polymer optical fiber applications. 
  

 

D.B. Ambili Raj et al., Inorg. Chem. 2010, 49, 9055-9063. 
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3.2 Introduction  

The unique photoluminescent properties of europium complexes render them appropriate for a 

host of applications, such as display devices, solid state lighting (including OLEDS), and 

sensors [Kido and Okamoto 2002; Kuriki et al. 2002; Polman and van Veggel 2004; Bünzli and 

Piguet 2005; de Bettencourt-Dias 2007; Bünzli 2010]. The shielding of the f orbitals by the 5s2 

and 5p6 closed shells results in narrow line-like emissions of optically pure colors with long 

radiative lifetimes. However, the f-f transitions that result in light emission from the lanthanides 

are both spin- and parity-forbidden which, in turn, mandates the use of antenna molecules for 

indirect excitation of the metal center. This indirect excitation, also known as the antenna 

effect, takes advantage of the coordinated ligands in the sense that energy transfer from the 

ligand-centered excited states to the metal center results in lanthanide ion luminescence [Lehn 

1990; Sabbatini et al. 1993; Piguet and Bünzli 1999]. In 1942, Weissman observed that the use 

of organic ligands in europium complexes increased the luminescence intensity from the 

lanthanide ion when such complexes were irradiated with ultraviolet (UV) light [Weissman 

1942]. The β-diketone ligand class represents one of the important ‘‘antennas’’ for facilitating 

efficient ligand to lanthanide ion energy transfers, thus generating high harvest emissions 

[Binnemans 2009; Xu et al. 2006; Remya et al. 2008].  

It is well known that the replacement of the C−H bonds of a β-diketone ligand with lower-

energy C−F oscillators is capable of lowering the vibrational energy of the ligand [Hasegawa et 

al. 2000; Glover et al. 2007]. In turn, this decreases the energy loss because of ligand vibration 

and therefore enhances the emission intensity of the lanthanide ion [Chauvin et al. 2006; Sun et 

al. 2006]. In recent years, the carbazole functional group has been incorporated into β-

diketonate ligands to improve the hole transport mobility of lanthanide complexes [Nie et al. 

2007; Zheng et al. 2008; aHe et al. 2009; Baek et al. 2010]. Carbazoles possess a number of 

other desirable properties which include good chemical and environmental stability, modest 

cost, and the ability to tune the optical and electrical properties by substitution with a wide 
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variety of functional groups [Grazulevicius et al. 2003; Morin et al. 2005]. It was consideration 

of these factors that prompted us to design and synthesize the new β-diketonate ligand, 1-(9H-

carbazol-2-yl)-4,4,5,5,5-pentafluoro-3-hydroxypent-2-en-1-one, which features both a 

polyfluorinated alkyl group and a carbazole unit. 

Chelated lanthanide β-diketonate complexes typically are isolated with two water molecules 

incorporated in the first coordination sphere of the central metal ion. Unfortunately, the 

presence of such water molecules quenches the lanthanide emission by activation of non-

radiative decay pathways [de Sa et al. 2000]. One way to overcome this problem is to replace 

the water molecules with ancillary ligands bearing chromophores that are capable of playing the 

antenna role. An additional requirement in this regard is that the antenna ligand should bind 

sufficiently strongly to the lanthanide center that the coordination of water molecules is 

precluded. In selecting the ancillary ligand, attention needs to be paid to enhancing the volatility 

and thermal stability as well as to the film forming properties and the carrier transport behavior. 

Given the foregoing considerations, a significant number of lanthanide tris(β-diketonates) have 

been prepared that also feature coordinated bidentate nitrogen [Bellusci et al. 2005; Biju et al. 

2006; Chen et al. 2007] and phosphine oxide [Xu et al. 2006; Xu et al. 2007; Xu et al. 2008; 

Xu et al. 2010] ligands. Such complexes have been reported to serve as efficient light 

conversion molecular devices. Consideration of the foregoing results motivated us to design the 

new europium antenna complex, Eu(CPFHP)3(DDXPO), which contains a highly fluorinated 

carbazole-substituted β-diketonate, namely, 1-(9H-carbazol-2-yl)-4,4,5,5,5-pentafluoro-3-

hydroxypent-2-en-1-one (CPFHP). The coordination sphere also contains 4,5-

bis(diphenylphosphino)-9,9-dimethylxanthene oxide (DDXPO) as an ancillary ligand. The 

newly synthesized Eu3+ complex was characterized on the basis of elemental analysis, 1H and 

13C NMR, and mass spectroscopy. 
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excellent mechanical processing properties of polymers [McGehee et al. 1999; Kai et al. 2008; 

Balamurugan et al. 2009; Boyer et al. 2009]. Typical applications for such polymer films are as 

organic light emitting diodes [Liang et al. 2003; Yu et al. 2005; Shunmugam and Tew, 2005; 

Chen et al. 2008] (OLEDs) or as active optical polymer fibers for data transmission [McGehee 

et al. 1999; Klink et al. 2000]. A popular polymer matrix for use as a host for luminescent 

lanthanide complexes is poly(methyl methacrylate) (PMMA) which is a low-cost, simply 

prepared polymer of excellent optical quality. This material is transparent at wavelengths longer 

than 250 nm [Hasegawa et al. 2003; Fan et al. 2010; Lunstroot et al. 2010]. In the present 

work, we report the synthesis and photophysical properties of the new Eu3+ complex, 

[Eu(CPFHP)3(DDXPO)] which exhibits excellent quantum yield values (79−84%) in PMMA. 

The overall aim of this work was to develop a simple and feasible method for the production of 

a luminescent material with the objective of obtaining information about the photoluminescence 

(PL) behavior of the optical material incorporated into the polymer film. The sensitization 

effect of the polymer matrixes on the Eu3+ luminescent center is discussed in detail based on 

excitation and emission spectra, luminescence decay curves, experimental intensity parameters, 

and quantum yields. 

3.3. Experimental section 

Materials and instrumentation. Europium(III) nitrate hexahydrate of 99.9% purity and 4,5-

bis(diphenylphosphino)-9,9-dimethylxanthene of 97% purity were purchased from Treibacher 

and Alfa-Aesar, respectively. Gadolinium(III) nitrate hexahydrate, 2-acetylcarbazole (98% 

purity), methyl pentafluoropropionate (99% purity), 4,5-bis(diphenylphosphino)-9,9-

dimethylxanthene 97% (Aldrich). and sodium hydride (60% dispersion in mineral oil) were 

procured from Sigma-Aldrich. The bidentate phosphine oxide, DDXPO was synthesized 

according to the method described in the earlier chapter. All the other chemicals used were 

of analytical reagent grade.  
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The overall quantum yields of the sensitized Eu3+ emissions of the complexes were 

measured in CHCl3 solution at room temperature and are cited relative to a reference solution of 

quinine sulfate in 1 N H2SO4 (Φ = 54.6%). Corrections were made for the refractive index of 

the solvent. All solvents were of spectroscopic grade. The overall luminescent quantum yields 

of the complexes were calculated according to the well-known equation [Eaton 1988; Demasa 

and Crosby 1971; Werts et al 2002] 

ref
refref

ref
overall AIn

IAn
Φ=Φ 2

2

       (1) 

where n, A, and I denote the refractive index of solvent, the area of the emission spectrum, and 

the absorbance at the excitation wavelength, respectively, and Φref represents the quantum yield 

of the standard quinine sulfate solution. The subscript ref denotes the reference, and the absence 

of a subscript implies an unknown sample. The refractive index is assumed to be equivalent to 

that of the pure solvent: 1.45 for chloroform and 1.33 for water at room temperature.
 
The 

overall quantum yields for the Eu3+ doped films were determined under ligand excitation 

(330−420 nm) and are based on the absolute method using a calibrated integrating sphere in a 

SPEX Fluorolog spectrofluorimeter. A Xe-arc lamp was used to excite the thin-film samples 

placed in the sphere. The quantum yield was determined by comparing the spectral intensities 

of the lamp and the sample emission as reported in the literature [Wrighton et al. 1974; de 

Mello et al. 1997; Palsson and Monkman 2002]. Using this experimental setup and the 

integrating sphere system, the solid-state fluorescence quantum yield of a thin film of the 

standard green OLED material tris-8-hydroxyquinolinolato aluminum (Alq3) was determined to 

be 0.19, which is consistent with previously reported values [Colle et al. 2003; Saleesh Kumar 

et al. 2008]. Each sample was measured several times under slightly different experimental 

conditions. The estimated error for the quantum yields is (±10%) [Eliseeva et al. 2008].  

Crystallographic characterization. The X-ray diffraction data were collected on a Rigaku 

AFC-12 Saturn 724+ CCD diffractometer equipped with a graphite-monochromated Mo Kα 
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radiation source (λ = 0.71073 Å) and a Rigaku XStream low temperature device cooled to 100 

K. Corrections were applied for Lorentz and polarization effects. The structure was solved by 

direct methods and refined by full-matrix least-squares cycles on F2 using the Siemens 

SHELXTL PLUS 5.0 (PC) software package [Sheldrick 1994] and PLATON [Sluis and Spek, 

1990]. All non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were 

placed in fixed, calculated positions using a riding model. Selected crystal data and data 

collection and refinement parameters are listed in Table 1. Two of the C2F5 groups in complex 

Eu(CPFHP)3(DDXPO) display a typical disorder, which has been modeled and refined 

successfully. X-ray crystallographic information files can be obtained free of charge via 

www.ccdc.cam.ac.uk/consts/retrieving.html (or from CCDC, 12 Union Road, Cambridge CB2 

1EZ, U.K.; fax, +44 1223 336033; e-mail, deposit@ccdc.cam.ac.uk). The CCDC number for 

the Eu(CPFHP)3(DDXPO) complex is CCDC 771380. 

Other instrumental techniques employed for the characterization of the ligands and 

complexes are the same as that described in the previous chapter. 

Synthesis of 1-(9H-Carbazol-2-yl)-4,4,5,5,5-pentafluoro-3-hydroxypent-2-en-1-one 

(CPFHP). A modification of the typical Claisen condensation procedure was used for the 

synthesis of CPFHP as shown in Scheme 3.1. 2-Acetylcarbazole (0.002 mmol) and methyl 

pentafluoropropionate (0.002 mmol) were dissolved in 20 mL of anhydrous tetrahydrofuran 

(THF) under a N2 atmosphere, and the temperature was maintained at 0 °C. Sodium hydride 

was added, and the reaction mixture was stirred for 12 h, following which it was quenched with 

water. Hydrochloric acid (2.0 M) was then added, and the resulting mixture was extracted with 

CH2Cl2 and dried over anhydrous Na2SO4. The residue was purified by column 

chromatography (chloroform/hexane =1:4) to give the final product as a yellowish solid (yield 

65%). Elemental analysis (%): Calcd for C17H10F5NO2 (355.26): C, 57.47; H, 2.84; N, 3.94. 

Found: C, 57.73; H, 3.17; N, 3.98. 1H NMR (500 MHz, CDCl3): δ (ppm) 15.57 (broad, enol 

−OH), 8.36 (s, 1H), 8.17−8.13 (m, 3H), 7.83−7.81 (dd, 1H, J = 1.5 Hz, J = 1.5 Hz), 7.55−7.50 
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(m, 2H), 7.32−7.29 (m, 1H), 6.77 (s, 1H). 13C NMR (125 MHz, acetone-d6): δ (ppm) 186.72, 

178.06−177.64, 142.95−142.81,140.51−140.37, 140.09, 130.12, 129.22−128.71, 122.96, 

122.92, 122.31−121.97, 121.57−121.23, 120.62−120.15, 119.49−119.29, 118.15, 

112.42−112.09, 109.01, 94.62. FT-IR (KBr) νmax: 3346, 2923, 2853, 1630, 1580, 1203, 1173, 

1118, 1018, 804 cm−1. m /z = 356.76 (M+H)+.  

F F

 

 

 

 

 

 

 

 

Scheme 3.1. Synthesis of the CPFHP Ligand. 

 

Synthesis of Ln(CPFHP)3(C2H5OH)(H2O) [Ln = Eu3+ (1), Gd3+(3)]. A mixture of the β-

diketonate ligand CPFHP (0.6 mmol) and NaOH (0.6 mmol) in an acetone-ethanol solvent 

mixture was stirred for 10 min at room temperature, following which a saturated ethanolic 

solution of Ln(NO3)3·6H2O (0.2 mmol) was added dropwise, and the reaction mixture was 

stirred subsequently for 10 h. Water was then added, and the precipitate that had formed was 

filtered off, washed with water, dried and purified by recrystallization from an acetone-water 

mixture (Scheme 3.2).  
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Scheme 3.2. Synthesis of Ln(CPFHP)3(H2O)(C2H5OH).[Ln = Eu3+ (1), and Gd3+ (3)]. 

 

Elemental analysis (%): Calcd for C53H35F15O8N3Eu (1) (1278.81): C, 49.78; H, 2.76; N, 3.29. 

Found: C, 49.97; H, 2.54; N, 3.07. FT- IR (KBr) νmax: 3418, 2924, 1603, 1529, 1469, 1327, 

1259, 1166, 1013, 750 cm−1. m/z = 1233.65 [(M+ − C2H5OH) + H]. Elemental analysis (%): 

C53H35F15O8N3Gd (3) (1284.76): C, 49.78; H, 2.76; N, 3.29. Found: C, 50.02; H, 2.61; N, 3.17. 

FT-IR (KBr) νmax: 3423, 2925, 1602, 1528, 1464, 1328, 1277, 1197, 1015, 798 cm−1. m/z = 

1222.89 [(M+ − H2O, C2H5OH) + H]. 
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Scheme 3.3. Synthesis of Eu(CPFHP)3(DDXPO). 
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Synthesis of Eu(CPFHP)3(DDXPO) (2). Complex 2 was prepared by stirring equimolar 

quantities of Eu(CPFHP)3(H2O)(C2H5OH) and the phosphine oxide DDXPO in CHCl3 solution 

for 24 h at room temperature (Scheme 3.3). The product was isolated by solvent evaporation 

and purified by recrystallization from a chloroform-hexane mixture. Crystals of complex 2 

suitable for single-crystal X-ray diffraction study were obtained upon storage of a saturated 

solution of the complex in a CHCl3/2-methoxy-ethanol solvent mixture. Elemental analysis 

(%): Calcd for C90H59EuF15N3O9P2 (1825.35): C, 59.22; H, 3.26; N, 2.30. Found: C, 59.47; H, 

3.24; N, 2.38. FT-IR (KBr) νmax: 2924, 1611, 1520, 1404, 1212, 1195, 1173, 1146, 1125, 1070, 

1007, 748, 689, 539 cm−1; m/z = 1470.21 [Eu(CPFHP)2(DDXPO) + H].  

Synthesis of Eu3+ Complex-Doped PMMA Polymer Films. The PMMA polymer was doped 

with the Eu3+ complex 2 in the proportions 2.5 (4), 7.5 (5), 10 (6), and 15% (7) (w/w). The 

PMMA powder was dissolved in chloroform, followed by addition of the required amount of 

complex 2 in chloroform solution, and the resulting mixture was heated at 40 °C for 30 min. 

The polymer film was obtained after evaporation of excess solvent at 60 °C [Moudam et al. 

2009]. 

 

2.4. Results and Discussion 

Synthesis and Characterization of the CPFHP Ligand and Ln3+ Complexes 1−3. The 

ligand 1-(9H-carbazol-2-yl)-4,4,5,5,5-pentafluoro-3-hydroxypent-2-en-1-one (CPFHP) was 

synthesized in 65% yield from the corresponding ketone and ester by a modified Claisen 

condensation reaction. The overall procedure is summarized in Scheme 3.1. The ligand, CPFHP 

was characterized by 1H NMR, 13C NMR, FT-IR, and mass spectroscopic (FAB-MS) methods, 

as well as by elemental analysis. The lanthanide complexes were prepared as shown in Schemes 

3.2 and 3.3. The complexes were characterized by FT-IR, mass spectroscopy (FAB-MS), and 

elemental analyses. The elemental analyses and FAB-MS studies revealed that the central Ln3+ 

ion is coordinated to three β-diketonate ligands. In the case of complex 2, one molecule of the 
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bidentate phosphine oxide, DDXPO, is also present in the coordination sphere. The FT-IR 

spectra of complexes 1 and 3 exhibit a broad absorption in the 3000−3500 cm−1 region, thereby 

indicating the presence of solvent molecules in the coordination sphere of the Ln3+ ion. On the 

other hand, the absence of this broad band in the 3000−3500 cm−1 region in the case of complex 

2 implied that the solvent molecules had been replaced successfully by the bidentate phosphine 

oxide ligand. The carbonyl stretching frequency for the CPFHP ligand (1630 cm−1) shifted to 

lower wave numbers in compounds 1−3 (1603 cm−1 for 1; 1611 cm−1 for 2; 1602 cm−1 for 3), 

thus confirming coordination of the carbonyl oxygen to the Ln3+ cation in each case. The fact 

that the P=O stretching frequency of DDXPO at 1180 cm−1 shifted to 1173 cm−1 in complex 2 

confirms the involvement of the P═O bond of DDXPO in complex formation. 

The thermal behavior of the Eu3+ complexes under a nitrogen atmosphere was examined by 

means of thermogravimetric analysis (TGA). The general profiles of the weight losses for 

complexes 1 and 2 are displayed in  Figure 3.1. It is clear from the TGA data that complex 1 

undergoes a mass loss of approximately 5% (Calcd: 5.01%) in the first step (120 to 180 °C), 

which corresponds to the elimination of the coordinated water and solvent molecules. On the 

other hand, complex 2 is stable up to 180 °C, above which it decomposes. The final residue for 

complex 1 is approximately 20% of the initial mass while that for complex 2 is approximately 

15%. These residual masses correspond to formation of the non-volatile europium(III) 

oxyfluoride. 

The PMMA polymer was doped with Eu(CPFHP)3(DDXPO) (2) in the proportions of 2.5, 

7.5, 10, and 15% (w/w) and characterized by FT-IR spectroscopy. The band at 1726 cm−1 for 

PMMA corresponds to the C═O vibration [Liu et al. 2004], whereas for the Eu/PMMA films, 

this vibration shifts to 1731 cm−1. In turn, this implies that the Eu3+ complex is stabilized by 

means of interactions with the oxygen atoms of the carbonyl group of PMMA. Such 

interactions might stem from the donation of a pair of electrons from the carbonyl oxygen to the 

lanthanide ions. The broad absorption band assigned to the H2O vibrational modes in the FT-IR 
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spectrum of Eu3+ complex 1, which appears in the 3000−3500 cm−1 region, is absent in the 

doped PMMA polymer films thereby confirming that the polymer films are anhydrous. Such a 

conclusion is in good agreement with the TG analyses of the doped polymer film, for which no 

mass loss was observed in the temperature region 50−200 °C (Figure 3.2). Both the doped and 

the undoped films decompose at approximately 150 °C. 
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Figure 3.1.  Thermogravimetric curves for the complexes 1and 2. 

 

 

 

 

 

 

 

 

 

Figure 3.2.  Thermogravimetric curves for PMMA and 7.5% Eu3+ doped polymer film. 
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X-ray Crystal Structure of [Eu(CPFHP)3(DDXPO)] 2. Single crystals of complex 2 suitable 

for X-ray analysis were grown from a CHCl3/2-methoxy ethanol solution. The crystal structure 

of  2 was determined by single-crystal X-ray diffraction, and the asymmetric unit is depicted in 

Figure 3.3. The crystal data and data collection parameters are presented in Table 3.1, and 

selected bond distances and bond angles are summarized in Table 3.2. The single crystal X-ray 

analysis reveals that the complex 2 crystallizes in the monoclinic space group P21/n. The 

absence of a center of symmetry in 2 results in an increase in the number of electronic 

transitions of the 4f orbitals because of the odd parity [Hasegawa et al. 2003].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.  Asymmetric unit of complex 2 displayed as a ball and stick model at 25% 

probability level. All hydrogen atoms have been omitted for clarity. 
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An Oak Ridge thermal ellipsoid plot (ORTEP) view of 2 reveals an eight-coordinate Eu3+ 

cation environment comprising one chelated phosphine oxide (DDXPO) and three bidentate 

fluorinated β-diketonate ligands. The coordination polyhedron can best be described as that of a 

distorted square antiprism. The central Eu3+ ion is surrounded by bulky carbazole-substituted 

fluorinated β-diketonates and bidentate chelating phosphine oxide ligands. This encapsulated 

structure therefore meets the structural requirements for an efficient lanthanide luminescent 

material since the Eu3+ ion is protected from vibrational coupling thereby increasing the light 

absorption cross-section by the so-called “antenna effect”.  It is interesting to note that the 

bridging oxygen atom that connects the two triphenylphosphine oxide units of the chelated 

phosphine oxide is not coordinated to the central Eu3+ ion. The two Eu−O bonds of the chelated 

phosphine oxide ligand (2.30 Å and 2.37 Å) are shorter than the six Eu−O bonds of the 

fluorinated β-diketonate ligands (2.34 Å−2.41 Å). A similar trend is evident in the single-crystal 

X-ray data for the complex Eu3+-hexafluoroacetylacetonato-1,1′-biphenyl-2,2′-

diylbis(diphenylphosphine oxide) [Eu−O bond distances 2.32−2.33 Å in BIPHEPO and 

2.40−2.44 Å in the β-diketone] [Nakamura et al. 2007]. Thus the chelating phosphine oxide 

DDXPO coordinates more strongly to the Eu3+ ion than the β-diketonate ligands. Furthermore, 

in the case of DDXPO, the two diphenylphosphine oxide units are linked by a xanthene moiety 

that increases the extent of conjugation in the chelating ligand. In turn, this serves to improve 

the carrier injection and transport properties of 2. Moreover, the introduction of a more 

conjugated DDXPO ligand renders the complex more rigid, which in turn reduces the structural 

relaxation in the excited state. 
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Table 3.1. Crystallographic and refinement data for 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2. Selected bond lengths (Å) and angles (deg) for complex 2. 

  

 

 

 

 

 

 

 

 

 

 

 2 
Eu (1)-O(2) 2.300(9) 
 Eu (1)-O(3)   2.372(10) 
 Eu (1)-O(4) 2.345(7)
 Eu (1)-O(5) 2.414(7) 
 Eu (1)-O(6) 2.400(9) 
 Eu (1)-O(7)   2.411(10) 
 Eu (1)-O(8)   2.399(11) 
 Eu (1)-O(9)   2.358(12) 
  
 O(2)- Eu (1)-O(3)         73.0(3) 
 O(4)- Eu (1)-O(5)   70.75(19) 
 O(6)- Eu (1)-O(7)         69.6(3) 
 O(8)- Eu (1)-O(9)         69.9(4) 

 

Parameters 2 
formula C96 H75 Eu F15 N3 O13  P2

fw 1977.49 
cryst syst monoclinic
space group P21/n 
cryst size 0.1× 0.1 × 0.09 mm3 
temp/K 100(2) K 
a (A° ) 11.4888(11) 
b (A° ) 33.356(3) 
c (A° ) 22.684(2)
α (deg) 90 
β (deg) 96.751(3)
γ (deg) 90 
V/A° 3 8632.6(14) 
Z 4 
Dcalcd 1.522 Mg/m3 
μ(Mo,Kα), mm-1 0.863 
F(000) 4016.0 
R1 [I > 2σ(I)] 0.0823 
wR2 [I > 2σ(I)] 0.1580 
R1 (all data) 0.1609 
wR2 (all data) 0.1810 
GOF 1.054 
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Electronic States of the Ligands. The UV−visible absorption spectra of the free ligands 

(CPFHP and DDXPO) and their corresponding Eu3+ complexes (1 and 2) in CHCl3 solution (c 

= 2 × 10−6 mol dm−3) are displayed in Figure 3.4.  
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Figure 3.4.   UV−vis absorption spectra of the ligands CPFHP and DDXPO and complexes 1 

and 2 in CHCl3 solution (c = 2 × 10−6 mol dm−3). 

 

The trends in the absorption spectra of these complexes are identical to the ones observed for 

the free ligands, indicating that the singlet excited states of the ligands are not significantly 

affected by the complexation to the Eu3+ ion. However, a small blue shift that is discernible in 

the absorption maximum of complex 2 is attributable to the perturbation induced by metal 

coordination. The ligand CPFHP displays a composite broad band in the UV corresponding to a 

singlet−singlet π−π* enolic transition assigned to the β-diketonate moiety [Remya et al. 2008; 

bBiju et al. 2009], with a lowest energy maximum at 315−440 nm (λmax = 370 nm) and a molar 

absorption coefficient of 2.3 × 104 L M−1 cm−1. The higher energy absorption bands detected in 

the range 240−270 nm are attributable to the π−π* transition of the locally excited state of the 

carbazole moiety of the β-diketonate ligand [Nie et al. 2007]. The electronic transitions of the 
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β-diketonate (peak at ca. 240−270 nm) and the chelated phosphine oxide (peak at ca. 248−270 

nm) units are overlapped by the carbazole features [Zheng et al. 2008]. The presence of the 

ancillary ligand DDXPO not only enhances the absorption intensity but also satisfies the high 

coordination number of the central Eu3+ ion and thus improves the coordination and thermal 

stabilities of complex 2. The molar absorption coefficient values for 1 and 2 were calculated at 

the respective λmax value and were found to be 6.68 × 104 and 6.75 × 104 L mol−1 cm−1, 

respectively. The magnitudes of these values are approximately three times higher than that of 

the β-diketonate ligand, and this trend is consistent with the presence of three β-diketonate 

ligands in each complex. Note also that the large molar absorption coefficient obtained for the 

newly designed β-diketonate ligand indicates that it has a strong ability to absorb light. 

Solution-State PL. The excitation and emission spectra of 1 and 2 in CHCl3 solution (c = 1.5 × 

10−6 mol dm−3) are displayed in Figure 3.5. The excitation profile of each complex closely 

mimics that of its corresponding absorption spectrum in the 250−400 nm region, thus 

demonstrating that energy transfer occurs from the β-diketonate ligands to the Eu3+ ion. The 

excitation spectra of 1 and 2 exhibit a broad band between 250 and 400 nm which is attributable 

to the π−π* transition of the coordinated ligands. The absence of any absorption bands due to 

the f-f transitions of the Eu3+ ion proves that luminescence sensitization via excitation of the 

ligand is effective. The ambient-temperature emission spectra of Eu3+ complexes 1 and 2 show 

characteristics of the metal ion emissions in the 550−725 nm region, and exhibit well resolved 

peaks that are due to the transitions from the metal-centered 5D0 excited state to the 7FJ ground 

state multiplet. Maximum peak intensities at 580, 592, 612, 652, and 702 nm were observed for 

the J = 0, 1, 2, 3, and 4 transitions, respectively, and the J = 2 so-called “hypersensitive” 

transition is intense [Pavithran et al. 2006; Biju et al. 2006]. The intensity of the 5D0 →7F2 

transition (electric dipole) is greater than that of the 5D0 →7F1 transition (magnetic dipole), 

which indicates that the coordination environment of the Eu3+ ion is devoid of an inversion 

center. 
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Figure 3.5.   Room temperature (303 K) excitation and emission spectra of complexes 1 and 2 

in CHCl3 solution (c = 1.5 × 10−6 mol dm−3). 

 

To estimate the relative transition probability of the electric-dipole transition, the relative 

integrated intensity of the 5D0 →7F2 transition with respect to that of the 5D0 →7F1 transition 

band was evaluated [Harada et al. 2009]  (A21 = AED/AMD; AED, integrated intensity at the 

electric-dipole transition; AMD, integrated intensity at the magnetic-dipole transition). The A21 

values for the Eu3+ complexes are listed in Table 3.3. The A21 value for complex 2 in the 

presence of ancillary ligand was considerably larger than that of complex 1 with the carbazole-

substituted fluorinated β-diketonate ligand. No broad emission band resulting from organic 

ligand molecules in the blue region can be observed, which indicates that the ligand transfers 

the absorbed energy effectively to the emitting level of the metal ion. The introduction of a 

highly rigid chelating phosphine oxide into the coordination sphere of the Eu3+-tris-β-diketonate 

complex would lead to an effective reduction of the symmetry around the Eu3+ ion. Briefly, the 

presence of the chelating phosphine oxide increases the luminescent intensity of the 

hypersensitive transition of the Eu3+ ion. It is easy to understand from Figure 3.5 that the 
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displacement of the solvent molecules from the complex Eu(CPFHP)3(C2H5OH)(H2O) by the 

chelating phosphine oxide significantly enhances the luminescent intensity. 

The observed luminescence decays (τobs) are single exponential functions for chloroform 

solutions of complexes 1 and 2 at 303 K, thus indicating the presence of only one emissive Eu3+ 

center. Typical decay profiles for complexes 1 and 2 are displayed in Figure 3.6.  
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Figure 3.6. Experimental luminescence decay profiles for complexes 1 and 2 in CHCl3 
solution (c = 1.5 × 10−6 mol dm−3) monitored at approximately 612 nm and excited at the 
maximum emission wavelengths. 
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The somewhat shorter lifetime observed for complex 1 may be due to the dominant non-

radiative decay channels associated with vibronic coupling induced by the presence of solvent 

molecules, as has been well documented for several hydrated europium β-diketonate complexes 

[de Sa et al. 2000; Binnemans 2009]. In the case of Eu3+, the energy gap between the 

luminescent state and the ground state manifold is approximately 12,000 cm−1. Thus, relatively 

efficient coupling of the Eu3+ excited states occurs to the third vibrational overtone of the 

proximate OH oscillators (νOH~3300−3500 cm−1) which is consistent with the observed 

quenching of Eu3+ luminescence [Werts 2005; Ramya et al. 2010]. On the other hand, because 

of the absence of non-radiative decay pathways, longer lifetime values have been observed for 

complex 2 in which the solvent molecules have been replaced by the chelating phosphine oxide. 
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The overall quantum yields (Φoverall), radiative (ARAD) and non-radiative (ANR) decay rates, 

and energy transfer efficiencies (Φsens) for 1 and 2 are presented in Table 3.3.  

 

Table 3.3. Radiative (ARAD) and nonradiative (ANR) decay rates, 5D0 lifetime (τobs), intrinsic 
quantum yield (ΦLn, %), energy transfer efficiency (Φsens, %), and overall quantum yield 
(Φoverall, %) for  complexes 1-2 in CHCl3 solution and as PMMA films (4-7). 
 

Complex A21 τobs (µs) ARAD 

(s-1
) 

ANR 

(s-1
) 

LnΦ  
(%) 

overallΦ
 (%) 

sensΦ
 (%) 

1 7.903 585 ± 2 603 1104 35 8 22 
2 16.13 714 ± 1 986 413 70 47 66 
4 14.53 764 ± 1 934 375 73 79 100 
5 15.23 751 ± 1 986 345 74 84 100 
6 15.56 732 ± 1 977 390 72 80 100 
7 15.01 762 ± 1 960 352 73 83 100 

 
 

The overall quantum yields of ligand-sensitized europium luminescence for complexes 1 and 2 

in CHCl3 solution have been calculated by a relative method using quinine sulfate as the 

standard [Demasa and Crosby 1971; Eaton 1988; Werts et al 2002]. At room temperature, the 

substitution of solvent molecules in the Eu3+-tris-β-diketonate complex by the chelating 

phosphine oxide, DDXPO, results in an increase in the 5D0 luminescence lifetime from 585 ± 2 

to 714 ± 1 μs and an approximately 6-fold enhancement in the absolute quantum yield (8 to 

47%) in chloroform solution. To achieve bright luminescence, the ligands must protect the Eu3+ 

ion from non-radiative deactivation (term ΦLn), and provide efficient light harvesting and 

energy transfer (term Φsens). The substantial contribution of the chelating phosphine oxide to the 

overall sensitization of the Eu3+-centered luminescence in 2 is confirmed by (i) an increase of 

the intrinsic quantum yield by a factor of 2.3 which results from removal of the quenching 

effect of the O−H vibrations, and (ii) the significant enhancement of Φsens from 22 to 66%. 

To investigate the PL mechanism of the Eu3+ complexes, it was desirable to determine the 

energy levels of relevant electronic states of the ligands. The singlet (S1) energy levels of 

CPFHP and the chelating phosphine oxide, DDXPO, were estimated by referring to the upper 
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wavelengths of the UV−vis absorption edges of the Gd(CPFHP)3(H2O)(C2H5OH) and 

Gd(NO3)3(DDXPO) complexes. The triplet (T1) energy levels were calculated by referring to  

the lower wavelength emission edges of the corresponding phosphorescence spectra of 

complexes Gd(CPFHP)3(H2O)(C2H5OH) (Figure 3.7) and Gd(NO3)3(DDXPO). Thus, the S1 

and T1 values for CPFHP were found to be 24,630 cm−1 and 20,750 cm−1, respectively. The S1 

(31,850 cm−1) and T1 (23,470 cm−1) levels for DDXPO were taken from chapter 2.  
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Figure 3.7. Phosphorescence spectrum of Gd(CPFHP)3(H2O)(C2H5OH) at 77K. 

 

The triplet energy level of the CPFHP ligand appears at appreciably higher energy than that of 

the 5D0 state of Eu3+, thus indicating that the newly designed β-diketonate ligand can act as an 

antenna for the photosensitization of the Eu3+ ion. On the other hand, the 5D1 emitting state of 

Eu3+ (18,800 cm−1) is found to be critically close to the triplet state of the CPFHP ligand, which 

can lead to the thermally assisted back-energy transfer from the central core [Armaroli et al. 

1999; Accorsi et al 2009]. However, the triplet energy level of the chelating phosphine oxide, 

DDXPO (23,470 cm−1), is appropriate for efficient energy transfer with all the 5D2, 5D1, and 5D0 

energy levels of Eu3+. Therefore, the PL mechanism for the Eu3+ complexes is proposed to 

77 
 

http://pubs.acs.org/doi/full/10.1021/ic1015324#fig5


Chapter 3 

involve a ligand-sensitized luminescence process (antenna effect) [Lehn 1990; Sabbatini et al. 

1993; Piguet and Bunzli 1999].  

Photophysical Properties of Eu3+ Complexes Doped in PMMA Polymer Films. Lanthanide 

complexes incorporated into polymer matrixes represent a new class of materials that offer the 

characteristics of both complexes and polymers, thus making them ideal candidates for use in 

wide range of new technologies [McGehee et al. 1999; Kai et al. 2008; Balamurugan et al. 

2009; Boyer et al. 2009]. In the present manuscript, we describe the incorporation of a newly 

designed, highly luminescent complex into PMMA, a well-known, low-cost, easily prepared 

polymer of excellent optical quality. Figure 3.8 shows the excitation spectra of the PMMA 

polymer films doped with Eu(CPFHP)3(DDXPO) at different concentrations [2.5 (4), 7.5 (5), 

10 (6), and 15% (7) (w/w)] and recorded at 303 K in the spectral range of 250 to 480 nm, by 

monitoring the emission at 612 nm.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Excitation and emission spectra of PMMA films doped with 2.5 to 15% (w/w) 

Eu(CPFHP)3(DDXPO) systems recorded at 303 K. 
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The excitation spectra are dominated by an intense broad band in the 250 to 400 nm region, 

which can be assigned to absorptions of both the PMMA polymer and the organic 

chromophore. Of particular note is the observation that the excitation maximum of the spectra 

is red-shifted as compared to the solution phase spectra. This can be attributed to the 

considerable interaction of the ligands with PMMA matrix. The emission spectra of PMMA 

doped with Eu(CPFHP)3(DDXPO) at a variety of concentrations [2.5 (4), 7.5 (5), 10 (6), and 

15% (7) (w/w)] and excited at 370 nm exhibit five emission bands that are assigned to the 

characteristic 5D0→7FJ (J = 0−4) transitions of the Eu3+ ion. As displayed in Figure 3.8, the 

luminescent intensity of the Eu3+ emission at 612 nm increases with increasing Eu3+ content and 

reaches a maximum at a Eu3+ content of 7.5%. A further increase in the Eu3+ content decreases 

the luminescent intensity. The energy transfer between the lanthanide ions themselves is a non-

radiative process, which accounts for the decrease in the Eu3+ emission, especially at high Eu3+ 

content (6 and 7) [bLi et al 2001; Parra et al. 2004; aBiju et al. 2009]. The transition of highest 

intensity is dominated by the hypersensitive 5D0→7F2 transition at approximately 612 nm, 

which implies that the Eu3+ ion does not occupy a site with inversion symmetry. Moreover, the 

presence of only one sharp peak in the region of the 5D0→7F0 transition at 580 nm suggests the 

occurrence of a unique chemical environment around the Eu3+ ion of symmetry type Cs, Cn, or 

Cnv. It is well-known that the magnetic-dipole transition 5D0→7F1 is nearly independent of the 

ligand field and therefore can be used as an internal standard to account for ligand differences. 

The electric-dipole transition 5D0→7F2, the so-called hypersensitive transitions, is sensitive to 

the symmetry of the coordination sphere. The intensity ratio of the magnetic-dipole transition to 

the electric-dipole transition in the lanthanide complex measures the symmetry of the 

coordination sphere [Zhang et al. 2008]. The intensity ratios (A21) of the 5D0→7F2 transition to 

the 5D0→7F1 transition in the Eu/PMMA were shown in Table 3.3. The intensity ratio of the 

transitions of 5D0→7F2 to 5D0→7F1 is 15.23 for the complex 2 when incorporated into the 
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PMMA matrix (7.5%). These results suggest that, when the Eu complex is incorporated into the 

microcavities of the polymer matrix, the Eu3+ ions exhibit different local environments because 

of the influence of the surrounding polymer. The symmetry of the coordination sphere for the 

Eu3+ ions changes moderately in the Eu/PMMA as compared to the pure precursor complex. 

When incorporated into the microcavities of the PMMA matrix, however, the complexes 

exhibit disorder of a certain magnitude. Under the influences of the electric field of the 

surrounding ligands, the distortion of the symmetry around the Eu3+ ion by the capping PMMA 

results in the polarization of the Eu3+, which increases the probability for electric-dipole, 

allowed transition. The influences of PMMA on the coordinative environment of the Eu3+ ions 

changes the energy-transfer probabilities of the electric-dipole transitions, accounting for the 

increases in luminescent intensity of the 612 peak. 

The luminescence decay curves of the doped films were obtained by monitoring the 

emission at the hypersensitive 5D0→7F2 transition (612 nm) and excitation at 370 nm (Figure 

3.9). These data were adjusted with a first-order exponential decay function, and the lifetime 

values (τ) of the emitter 5D0 level of the doped systems were determined and are listed in Table 

3.3. All τ values for the doped polymer systems are higher than that of the hydrated 

Eu3+complex, thus indicating that radiative processes are operative in all the doped polymer 

films because of the absence of multiphonon relaxation by coupling with the OH oscillators 

from the Eu(CPFHP)3(C2H5OH)(H2O) complex. On the other hand, the 5D0 lifetime of the 

doped films was not obviously influenced by the embedded PMMA. 

The overall quantum yields (Φoverall) determined by the absolute method, radiative (ARAD) 

and non-radiative (ANR) decay rates, intrinsic quantum yields (ΦLn), and energy transfer 

efficiencies (Φsens) of the PMMA films doped with Eu(CPFHP)3(DDXPO) at different doping 

concentrations are presented in Table 3.3. All the PMMA doped films exhibit excellent overall 

quantum yield values, ranging from 79 to 84%. This range is comparable to that reported 

recently for luminescent europium β-diketonate complexes doped in PMMA matrixes 
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[Hasegawa et al. 2003; Hasegawa et al. 2006; Moudam et al. 2009]. Furthermore, the 

substantial increase in Φsens (from 66% in complex 2 to 100% in luminescent PMMA films) on 

going from CHCl3 to PMMA is consistent with the elimination of collisional quenching of the 

ligand triplet state in the polymer matrix.  
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Figure 3.9. Experimental luminescence decay profiles of Eu3+ complex 2 doped into PMMA 

polymer.    

 

It is well-known that the efficiency of the intermolecular energy transfer is strongly dependent 

on the distance between the donor and acceptor. According to this point of view, it is suggested 

that for the present system, the PMMA molecule, because of its long chain, has the capability to 

enwrap the Eu(CPFHP)3(DDXPO) complex and keeps the acceptor and donor close. In such a 

case, energy can be transferred efficiently from ligand to Eu3+, resulting in the enhancement of 

intrinsic Eu3+ emission of a Eu(CPFHP)3(DDXPO). Thus the preserved rigidity in the complex 

structure in PMMA could be the origin of the enhanced overall quantum yield. Strikingly, the 

present work shows the role of DDXPO is much more significant in PMMA than in chloroform, 

with europium complex 2 doped in a PMMA polymer matrix (4−7) displaying markedly higher 

ΦLn values (72 to 74%) than 1 and 2. Again, this may arise from the enhanced encapsulation of 
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Eu3+ center minimizing the detrimental effect of the C−H oscillators in the PMMA matrix that 

potentially provide non-radiative decay pathways for the Eu3+ excited state. 

3.5. Conclusions 

In summary, we have designed, synthesized, and characterized a novel eight-coordinate, highly 

luminescent lanthanide complex that utilizes a fluorinated carbazole-substituted β-diketonate in 

conjunction with the ancilliary ligand, 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene oxide, 

for indirect excitation of the europium metal center. The new complex displays efficient 

sensitized luminescence in chloroform solution (Φsens = 66%) with a quantum yield of 47%. 

Additionally, the newly designed europium complex was incorporated into PMMA polymer 

films, which were shown to exhibit exceptionally high PL quantum yields (79−84%). This 

implies that the PMMA with high molecular weight enwraps the Eu3+ complex and keeps the 

donor and acceptor close, which results in the effective intermolecular energy transfer and, 

consequently, the high sensitization efficiency. In conclusion, the PMMA films doped with the 

Eu3+-β-diketonate complex show promising PL efficiency and therefore have potential 

applications as polymer light-emitting diodes and active polymer optical fibers. 
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Luminescent properties of novel Eu3+-4,4,5,5,5-pentafluoro-1-(naphthalen-2-

yl)pentane-1,3-dione complexes in the prescence of N-heterocyclic ligands 
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4.1. Summary. A novel β-diketone, 4,4,5,5,5-pentafluoro-1-(naphthalen-2-yl)pentane-1,3-
dione (HPFNP), which contains polyfluorinated alkyl group, as well as the long conjugated 
naphthyl group, has been used for the synthesis of a series of new tris(β-
diketonate)europium(III) complexes of the general formula Eu(PFNP)3(L) [where L = H2O, 
2,2′- bipyridine (bpy), 1,10-phenanthroline (phen), 4,7-diphenyl-1,10-phenanthroline (bath)] 
and characterized by various spectroscopic techniques. The single-crystal X-ray diffraction 
analysis of Eu(PFNP)3(bpy) revealed that the complex is mononuclear, the central Eu3+ ion is 
coordinated by six oxygen atoms furnished by three β-diketonate ligands, and two nitrogen 
atoms from a bidentate bipyridyl ligand, in an overall distorted square prismatic geometry. 
Further, analysis of the X-ray crystal data of the above complex also revealed interesting 1D, 
2D, and 3D networks based on intra- and intermolecular hydrogen bonds. The room-
temperature PL spectra of the complexes are composed of typical Eu3+ red emissions, assigned 
to transitions between the first excited state (5D0) and the multiplet (7F0-4). The results 
demonstrate that the substitution of solvent molecules by bidentate nitrogen ligands in 
Eu(PFNP)3(H2O)(EtOH) greatly enhances the quantum yields and lifetime values. 

 

 

 

D.B. Ambili Raj et al., Inorg. Chem., 2008, 47, 8091-8100. 
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4.2. Introduction 

The versatile photophysical properties of lanthanide ions have inspired vigorous research 

activities owing to wide range of photonic applications such as tunable lasers, amplifiers for 

optical communications, luminescent probes for analytes, components of the emitting materials 

in multilayer organic light emitting diodes and efficient light conversion molecular devices 

[Kido and Okamoto 2002; Bunzli and Piguet 2005; de Bettencourt-Dias 2007; Brunet et al. 

2007]. The Eu3+ and Tb3+ ions are of particular interest because of their long luminescence 

lifetime and narrow emission bands in the visible region [Yang et al. 2004; Xin et al. 2003]. 

Because the Laporte-forbidden 4f-4f transition prevents direct excitation of lanthanide 

luminescence, Ln3+ ions always require sensitization by suitable organic chromophores. 

Furthermore, for practical applications, Ln3+ ion must be incorporated into highly stable 

coordinated complexes. The efficiency of ligand-to-metal energy transfer, which requires 

compatibility between the energy levels of the ligand excited states and accepting levels of Ln3+ 

ions, is crucial in the design of high performance luminescent molecular devices. Moreover, 

ligands containing high-energy oscillators, such as C−H and O−H bonds, are able to quench the 

metal excited states nonradiatively, thereby leading to lower luminescence intensities and 

shorter excited-state lifetimes. Thus the replacement of C−H bonds with C−F bonds is 

important in the design of new lanthanide luminescent complexes with efficient emission 

properties. 

 Recently, a large number of highly coordinated complexes of lanthanide tris(β-diketonates)  

containing several nitrogen ligands such as 1,10-phenanthroline, 2,2′-bipyridine, 4,4′-

disubstituted-2,2′-bipyridines, and 2,2′:6′,6′′-terpyridine have been reported [Försberg 1973; 

McGehee et al. 1999; Fukuda et al. 2002; Fu et al. 2005; Bellusci et al. 2005; Chen et al. 

2007].  However, the photoluminescence efficiency of these reported Eu3+ coordination 

complexes are not very attractive. These factors have motivated us to synthesize a new β-

diketone ligand, 4,4,5,5,5-pentafluoro-1-(naphthalen-2-yl)pentane-1,3-dione, which has the 
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polyfluorinated alkyl group, as well as the long conjugated naphthyl group. The synthesized 

ligand has been utilized for the synthesis of various Eu3+ complexes with various bidentate 

nitrogen donors (Figure 4.1) and investigated their photophysical properties for possible use in 

OLEDs as emitting materials. 
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Figure 4.1. Structural formulae of the lignads HPFNP, 2,2′-bipyridine (bpy), 1,10-

phenanthroline (phen) and 4,7-diphenyl-1,10-phenanthroline (bath). 

 

4.3. Experimental Section  

Materials and Instrumentation. The following chemicals were procured commercially and 

used without subsequent purification:europium(III) nitrate hexahydrate, 99.9% (Treibacher); 

gadolinium(III) nitrate hexahydrate (Aldrich); 2-acetonaphthone, 98% (Aldrich); methyl  

pentafluoropropionate 99% (Aldrich); sodium hydride 60% dispersion in mineral oil  (Aldrich);  

2,2′-dipyridyl, 99%, (Aldrich), 4,7-diphenyl-1,10-phenanthroline, 97%, (Aldrich), 1,10-

phenanthroline monohydrate (Merck)] are used without further purification. All the other 

chemicals used were of analytical reagent grade.  

DSC measurements were performed on a DSC-Perkin-Elmer Pyris 6 DSC instrument at a 

heating rate of 10 °C/min under nitrogen atmosphere. X-ray powder diffraction (XRD) analyses 

were performed with a Philips X’Pert Pro diffractometer. The XRD patterns were recorded in 

the 5-70° 2θ range using Ni-filtered Cu Kα radiation. Other instrumental techniques employed 
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for the characterization of the ligands and complexes are the same as that described in the 

second chapter. 

Synthesis of 4,4,5,5,5-Pentafluoro-1-(naphthalen-2-yl)pentane-1,3-dione (HPFNP). A 

modified method of typical Claisen condensation procedure is used as shown in Scheme 4.1. 2-

Acetonaphthone (0.34 g, 0.002 mmol) and methyl pentafluoropropionate (0.356 g, 0.002 mmol) 

were added into 20 mL dry THF, and the mixture was stirred for 10 min. To this sodium 

hydride was added in inert atmosphere and stirred at room temperature for 12 h. The resulting 

solution was quenched with water; 2 M HCl (50 mL) was added, and the solution was extracted 

twice with chloroform (70 mL). The organic layer was dried over Na2SO4, and the solvent was 

evaporated to obtain a maroon oily liquid, which was purified by chromatography on a silica 

gel column with chloroform and hexane as the eluent to get the maroon liquid as the product 

(0.51 g, 80% yield). 1H NMR (300 MHz, CDCl3): δ (ppm) 7.57-7.46 (m, 2H), 7.89-7.78 (m, 

4H), 8.42 (s, 1H), 6.68 (s, 1H), 15.38 (broad, 1H). FT-IR (KBr) νmax: 3063, 1602, 1328, 1202, 

1010, 795 cm-1. m/z =  317 (M + 1)+. 

CH3

O

C2F5COOCH3

O O

F

F
F

F
F

H

NaH/ Dry THF

 

Scheme 4.1. Synthesis of the Ligand HPFNP. 

 

Synthesis of Ln(PFNP)3(C2H5OH)(H2O) [Ln = Eu3+ (1), Gd3+(5)]. To an ethanolic solution 

of HPFNP (0.6 mmol), NaOH (0.6 mmol) is added, and the mixture was stirred for 5 min. To 

this a saturated ethanolic solution of Ln(NO3)3·6H2O (0.2 mmol) is added dropwise and stirred 

for 10 h. Water is then added to this mixture, and the precipitate thus formed is filtered, washed 

with water, dried, and purified by recrystallization from diethyl ether-hexane mixture (Scheme 

4.2). The efforts to grow single crystals of complexes 1 and 5 were unsuccessful.  
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Elemental analysis (%) Calcd for C47H32F15O8Eu (1) (1161.70): C, 48.59; H, 2.78. Found: C, 

48.92; H, 2.51. IR (KBr) νmax: 3435, 1610, 1527, 1457, 1326, 1197, 1013, 792 cm-1. m/z = 

1120.12 [(M+ - H2O, C2H5OH) + Na].  

Elemental analysis (%) Calcd for C47H32F15O8Gd (5) (1166.98): C, 48.37; H, 2.76. Found: C, 

48.52; H, 2.80. IR (KBr) νmax: 3421, 1613, 1574, 1470, 1327, 1196, 1013, 790 cm-1. m/z =  

1125.05 [(M+ - H2O, C2H5OH) + Na].  
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Scheme 4.2. Synthesis of Ln (PFNP)3(H2O)(C2H5OH). 

 

Syntheses of Complexes 2-4. Synthesis routes of the complexes 2-4 are shown in Scheme 4.3. 

All these complexes were prepared by stirring equimolar solutions of Eu(PFNP)3 

(C2H5OH)(H2O) and the nitrogen donor in CHCl3 for 24 h at room-temperature. The products 

were obtained after solvent evaporation and are purified by recrystallization from a chloroform-

hexane mixture. A crop of crystals of complex 2 were formed after ~2 weeks. However, our 

efforts to grow single crystals of complexes 3 and 4 were unsuccessful. 
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Scheme 4.3.  Synthetic procedures for the Complexes 2-4. 

 

Eu(PFNP)3(bpy) (2). Elemental analysis (%) Calcd for C55H32F15 N2O6Eu (1253.80): C, 52.69; 

H, 2.57; N, 2.23. Found: C, 52.77; H, 2.53; N, 2.37. FT-IR (KBr) νmax: 3058, 1637, 1610, 1594, 

1507, 1473, 1328, 1281, 1197, 1162, 1013, 790 cm-1. m/z = 1255.10 [(M+) + 1]. mp: 200 °C. 

Eu(PFNP)3(phen) (3). Elemental analysis (%) Calcd for C57H32F15N2O6Eu (1277.82): C, 

53.58; H, 2.52; N, 2.19. Found: C, 53.62; H, 2.49; N, 2.36. FT-IR (KBr) νmax: 3056, 1610, 

1592, 1568, 1506, 1327, 1279, 1197, 1153, 1009, 791 cm-1. m/z = 1278.21 (M+). mp: 185 °C. 

Eu(PFNP)3(bath) (4). Elemental analysis (%) Calcd for C69H40F15N2O6Eu (1430.03): C, 57.95; 

H, 2.82; N, 1.96. Found: C, 57.92; H, 2.87; N, 1.96. FT-IR (KBr): νmax: 1610, 1598, 1524, 

1384, 1329, 1285, 1214, 1195, 791 cm-1. m/z = 1431.12 (M+). mp: 200 °C. 
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Synthesis of Gd(bath)2(NO3)3. To a 50 mL ethanol solution containing 2.0 mmol of 4,7-

diphenyl-1,10-phenanthroline, 1.0 mmol of Gd(NO3)3(H2O)6 was added dropwise under 

constant stirring, and then the solution was refluxed for 6 h at 80 °C. The resulting solution was 

filtered to obtain a white powder. Elemental analysis (%) Calcd for C48H32N7O9Gd (1008.08): 

C, 57.19; H, 3.20; N, 9.72. Found: C, 57.50; H, 3.45; N, 9.72. FT-IR (KBr) νmax: 1492, 1384, 

1307, 1029, 835, 766, 740, 702 cm-1. m/z = 946.11 (M+ - NO3). 

4.4. Results and Discussion 

Structural Characterization of Europium(III) Complexes. The synthesis procedures for the 

europium complexes 1-5 are shown in Schemes 4.2 and 4.3. The microanalyses and HRMS 

studies of the complexes 1-5 shows that Ln3+ ion has reacted with HPFNP in a metal-to-ligand 

mole ratio of 1:3 and in 2-4, one molecule of bidentate nitrogen ligand is involved. The IR 

spectrum of the complexes 1 and 5 shows a broad absorption in the region 3000-3500 cm-1, 

indicating the presence of solvent molecules in the complex. On the other hand, the absence of 

the broadband in the region 3000-3500 cm-1 for complexes 2-4, suggests that solvent molecules 

have been displaced by the bidentate neutral donors. The carbonyl stretching frequency of 

HPFNP (1602 cm-1) has been shifted to longer wave numbers in  complexes 1-5 (1610 cm-1 in 

1; 1613 cm-1 in 5; 1610 cm-1 in 2-4) indicating the involvement of carbonyl oxygen in the 

complex formation with Ln3+ ion. Further, the red shifts observed in the C=N stretching 

frequencies of nitrogen donors (1615 cm-1) in complexes 2-4 (1594 cm-1 in 2; 1592 cm-1 in 3; 

1598 cm-1 in 4) show the involvement of nitrogen atoms in the complex formation with Eu3+ 

ion. The X-ray powder diffraction patterns of complexes 1 and 5 are similar, indicating they are 

isostructural and amorphous (Figure 4.2a). Similarly, from the XRD patterns of complexes 2-4 

(Figure 4.2b), one can conclude that they are isostructural and crystalline. 
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Figure 4.2.  XRD patterns for the complexes (a) 1 and 5, (b) 2-4. 

 

It is clear from the thermogravimetric analysis data that complex 1 (Figure 4.3) undergoes a 

mass loss of about 6% (calcd 5.5%) in the first step (120-230 °C), which corresponds to the 

elimination of the coordinated solvent molecules. Complex 1 is stable up to 230 °C, and then it 

under goes a single step decomposition. On the other hand, complexes 2-4 are more stable than 

the precursor sample 1, and they undergo singlestep decomposition at 275 °C. The total weight 

loss occurred in the TGA of all these complexes are much higher than that calculated for the 

thermal decomposition of these complexes into nonvolatile europium(III) oxide, indicating the 

partial sublimation of these complexes under atmospheric pressure, which is common in poly 

fluorinated β-diketonate complexes. 

The DSC curve of the precursor sample (1) shows a shallow broad endothermic peak in the 

temperature range from 90-150 °C relative to the release of solvent molecules, as observed in 
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800 1000

the first event of the TG curve. Further, the absence of sharp endothermic peak in 1, indicates 

the amorphous nature of the complex or at least it is difficult for it to crystallize. On the other 

hand, DSC curve of complexes 2-4 shows sharp endothermic peaks at 200, 185, and 200 °C, 

respectively, corresponding to their melting points. 
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Figure 4.3.  Thermogravimetric curves for the complexes 1-4. 

 

X-Ray Structural Characterization. The structure of complex 2 was characterized by single-

crystal X-ray crystallography. The asymmetric unit is shown in Figure 4.4, and the structure of 

complex 2, with the numbering scheme is displayed in Figure 4.5. The details of crystal data 

and data collection parameters for complex 2 are given in Table 4.1. The selected bond lengths 

and bond angles for 2 are listed in Table 4.2. The structure with the intramolecular H-bonding 

interactions is shown in Figure 4.6. As predicted from the mass spectral and elemental analyses, 

the central Eu3+ ion is coordinated with six oxygen atoms from the three β-diketonate ligands 

and two nitrogen atoms from a bidentate bipyridyl ligand. The coordination geometry of the 

metal center is best described as a distorted square antiprism. The central Eu3+ ion is thus 

completely surrounded by the bulky aromatic anionic ligand PFNP and the ancilliary bpy 

ligand, and this encapsulated structure therefore meets the structural requirements of an 

efficient lanthanide luminescent material by protecting the Eu3+ ion from vibrational coupling 

and increasing the light absorption cross-section by the so-called “antenna effect”. 
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Figure 4.4.  Asymmetric unit of complex 2. 
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Figure 4.5. The structure of complex 2, with the numbering scheme. 
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Table 4.1. Crystal Data, Collection, and Structure Refinement Parameters for complex 2 

Parameters 2 

empirical formula C57 H36 Cl3 Eu F15 N2 O6.50 
fw 1396.19 
crystal system Triclinic,   
space group P-1 
cryst size (mm3) 0.20 x 0.15 x 0.15 mm 
temperature (K) 293(2) K 
a/Å 10.338(4)  
b/Å 14.784(6) 
c/Å 19.431(7) 
α (deg) 96.238(19) 
β (deg)   93.336(18) 
γ (deg) 90 96.523(19) 
V / Å3 2925.7(18) 
Z 2 
ρcalcd/g cm-3 1.585 
μ/mm-1 1.308 
F(000) 1386 
R1 [I >2σ(I)] 0.0436 
wR2 [I >2σ(I)] 0.1252  
R1 (all data) 0.0520 
wR2 (all data) 0.1400 
GOF 1.111 

  

Table 4.2. Selected bond lengths (Å) and angles (˚) for complex 2. 

 
2 Lengths (Å)

Eu1-N1 2.554(4) 
Eu1-N2 2.570(4) 
Eu1-O1 2.367(4) 
Eu1-O2 2.352(3) 
Eu1-O3 2.374(3)
Eu1-O4 2.336(3) 
Eu1-O5 2.359(4) 
Eu1-O6 2.343(3) 

 Angles (˚) 
N1-Eu1-N2 63.03(10)
O1-Eu1-O2 71.32(18) 
O3-Eu1-O4 71.92(19)
O5-Eu1-O6 71.24(18) 
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Figure 4.6. Coordination environment of the Eu3+ ion in complex 2. The intramolecular H-
bonding interactions are shown in broken lines.  

 

The average Eu-N bond distance (2.56 Å) is longer than the Eu-O bonds of HPFNP ligands 

(2.34-2.37 Å), as observed in the X-ray single crystal data of the complexes, tris(4,4,4,-

trifluoro-1-(2-naphthyl)-1,3-butanedionato)europium(III)-dipyridyl (Eu-O bonds 2.34- 2.39 Å 

NTA; Eu-N, 2.58 Å in bpy) [Thompson et al. 1998] and tris(4,4,4,- trifluoro-1-phenyl 2,4-

butanedionato) europium(III)-dipyridyl (Eu-O bonds 2.32-2.40 Å in btfa; Eu-N, 2.58 Å in bpy) 

[Batista et.al 1998]. Further, in this complex, the Eu-O bonds adjacent to the naphthyl ring are 

slightly shorter than the others, which may be caused by the inductive effect of the fluorine 

atoms present in the HPFNP. In the β-diketone rings of the Eu3+ complex, the average distances 

for the C-C and C-O bonds are shorter than a single bond but longer than a double bond. This 

can be explained by the fact that there exists a strong conjugation between the naphthyl ring and 

the coordinated β-diketone, which leads to the delocalization of electron density of the 

coordinated β-diketonate chelate ring [Yu et.al. 2003; Sun et.al. 2006]. 

Two types of intramolecular interactions are observed between C1-H1· · · F3 and C53-H53 

· · · F8 with the distances of 2.63 and 2.83 Å, and the angles are 161.49 and 155.84°, 
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Figure 4.8. Self-assembled 1D network of 2. All the other H groups, except those for the 
intermolecular H-bonding interactions, are omitted for clarity. 
 
 

Apart from the self-assembled dimer and 1D network, a series of 2D networks are seen in 2. 

Three different 2D networks are observed: (i) the two self-assembled dimers interact with each 

other to form the first one (Figure 4.9 a) Further, each of the self-assembled dimer interacts 

with 1D network to form the (Figure 4.9 b and Figure 4.9 c) 2D networks. Finally, all the 

dimers, 1D and 2D networks combine each other to form the hitherto unknown three-

dimensional networks in the solid state. The observed supramolecular assembly is shown in 

Figure 4.10. To the best of our knowledge, this is the first example of Eu- β-diketonate complex 

which shows all the 1D, 2D, and 3D networks. 
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Figure 4.9. 2D network of 2. All the other H groups, except those for the intermolecular H-
bonding interactions, are omitted for clarity. 
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Figure 4.10. Supramolecular assembly of 2. 

 

UV-vis Spectra. The UV-vis absorption spectra of the free ligand HPFNP and the 

corresponding Eu3+ complexes were measured in CH3CN solution (c = 1 × 10-5 M), and are 

displayed in Figure 4.11. UV-vis absorption spectra of the neutral donors (bpy, phen, bath) are 

shown in Figure 4.12. The maximum absorption bands at 345 nm and 333 nm noted for HPFNP 

and in complexes 1-4, respectively, are attributed to singlet-singlet π-π* enol absorption of β-

diketonate ligand [Remya et al. 2008; Shi et al. 2005]. Compared with the ligand HPFNP (λmax 

= 345 nm), the absorption maxima are blue-shifted to 333 nm in all the complexes. The 

absorption maxima at 290, 289, and 287 nm in complexes 2-4, respectively, are the result of the 

1π-π* absorption of the aromatic rings of bidentate nitrogen donors. These values also shows a 

blue shift of 7, 4, and 13 nm, respectively, in complexes than in free nitrogen donors (297, 293, 

and 300 nm). The spectral shapes of the complexes in CH3CN are similar to that of the free 

ligands, suggesting that the coordination of Eu3+ ion does not have a significant influence on the 

1π-π* state energy. However, a small blue shift observed in the absorption maximum of all the 

complexes is caused by the perturbation induced by the metal coordination. The determined 

molar absorption coefficient values of the complexes 1-4 at 333 nm, 5.67 × 104, 5.7 × 104, 5.2 × 

104, and 5.3 × 104 L mol-1 cm-1, respectively, are about three times higher than that of the 
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350

HPFNP (1.8 × 104 at 345 nm), indicating the presence of three β-diketonate ligands in the 

corresponding complexes. Further the higher molar absorption coefficient of HPFNP reveals 

that the β-diketonate ligand has a strong ability of absorbing light. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11. UV-visible absorption spectra of HPFNP and complexes 1-4 in acetonitrile (c = 1 
× 10-5 M). 

 

 

 

 

 

 

 

Figure 4.12.  UV-visible absorption spectra of the neutral ligands in acetonitrile (c = 2×10-5M). 

 

PL Properties of Complexes 1-4. The excitation spectra of the Eu3+ complexes 1-4 recorded at 

303 K and monitored around the intense 5D0 → 7F2 transition of the Eu3+ ion, are shown in 

Figure 4.13. The excitation spectra of all the complexes exhibit a broad band between 250 and 

450 nm and it is completely overlapped by the absorption spectra of the ligands employed in the 
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600 700

corresponding complexes. Thus it is clear that, the central europium(III) is effectively sensitized 

by the coordinated ligands. A series of sharp lines assigned to transitions between the 7F0,1 and 

the 5L6, 5D3,2,1 levels are also observed in the excitation spectra of all these complexes. These 

transitions are weaker than the absorption of the organic ligands and are overlapped by broad 

excitation band, which proves that luminescence sensitization via excitation of the ligand is 

much more efficient than the direct excitation of the europium(III) ion absorption level. 

 

 

 

 

 

 

 

 

 

Figure 4.13. Solid state excitation and emission for complexes 1-4 at 298 K, emission 
monitored at around 613 nm. 
 

Upon excitation under the wavelengths that maximizes the europium(III) emission intensity, 

complexes 1-4 showed characteristic narrow band emissions of Eu3+ corresponding to the 5D0 

→ 7FJ (J =  0-4) transitions (Figure 4.13). The five expected peaks for the 5D0 → 7F0-4 

transitions are well resolved, and the emission bands at 580 and 650 nm are very weak since 

their corresponding transitions 5D0 → 7F0,3 are forbidden both in magnetic and electric dipole 

schemes [Werts et al. 2002]. The intensity of the emission band at 593 nm is relatively strong 

and independent of the coordination environment because the corresponding transition 5D0 → 

7F1 is a magnetic transition; on the contrary, the 5D0 → 7F2 transition is an induced electric 

dipole transition and its corresponding intense emission at λ = 613 nm is very sensitive to the 
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coordination environment [Werts et al. 2002]. This very intense 5D0 → 7F2 peak, pointing to a 

highly polarizable chemical environment around the Eu3+ ion and is responsible for the brilliant 

red emission of these complexes. A relevant feature may be noted for the complexes 1-4 is the 

very high intensity of 5D0 → 7F2 transition, relative to the 5D0 →7F1 lines, indicating that the 

Eu3+ ion coordinated in a local site without an inversion center. Further, the emission spectra of 

the complexes show only one peak for 5D0 → 7F0 transition and three stark components for 5D0 

→ 7F1 transition indicating the presence of a single chemical environment around the Eu3+ ion.  

The 5D0 lifetime values (τobs) were determined from the luminescent decay profiles for the 

complexes 1-4 at room temperature by fitting with a monoexponential curve, indicating the 

presence of single chemical environment around the emitting Eu3+ ion and the values are 

depicted in Table 4.3. Typical decay profiles of complexes 1-4 are shown in Figure 4.14.  
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Figure 4.14.  Experimental luminescence decay profiles of complexes 1 and 4 monitored 
around 612 nm and excited at their maximum emission wave lengths. 

 

The relatively shorter lifetime observed for complex 1 may be caused by dominant 

nonradiative decay channels associated with vibronic coupling because of the presence of 

solvent molecules, as well documented in many of the hydrated europium β-diketonate 
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complexes [Yu et al. 2005; Fratini et al. 2008; Hasegawa et al. 2003; Binnemans. 2005]. On the 

other hand, longer lifetime values have been observed for complexes 2-4 because of the 

absence of nonradiative decay pathways.  

Table 4.3 gives the radiative (ARAD) and nonradiative (ANR) decay rates, 5D0 lifetime (τobs), 

intrinsic quantum yield (ΦLn), energy transfer efficiency (Φsens), and overall quantum yield 

(Φoverall) for complexes 1-4 at 303 K. According to energy gap theory, radiation less transitions 

is prompted by ligands and solvents with high frequency vibrational modes. Creation of Eu3+ 

complexes with higher quantum yields is directly linked to suppression of radiation less 

transitions caused by vibrational excitations in surrounding media [Wada et al. 2000; Fu et al. 

2005; Peng et al. 2005]. It is clear from the Table 4.3 that complex 1, having solvent molecules 

in the coordination sphere exhibits lower overall quantum yield and lifetime values. This is 

caused by the presence of O-H oscillators in this system, which effectively quenches the 

luminescence of the Eu3+ ion. On the other hand, complexes 2-4 exhibit high overall quantum 

yield and lifetime values because of the displacement of solvent molecules from the 

coordination sphere by the bidentate nitrogen donors. Among complexes 2-4, 3 and 4 exhibits 

better quantum yields than 2 because of the presence of additional aromatic chromophore 

moieties in the bidentate nitrogen donors. Considerable enhancement in the luminescent 

intensity noticed, especially in complex 4 can be explained on the basis of extended conjugation 

induced by the introduction of two phenyl groups in the 4,7-positions of the phenanthroline 

ligand. It is notable from the present investigations that the intrinsic quantum yield and 5D0 

lifetime values obtained for Eu3+ complexes 2-4 are significantly higher than that of Eu3+-

naphthoyltrifluoroacetone-phenanthroline (ΦLn = 40%; τobs = 662 μs) [Fernandes et al. 2005] or 

Eu3+-naphthoyltrifluoroacetone-bipyridyl complexes (ΦLn = 51%; τobs = 620 μs) [Fu et al. 

2005]. 
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Table 4.3. Radiative (ARAD) and nonradiative (ANR) decay rates, 5D0 lifetime (τobs), intrinsic 
quantum yield (ΦLn,%), energy transfer efficiency (Φsens,%), and overall quantum yield 
(Φoverall,%) for Complexes 1-4 at 303 K. 

 
Complex ARAD 

(s-1) 
ANR 
(s-1) 

τobs (μs) ФLn 
(%) 

Фsens 
(%) 

Фoverall 
(%) 

 
1 899 557   687 ± 4 62 10   6 
2 560 248 1238 ± 8 69 23 16 
3 591 255 1183 ± 8 70 53 37 
4 661 160 1218 ± 8 81 59 48 

 
 

Energy Transfer Processes between Ligands and Eu3+. In general, the sensitization pathway 

in luminescent Eu3+ complexes consists of excitation of the ligands into their excited singlet 

states, subsequent intersystem crossing of the ligands to their triplet states, and the energy 

transfer from the triplet state to the 5DJ manifold of the Eu3+ ions, followed by internal 

conversion to the emitting 5D0 state. Finally, the Eu3+ ion emits when transition to the ground-

state occurs [Bünzli 1989; Huang 1997]. Moreover, the electron transition from the higher 

excited states, such as 5D3 (24,800 cm-1), 5D2 (21,200 cm-1), and 5D1 (19,000 cm-1) to 5D0 (17, 

500 cm-1) becomes feasible by internal conversion, and most of the photophysical processes 

take place in this orbital. Consequently, most Eu3+ complexes give rise to typical emission 

bands at ~581, 593, 614, 654, and 702 nm corresponding to the deactivation of the excited state 

5D0 to the ground states 7FJ (J = 0-4). Thus, matching the energy levels of the triplet state of the 

ligands to 5D0 of Eu3+ is one of the key factors that affect the luminescent properties of the 

europium complexes.  

It is well-known that in organolanthanide complexes neutral ligands often play a role in 

absorbing and transporting energy to other ligands or to the central metal ion [bBiju et al. 2009]. 

For energy transfer to occur efficiently, the overlap between the emission spectrum of the donor 

and the absorption spectrum of the acceptor is essential [Berlman 1973]. Considering complex 

2 as a typical example, the possible energy transfer channels are explained from the absorption 
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600

and emission spectra of the ligands. According to absorption and photoluminescence spectra of 

HPFNP and bidentate nitrogen donors (Figure 4.15) it is clear that there is an overlap between 

the room-temperature emission spectrum of bidentate nitrogen donors and the absorption 

spectrum of the HPFNP (from 315-395 nm for bpy; 340-395 nm for phen; 350-395 nm for 

bath).  

 

 

 

 

 

 

 

 

 

 

Figure 4.15. Absorption spectrum of HPFNP at 303K (a), emission spectra of HPFNP in 
CH3CN solution [303 K (b); 77K (c)], and emission spectra of bpy [303K (solid state, d); 77K 
(CH3CN solution, e)].    

 

It means that the radiations from the singlet state of bidentate nitrogen donor can be 

absorbed by the β-diketonate ligand. The singlet state of nitrogen donor can also transfer energy 

to the triplet level of HPFNP or to its own triplet level (overlap between the room-temperature 

emission of bpy with the low-temperature emission spectra of HPFNP). The singlet level of 

HPFNP can transfer energy to the emitting level of metal ion through its own triplet energy 

level (overlap between the roomtemperature and low-temperature emission of HPFNP). The 

triplet level of neutral ligand, bpy can also transfer energy to the central Eu3+ ion directly or 

through the triplet state of HPFNP (low-temperature emission spectra of bpy and HPFNP are 
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overlapped). Thus the energy transfer process can be summarized in four steps. Absorbed 

energy is transferred from the singlet state of bpy to that of the singlet state of HPFNP, then 

from singlet excited-state to triplet state of the HPFNP or from singlet excited-state of HPFNP 

to the triplet state of bpy. The triplet state of bpy can transfer energy to the emitting level of 

Eu3+ ion directly or through the triplet level of HPFNP. Finally, energy transfers from triplet 

excited-state of HPFNP to the emitting level of Eu3+. 

To elucidate the energy transfer process of the Eu3+ complexes, the energy levels of the 

relevant electronic states of the ligands have been determined. The singlet and triplet energy 

levels of HPFNP and bidentate nitrogen donors were estimated by referring to their 

wavelengths of UV-vis absorbance edges and the lower wavelength emission edges of the 

corresponding phosphorescence spectra. The triplet energy level of the ligand was not affected 

significantly by the Ln3+ ion, and the lowest-lying excited level (6P7/2 →8S7/2) of Gd3+ is located 

at 32,150 cm-1 [Dieke 1968]. On this basis, the phosphorescence spectra of 

Gd(PFNP)3(C2H5OH)(H2O) (Figure 4.16) and Gd(bath)2(NO3)3 (Figure 4.16) allow one to 

evaluate the triplet energy levels (3ππ*) corresponding ligand anions for all the lanthanide 

chelates.  

 

  a

 

 

 

 

 

 

 
Figure 4.16. Phosphorescence spectra of Gd(PFNP)3(H2O)(C2H5OH) (a) and 
Gd(bath)2·(NO3)3 (b) at 77K. 
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From the phosphorescence spectra, the triplet energy levels of Gd(PFNP)3(C2H5OH)(H2O) and 

Gd(bath)2(NO3), which correspond to their lower emission edge wavelengths, are 20,000 (500 

nm) and 21,000 cm-1 (476 nm), respectively. The singlet energy levels (1ππ*) of HPFNP and 

4,7-diphenyl- 1,10-phenanthroline are estimated by referencing their higher absorption edges, 

which are 25,900 (386 nm) and 29,000 cm-1 (344 nm), respectively. The singlet and triplet 

energy levels of bpy (29,900 and 22,900 cm-1) and phen (31,000 and 22,100 cm-1) were taken 

from the literature [Yu and Su 2003]. According to Reinhoudt’s empirical rule [Steemers et al. 

1995], the intersystem crossing process becomes effective when ΔE(1ππ* - 3ππ*) is at least 

5000 cm-1 . The energy gap ΔE(1ππ* - 3ππ*) for HPFNP, bpy, phen, bath are 5900, 7000, 8900, 

and 8000 cm-1, respectively. Thus, the intersystem crossing is effective in all the ligands. 

According to the empirical rule proposed by Latva, for an optimal ligand-to-metal energy 

transfer process 2500 < ΔE(3ππ* - 5D0) > 3500 cm-1 for Eu3+ [Latva et al. 1997].  It is also 

noted that the energy gaps, ΔE(3ππ* - 5D0) of the HPFNP, bpy, phen, and bath are 2500, 5400, 

4600, and 3500 cm-1, respectively. The triplet energy levels of HPFNP (20,000 cm-1), bpy 

(22,900 cm-1), phen (22,100 cm-1), and bath (21,000 cm-1) are higher than the 5D0 level of Eu3+ 

(17,500 cm-1), and also their energy gaps are too high to allow an effective back energy 

transfer. The schematic energy level diagrams for the complexes 1-4 are shown in Figure 4.17. 

Luminescence studies demonstrated that the 4,4,5,5,5-pentafluoro-1-(naphthalen-2-yl)pentane-

1,3-dione ligand exhibits a good antennae effect with respect to the Eu3+ ion because of 

efficient intersystem crossing and ligand to- metal energy transfer. Moreover, the triplet state of 

the 4,4,5,5,5-pentafluoro-1-(naphthalen-2-yl)pentane-1,3-dione ligand is located at 20,000 cm-1, 

which results in a sizable sensitization of the Eu3+-centered luminescence. 
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Figure 4.17. Schematic energy level diagrams and energy transfer processes for complex 1-
4. S1 represents the first excited singlet state and T1 represents the first excited triplet state. 
 

4.6. Conclusions 

Based on the novel β-diketone, HPFNP, four new Eu3+ complexes 1−4 have been synthesized, 

one of which has been structurally characterized by single crystal X-ray crystallography. The 

X-ray crystal structure of Eu(PFNP)3(bpy) reveals a distorted square antiprismatic around the 

Eu3+ atom. Further, analysis of the X-ray crystal data reveals interesting one-, two-, and three-

dimensional arrays of Eu3+-4,4,5,5,5-pentafluoro-1-(naphthalen-2-yl)pentane-1,3-dione-2,2′-

bipyridine complex through intra- and intermolecular hydrogen bonds. The luminescent studies 

demonstrate that the displacement of solvent molecules by bidentate nitrogen donors in 

Eu(PFNP)3(C2H5OH)(H2O) greatly enhances the metal-centered luminescence quantum yields 

and lifetime values. The introduction of polyfluorinated alkyl group, as well as long conjugated 

naphthyl group in β-diketonate ligand, significantly improves the intrinsic luminescent quantum 

yields of Eu3+ ion in complexes 1−4 (62−81%) as compared to existing Eu3+-

naphthoyltrifluoroacetone-nitrogen donor complexes (40−50%). Thus the present results clearly 
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highlights that Eu3+-4,4,5,5,5-pentafluoro-1-(naphthalen-2-yl)pentane-1,3-dione complexes 

involving bidentate nitrogen donors may find potential applications as light conversion 

molecular devices in many photonic applications. 
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5.2. Introduction 

Recently, lanthanide-containing inorganic–organic hybrid materials has attracted considerable 

attention due to their unique photophysical properties [Carlos et al. 2009; Bünzli and Piguet 

2005; de Bettencourt-Dias 2007] and specific functions make them useful in a wide range of 

photonic applications that includes tunable lasers [Taniguchi et al. 1995], amplifiers for optical 

communications [Kuriki et al. 2002; Polman and van Veggel 2004] and components of emitting 

materials in multilayer organic light-emitting diodes [Kido and Okamoto 2002; Capecchi et al. 

2000]. It is well documented that organolanthanide complexes, especially with ligands β-

diketones [de Sá et al. 2000], aromatic carboxylic acids [Shiny et al. 2007, Shiny et al. 2008] 

and heterocyclic ligands [Watson et al. 1972; Bellusci et al. 2005; Chen et al. 2007] have 

characteristic luminescence properties and give sharp, intense emission lines upon ultraviolet 

light irradiation, because of the effective intramolecular energy transfer from the coordinated 

ligands to the central Ln3+ ions (the “antenna effect”) [Lehn 1990; Bekiari and Lianos. 1998; 

Chen et al. 2007]. However, the poor stabilities and low mechanical strength of the lanthanide 

complexes always hinders their use in practical applications such as tunable solid-state lasers or 

phosphor devices. In order to overcome these shortcomings, many research efforts are focused 

on preparing lanthanide organic–inorganic hybrids through functionalization of the exterior 

and/or interior surfaces, prompting the utilization of mesoporous materials such as MCM-41 

[Bruno et al. 2008; Xu et al. 2002; Yan and Zhou 2008] and SBA-15 [Li et al. 2008; Corriu et 

al. 2004]. Conventional methods of doping lanthanide complexes into silica matrices seem 

unable to solve the problem of the quenching effect of luminescent centers because only weak 

interactions such as hydrogen bonding, van der Waals forces, or weak static effects [Koslova et 

al. 1993; Tanner et al. 2000] exist between organic and inorganic moieties. Furthermore, 

inhomogeneous dispersion of two phases and leaching of the photoactive molecules frequently 

occur in such designed hybrid materials for which the concentration of complexes is also 

greatly reduced. Due to the above reasons, another novel approach concerning the complexation 

112 
 



Chapter 5 
 

of lanthanide ions using antenna chromophore ligands that are covalently bonded to the 

inorganic networks has emerged.  

Several reports are available on the covalent grafting of lanthanide β-diketone chelates to 

silica hosts [Xu et al. 2002; Binnemans et al. 2004; Tan et al. 2004; Gago et al. 2005; 

DeOliveira et al. 2007; Bruno et al. 2008; Cousinié et al 2008; Li et al. 2008; Liu and Yan 

2008; Qiao and Yan 2008; Yan and Wang 2008; Yan and Lu 2008; Yan and Zhou 2008; Carlos 

et al.  2009; Qiao and Yan 2009]. However, in most cases the co-ligands 1,10-phenanthroline 

[Binnemans et al.2004; Liu and Yan 2008] or 2,2′-bipyridyl [Cousinié et al 2008] bridged 

covalently bonded hybrids and the β-diketones simply behave as second ligand to the Ln3+ ion. 

On the other hand, recently a few investigations have described the modification of β-diketones 

and lanthanide chelates directly covalently bonded to the silica host, in which bidentate nitrogen 

donors bind to the central Ln3+ ions to saturate the coordination sphere [Li et al. 2008; Qiao and 

Yan 2008; Qiao and Yan 2009]. Novel organic–inorganic mesoporous luminescent hybrid 

materials were designed by linking the ternary Eu3+ complexes to the functionalized ordered 

mesoporous SBA-15 with the modified 1-(2-naphthoyl)-3,3,3-trifluoroacetonate (NTA) [Li et 

al. 2008]. Further investigations on the luminescence properties of Eu-(NTA-SBA-15)3bpy 

mesoporous materials show that they exhibit characteristic luminescence of the corresponding 

Eu3+, through intramolecular energy transfer from the modified ligand (NTA-Si) to the central 

Eu3+ ion, and higher 5D0 luminescence quantum efficiencies and longer lifetime than the pure 

Eu(NTA)3bpy complex. However, the synthesis and luminescence properties of MCM-41 

mesoporous materials covalently bonded with lanthanide complexes by the modified highly 

fluorinated β-diketonates have not been explored to date. 

Here, we report on the synthesis and characterization of 4,4,5,5,5-pentafluoro-1-(naphthalen-

2-yl)pentane-1,3-dionate (HPFNP) functionalized MCM-41 mesoporous hybrid material 

(PFNP-MCM41) in which HPFNP was covalently bonded to the framework of MCM-41. The 

highly luminescent ternary complex Eu(PFNP)3(bath)-functionalized MCM-41, denoted as 
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Eu(PFNP-Si)3(bath)/MCM-41, was obtained by introducing Eu(NO3)36H2O, SiPFNP-Na and 

bathophenanthroline (bath) into the mesoporous material via a ligand-exchange reaction. The 

synthesized mesoporous materials were characterized by powder X-ray diffraction, N2 

adsorption–desorption, thermogravimetric analysis, FT-IR, Raman spectroscopy and 

photoluminescence spectroscopy. 

5.3. Experimental Section 

Materials. Commercially available chemicals: europium(III) nitrate hexahydrate, 99.9% (Arcos 

Organics); gadolinium(III) nitrate hexahydrate, 99.9% (Aldrich), 2-acetonaphthone 98% 

(Aldrich), methyl pentafluoropropionate 99% (Aldrich), sodium hydride 60% dispersion in 

mineral oil, (Aldrich), 4,7-diphenyl-1,10-phenanthroline, 97%, (Aldrich), mesostructured 

hexagonal silica, MCM-41 (Aldrich) were used without further purification. 3-(Triethoxysilyl)-

propylisocyanate (TESPIC) was provided by Lancaster Synthesis Ltd. The ligand 4,4,5,5,5-

pentafluoro-1-(naphthalen-2-yl)pentane-1,3-dione (HPFNP) was synthesized according to the 

method described in chapter 4. All the other chemicals used were of analytical reagent grade.  

 

Preparation of sodium 4,4,5,5,5-pentafluoro-1-(naphthalen-2-yl)-1-oxo-2-((3-

(triethoxysilyl)propyl)carbamoyl)pent-2-en-3-olate (SiPFNP-Na). 1 mmol of HPFNP was 

first dissolved in anhydrous tetrahydrofuran (THF), and 2.5 mmol of NaH (60%) was added to 

the solution with stirring. Two hours later, 1 mmol of TESPIC was added dropwise into the 

refluxing solution. The whole mixture was heated to 65 °C under an argon atmosphere for 8 h. 

After isolation and purification, the sodium salt of SiPFNP was obtained as a yellow solid, 

which was used without further purification. 1H NMR: (CDC13, 300 MHz): δ (ppm) 0.56–0.86 

(t, 2H), 1.20–1.24 (t, 9H), 1.54–1.59 (m, 2H), 3.05–3.12 (2H, m), 3.72–3.82 (q, 6H), 6.22 

(broad, 1H), 7.27–7.41 (m, 2H), 7.61–7.73 (m, 4H), 8.13 (s, 1H). FT-IR (KBr) νmax: 3400, 

2925, 2857, 1692, 1628, 1516, 1323, 1281, 1188, 1133, 1064, 878, 789, 682 cm−1. FT-Raman 

νmax: 1285, 1385, 1460, 1523, 1626 cm−1.  
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Synthesis of luminescent hexagonal mesoporous silica, Eu(PFNP-Si)3(bath)/MCM-41 (1). 

3.5 mmol of SiPFNP-Na was dissolved in 20 mL ethanol with stirring. Then an appropriate 

amount of MCM-41 (molar ratio of MCM-41: PFNP-Si = 1 : 3) was added to the solution. Six 

hours later, the corresponding amount of Eu(NO3)3(6H2O) (1.17 mmol) and 

bathophenanthroline (bath: 1.17 mmol) was added and stirred vigorously in air atmosphere at 

room temperature for 48 h (Scheme 5.1). Finally, the solid product was recovered by 

centrifugation, washed with ethanol, and dried at 80 °C. This covalently bonded hybrid material 

with mesoporous host containing Eu3+ ions was denoted as Eu(PFNP-Si)3(bath)/MCM-41.  

FT-IR (KBr) νmax: 3430, 2918, 2851, 1692, 1608, 1521, 1468, 1384, 1194, 1127, 1079, 858, 

788, 465 cm−1. FT-Raman νmax: 1283, 1385, 1463, 1510, 1633 cm−1. 
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 Scheme 5.1. Synthesis procedure for the SiPFNP-Na and Eu(PFNP-Si)3.bath/MCM-41 

complex. 

 

Physical measurements. FT-Raman spectra of the solid samples were recorded on a Horiba JY 

Lab Raman HR800 Micro Raman Spectrometer (with excitation wavelength using an internal 

HeNe 20 mW 632 nm laser polarized 500 : 1 spectrograph, 800 mm focal length, hole size 400 
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µm, slit 100 µm, grating 1800, objectives 10× NA 0.25, 50× NA 0.7, 100× NA 0.9). 29Si and 13C 

NMR spectra of the solid samples were obtained on a Bruker DRX500 spectrometer (the 

measurements were obtained in natural abundance at frequencies of 75.47 and 59.61 MHz for 

carbon and silicon, respectively). BET surface area of the hybrid material was measured using a 

Micromeritics Gemini 2375 V5.01 surface area Analyzer. Pore size distribution was obtained 

by the Barrett–Joiner–Halenda method from the desorption curve of the isotherm. X-Ray 

powder diffraction was performed using Ni-filtered Cu Kα radiation with a Philips X'pert Pro 

diffractometer. Data were collected by step scanning from 2 to 20° 2θ. Dynamic Light 

Scattering experiments were conducted using a Malvern Instruments zetasizer nano Zis Model 

no: ZEN3600 to determine the particle size of the hybrid material. TEM and SEM were used to 

determine the morphology and particle size. TEM analyses were done on a JEOL 2010 (200 

kV). A pinch of material was suspended in ethanol. Then, a carbon-coated grid was dipped in 

the solution and allowed to dry at room temperature. SEM analyses were done on a JEOL JSM-

5600LV. Other instrumental techniques employed for the characterization of the ligands and 

complexes are the same as that described in the chapter 1. 

 

5.4. Results and Discussion 

Characterization of SiPFNP-Na and Eu(PFNP-Si)3(bath)/MCM-41 (1). The synthesis 

procedure for the silylated polyfluorinated β-diketonate ligand (SiPFNP-Na) and the 

mesoporous hybrid material (Eu(PFNP-Si)3(bath)/MCM-41) is shown in Scheme 5.1. The 

structure of the modified ligand, SiPFNP-Na has been confirmed by 1H NMR spectroscopy 

(CDCl3) (Figure 5.1) and solid-state 13C NMR spectroscopy (Figure 5.2). A broad peak at δ = 

6.22 ppm in the 1H NMR and at δ = 168 ppm in the 13C NMR spectra indicates the formation of 

amide –CO–NH– linkages in the SiPFNP-Na ligand. The propyl chain in the ligand gives peaks 

at 0.56–3.12 ppm in the 1H NMR spectra and 10–44 ppm in the 13C NMR spectra. The purity of 
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the product was confirmed by the absence of signal at δ = 6.68 ppm characteristic of the free H 

in between the two carbonyl groups in the 1H NMR spectra.  
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Figure 5.1. 1H NMR spectra of SiPFNP-Na. 
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Figure 5.2. Solid-state 13C NMR spectra of SiPFNP-Na. 

  

The 29Si CPMAS NMR spectrum of Eu(PFNP-Si)3(bath)/MCM-41 is shown in Figure 5.3.  The 

29Si CPMAS NMR spectrum of unmodified MCM-41 displays two broad overlapping 

resonances at δ = −101.4 and −110.6 ppm, which correspond to Q3 and Q4 species of the silica 

framework [Qn = Si(OSi)n(OH)4–n] (Figure 5.4).  A weak shoulder is also observed at δ = 

−91.9 ppm for the Q2 species. The Q3 sites are associated with single Si–OH groups that include 

both free and hydrogen-bonded silanols, and the Q2 sites correspond to geminal silane diols. For 
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-300

the modified material Eu(PFNP-Si)3(bath)/MCM-41, two additional signals appear at δ = −58.9 

and −66.8 ppm, which can be assigned to T2 and T3 organosilica species [Tm = 

RSi(OSi)m(OEt)3–m], respectively. In parallel, the relative intensities of the Q2 and Q3 resonances 

decrease with an increase in the intensity of Q4 at −111.8 ppm. The presence of T2 and T3 

signals indicates that the organic groups are covalently bonded to the silica matrix.  

 

 

 

 

 

 

 

 

 

Figure 5.3. Solid-state 29Si CPMAS NMR spectra of Eu(SiPFNP)3(bath)/MCM-41. 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Solid-state 29Si CPMAS NMR spectra of MCM-41. 

 

The FT-IR spectra of the grafted ligand SiPFNP-Na and of Eu(PFNP-Si)3(bath)/MCM-41 

are shown in Figure 5.5. The presence of the amide group in SiPFNP-Na was confirmed by the 

appearance of new bands at 3400 (ν NH), 1692 cm−1 (ν NHCO) and 1410 cm−1 (δ NH). The 
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strong broad bands located at around 2963, 2925, 2857 cm−1 indicates the three methylene 

groups of 3-(triethoxysilyl)-propylisocyanate. Furthermore, the bands centered at 3386 cm−1 

correspond to the stretching vibration of grafted NH groups. The spectrum of SiPFNP-Na 

shows the stretching vibration absorption bands at 1281 cm−1 (ν C–Si) and at 1064 cm−1 (ν Si–

O), characteristic of the trialkoxylsilyl functional group, derived from the cross-linking reagent 

3-(triethoxysilyl)-propylisocyanate (TESPIC) proving that it was successfully grafted onto the 

β-diketone ligand.  
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Figure  5.5. FT-IR spectra of SiPFNP-Na (a) and Eu(SiPFNP)3(bath) MCM-41 (b). 

 

The FT-IR spectrum of Eu(PFNP-Si)3(bath)/MCM-41 consists of a broad band located at 

around 1015–1127 cm−1 (νas, Si–O), 858 cm−1 (νs, Si–O), and 465 cm−1 (δ, Si–O–Si), which 

demonstrates the success of the hydrolysis and copolycondensation reactions. (ν represents 

stretching, δ in plane bending, Φ ring deformation, s symmetric, and as asymmetric vibrations). 

Furthermore, the peak at 1692 originating from the –CONH– group of SiPFNP-Na, can also be 

observed in Figure 5.5b, which is consistent with the fact that the carbonyl groups of the 

precursor invariably remain after hydrolysis and condensation reactions, confirming that the 

two carbonyl groups of the β-diketones are coordinated to the Eu3+ ions, not the carbonyl groups 

of the TESPIC [Qiao and Yan 2009; Qiao and Yan 2008]. In addition to the above, a red-shift 
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noted in the C=N stretching frequency of bath (1615 to 1602 cm−1) in Eu(PFNP-

Si)3(bath)/MCM-41 shows the involvement of nitrogen atoms in the complex formation with 

Eu3+ ion [Biju et al. 2006].  

The FT-Raman spectra of the SiPFNP-Na ligand and that of Eu(PFNP-Si)3(bath)/MCM-41 

are shown in Figure 5.6. The peak at 1430 cm−1 in the ligand (Figure 5.6a) and that at 1463 

cm−1 in Eu(PFNP-Si)3(bath)/MCM-41 are due to the symmetric stretching vibrations of the 

C=O group (νs, C=O). The peaks at around 1384 cm-1 in both the ligand and in Eu(PFNP-

Si)3(bath)/MCM-41 are due to the in-plane bending of CH2 group (δ, CH2). The detailed 

vibrational spectral data are summarized in Table 5.1. In the vibrational spectra, bands arising 

from the nitrogen donor (bath) were not observed. This is not unexpected since in the spectra of 

Eu(PFNP-Si)3(bath)/MCM-41 the bands from this ligand are considerably weaker than those 

from the Eu(PFNP-Si)3 fragment [Bruno et al. 2008]. Additionally, the bands due to bath 

molecule appear in the region dominated by the C O bands of HPFNP ligand. 
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Figure 5.6. FT-Raman spectra of SiPFNP-Na (a) and Eu(SiPFNP)3(bath)/MCM-41 (b). 
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Table 5.1. Wave numbers observed in FT-IR spectra and FT-Raman spectra of SiPFNP-Na and 
the Eu(PFNP-Si)3(bath)/MCM-41 and the  respective vibrational assignments.  

 

PFNP-Si  Eu(PFNP-Si)3(bath)/MCM-41 Description 
IR (cm-1)   Raman (cm-1) IR (cm-1) Raman (cm-1)  

3400  3422  ν (N-H) 
2927  2918  ν  (Csp3-H) 
1692 1626 1692 1626 ν (C=O) 
1516 1523 1524 1510 ν  (C=C) 
 1430  1463 ν s (C=O) 
1383 1385 1383 1385 δ (CH2) 
 1285  1283 Ф ν  (C-C) 
1087  1077  ν (Si-O-Si) 

 

Figure 5.7. Shows the powder XRD patterns of MCM-41 and the modified material 

Eu(PFNP-Si)3(bath)/MCM-41. The XRD pattern for MCM-41 is characteristic of a well-

ordered hexagonal mesoporous phase. The Bragg peaks indexed as (100), (110), (200) and 

(210) are also observed in Figure 5.7a which indicates the long-range hexagonal symmetry. On 

the other hand, in the grafted complex, a single diffraction peak was noted in the low 2θ region 

at 3.27, which is a characteristic peak of the formation of periodic hexagonal mesostructures 

[DeOliveira et al. 2007; Ogawa et al. 2001].  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.7. X-ray diffraction patterns of MCM-41 (a) and of the Eu(SiPFNP)3(bath)/MCM-
41 (b). 
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Furthermore, a loss of structural order could be observed in the XRD pattern and this can be 

attributed to the introduction of the bulky Eu(PFNP-Si)3(bath) fragment inside the channels of 

the support which affects the X-ray scattering contrast between the silica framework and pore-

filling material [Bruno et al. 2008; Gago et al. 2005]. 

Incorporation of Eu(PFNP-Si)3 into MCM-41 resulted in the reduction of the surface area 

from 1000 m2 g−1 for MCM-41 to 0.67 m2 g−1 for Eu(PFNP-Si)3(bath)/MCM-41, suggesting 

that microenvironment of MCM-41 has drastically changed due to the introduction of 

luminescent centers. Likewise, the pore volume for MCM-41 of 0.980 cm3 g−1 decreased to 

0.001 cm3 g−1 for Eu (PFNP-Si)3(bath)/MCM-41. This loss in surface area may be explained by 

the fact that N2 molecules are repelled from the silica surface by the grafted organosilanes so no 

longer adsorb [Cousinié et al. 2007].  

From the dynamic light scattering (DLS) measurements it is evident that the mesoporous 

hybrid material has an average particle size of 313 nm (Figure 5.8).  

 

 

 

 

 

 

 

 

 

Figure 5.8. DLS particle size distribution curve for Eu(PFNP-Si)3(bath)/MCM-41. 

 

A scanning electron microscopy (SEM) micrograph of the mesoporous hybrid material is 

given in Figure 5.9. The SEM micrographs of the mesoporous hybrid material is typical for 

covalently bonded hybrids with a mesoporous host, and show the morphology of spherical 
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1000

The thermogravimetric curve (Figure 5.11) showed two distinct stages of decomposition. 

The one between 40–180 °C was related to absorbed water and the other one, between 180–800 

°C, was assigned to the decomposition of organic matter and water from silanol group 

condensation. 

 

 

Figure 5.11. Thermo gravimetric curve for Eu(SiPFNP)3(bath)/MCM-41. 
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Photophysical studies. The UV absorption spectra of the parent ligand HPFNP, grafted ligand 

SiPFNP-Na and of the mesoporous hybrid material, Eu(PFNP-Si)3(bath)/MCM-41 in 

acetonitrile solution are shown in Figure 5.12.  

 

 

 

 

 

 

 

Figure 5.12. UV absorption spectra of the ligands HPFNP (a), SiPFNP-Na (b) and bath (c)  and 
of the complexes Eu(PFNP)3(bath) and Eu(SiPFNP)3(bath)/MCM-41 (e) in acetonitrile 
solution. 
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The maximum absorption band at 345 nm for HPFNP, 332 nm for SiPFNP-Na, and the hump 

observed around 330 nm in the mesoporous hybrid material are attributed to singlet–singlet π–

π* enol absorption of the β-diketonate [Judd 1962]. Compared with the ligand HPFNP (λmax = 

345 nm), the absorption maximum is blue-shifted to 332 nm in SiPFNP-Na and to 330 nm in 

the mesoporous hybrid material. The noticeable blue-shift in the absorption maximum observed 

for SiPFNP-Na, when compared to that of HPFNP suggests a change in π–π* electron 

distribution of the grafted ligand SiPFNP-Na [Qiao and Yan 2009]. In addition, the spectral 

shapes of the mesoporous hybrid material in CH3CN are similar to that of the free ligands, 

suggesting that the coordination of the Eu3+ ion does not have a significant influence on the 1π–

π* state energy. 

Figure 5.13 shows the room-temperature excitation and emission spectra for the pure 

Eu(PFNP)3(bath) complex and the MCM-41 mesoporous material covalently bonded with 

Eu(PFNP-Si)3(bath). The excitation spectra of these materials were all obtained by monitoring 

the strongest emission wavelength of the Eu3+ ions at 613 nm. The excitation spectra of both the 

Eu3+ complexes exhibit a broad excitation band between 250 and 450 nm (λex = 385 nm), which 

can be assigned to the π–π* transition of the ligands [Biju et al. 2006; Pavithran et al.  2006; 

Remya et al. 2008]. In addition, a sharp line observed at 465 nm in the excitation spectra can be 

assigned to transition between the 7F0 → 5D2 level of the Eu3+ ion. This transition is weaker 

than the absorption of the organic ligands and is overlapped by a broad excitation band, which 

proves that luminescence sensitization via excitation of the ligand is much more efficient than 

the direct excitation of the Eu3+ absorption level. 

In the emission spectra of pure Eu(PFNP)3(bath) and Eu(PFNP-Si)3(bath)/MCM-41, 

characteristic Eu3+ ion emissions are observed. Bands in the 450–700 nm range can be clearly 

seen, which are assigned to the 5D0 → 7FJ (J = 0–4) transitions at 580, 592, 613, 653, and 705 

nm [Biju et al. 2006; Pavithran et al.  2006; Binnemans 2005]. In addition, a weak green 
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emission band at 535 nm (inset in Figure 5.13), occurs, corresponding to the high-energy 

transition of 5D1 → 7F1 [Kadjane et al. 2008; Dejneka et al. 1995].  
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Figure 5.13. Solid state excitation and emission for Eu(PFNP)3(bath) (a) and hybrid 
Eu(SiPFNP)3(bath)/MCM-41 (b) at 298 K, emission monitored at around 613 nm(λex = 385 
nm). 
 

No broad emission band resulting from organic ligand molecules in the blue region can be 

observed, which indicates that the silica-modified ligand system transfers energy completely to 

the emitting level of the metal ion. The 5D0 → 7F2 transition is a typical electric dipole 

transition and strongly varies with the local symmetry of Eu3+ ions, while the 5D0 → 7F1 

transition corresponds to a parity-allowed magnetic dipole transition, which is practically 

independent of the host material. Among these transitions, the 5D0 → 7F2 transition shows the 

strongest emission, suggesting the chemical environment around Eu3+ ions is in low symmetry 

[Kai et al. 2008; Liu et al. 2008]. The intensity ratio of the electric dipole transition to the 

magnetic dipole transition in the lanthanide complex measures the symmetry of the 

coordination sphere [Kirby et al.1983] and this ratio increases with the number and mass of the 

ligand coordinated by the Ln3+ ion [Poluektov et al.  1975]. The relative luminescent intensities 

of the 5D0 → 7F2 and the 5D0 → 7F1 transition, 5D0 → 7F2/5D0 → 7F1 intensity ratios (red/orange 
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ratio) for all materials are listed in Table 5.2. For the pure Eu(PFNP)3(bath), in the absence of 

mesoporous material, the intensity ratio of the transitions of 5D0 → 7F2/5D0 → 7F1 (I21) is 10 

(Table 5.2). This intensity ratio increases to 11 in Eu(PFNP-Si)3(bath)/MCM-41. In short, the 

presence of mesoporous material increases the luminescent intensity of the hypersensitive 

transitions of the Eu3+ ion. 

 
Table 5.2. Radiative (ARAD) and nonradiative (ANR) decay rates, 5D0 lifetime (τobs), intrinsic 
quantum yield (ΦLn,%), energy transfer efficiency (Φsens,%), and overall quantum yield (Φoverall, 
%) for Eu(PFNP-Si)3(bath)/MCM-41 (1)  and Eu(PFNP)3(bath) (2) at 303 K. 
 

Parameters 1 Eu (PFNP)3(bath) 
ν00 (cm-1)a 17,241 17,248 
ν01 (cm-1)a 16,863 16,863 
ν02 (cm-1) a 16,286 16,286 
ν03 (cm-1) a 15,290 15,290 
ν04 (cm-1) a 14,204 14,204 
I02/I01

b 11.0 10.06 
τobs (ms)  1053  1218  
ARAD (s-1) 766 661 
ANR (s-1) 183 145 
Фoverall (%) 43 48  
ФLn (%) 81 81 
Фsens (%) 53 59 

a the energies of the   5D0→ 7FJ transitions ν0J,  
b

 the intensity ratio (red/orange ratio) 

 

The 5D0 lifetime values (τobs) were determined from the luminescent decay profiles for the 

pure Eu(PFNP)3(bath) and mesoporous hybrid material at room temperature by fitting with a 

monoexponential curve and the values are depicted in Table 5.2.  Typical decay profiles of 

mesoporous hybrid material along with the pure Eu(PFNP)3(bath) are shown in Figure 5.14. 

From Table 5.2 it is clear that longer lifetime values have been observed for these materials due 

to the absence of non-radiative pathways in the first coordination sphere [Biju et al. 2006; 

Pavithran et al.  2006; Binnemans 2005].  

The overall quantum yield (Φoverall), radiative (ARAD) and non-radiative (ANR) decay rates, 

intrinsic quantum yield (ΦLn) and energy transfer efficiency (Φsens) of the complexes were 

presented in Table 5.2. It is evident that the mesoporous hybrid material, Eu(PFNP-
127 
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Si)3(bath)/MCM-41 exhibits very high intrinsic quantum yield (ΦLn = 81%) and energy transfer 

efficiency (Φsens = 53%) similar to that of the pure Eu(PFNP)3(bath). Furthermore, the intrinsic 

quantum yield obtained for the newly designed mesoporous hybrid material is found to be 

significantly higher than that of the mesoporous hybrid materials containing Eu3+-1-(2-

naphthoyl)-3,3,3-trifluoroacetonate-bipyridine complexes covalently bonded to SBA-15 (ΦLn = 

29%) [Li et al. 2008] and Eu3+-1-(2-naphthoyl)-3,3,3-trifluoroacetonate-pyridine complexes 

covalently bonded to MCM-41(ΦLn = 29.9%) [Bruno et al.  2008].  
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Figure 5.14. Experimental luminescence decay profiles of Eu(PFNP)3(bath) (a) and 
Eu(SiPFNP)3(bath)/MCM-41 (b) monitored around 612 nm and excited at their maximum 
emission wave lengths. 

 

It is well demonstrated in many previous luminescence studies of trivalent lanthanide 

chelates that the general mechanism for the sensitization of Ln3+ ion luminescence via the 

“antenna effect” involves the following steps: (i) UV absorption by the organic chromophore 

which results in excitation to the first excited singlet state; (ii) non-radiative intersystem 

crossing from the singlet to the triplet state; (iii) intramolecular energy transfer from the ligand-

centered triplet state to the excited 4f states of the Ln3+ ion; and (iv) radiative transition from 

the Ln3+ ion emissive states to lower energy states which results in the characteristic lanthanide 

emission. Thus, the intramolecular energy migration efficiency from the organic ligands to the 
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central Ln3+ is the most important factor determining the luminescence efficiency of lanthanide 

complexes [Lehn 1990; Bekiari and Lianos 1998; Petoud et al. 2003]. The singlet energy level 

(1ππ*) of PFNP-Si is estimated by referencing its higher absorption edge, which is 26,500 cm−1. 

The shortest-wavelength phosphorescence band in the phosphorescence spectrum of the 

Gd(PFNP-Si)3(H2O)2 at 77K (Figure 5.15) was assumed to e the 0–0 transition [Biju et al. 

2006; Pavithran et al.  2006; Binnemans 2005], from which the energy of the lowest triplet 

state, T1 (3ππ* = 19,800 cm−1) was determined.  
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Figure 5.15. Phosphorescence spectra of  Gd (PFNP-Si)3(H2O)2 (a)  and Gd(PFNP)3(H2O)2 (b).    

 

The triplet energy level of PFNP-Si was found to be same as that of HPFNP, indicating that 

silylation of the β-diketone ligand does not change its electronic states significantly. The singlet 

(1ππ* = 29,000 cm−1) and triplet (3ππ* =21,000 cm−1) energy levels of 4,7-diphenyl-1,10-

phenanthroline were taken from the chapter 4. The triplet levels of PFNP-Si and bath were 

found to be higher in energy than the 5D0 state of Eu3+. According to the empirical rule 

proposed by Latva, for an optimal ligand-to-metal energy transfer process 2500 < ΔE(3ππ*–

5D0) < 4000 cm−1 for Eu3+ [ Latva et al. 1997]. It is also noted that the energy gaps, ΔE (3ππ*–

5D0) of the PFNP-Si and bath are 2300 and 3500 cm−1, respectively. As a consequence these 
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ligands can transfer energy effectively to the emitting states of the Eu3+ ion. In addition, 

Reinhoudt's empirical rule [Steemers et al. 1995] states that the intersystem crossing process 

becomes effective when ΔE(1ππ*–3ππ*) is at least 5000 cm−1. Thus the ΔE(1ππ*–3ππ*) energy 

gaps for PFNP-Si and bath are 6700 and 8000 cm−1, respectively, and hence the intersystem 

crossing processes are effective for these ligands. 

5.5 Conclusions 

In summary, a highly luminescent Eu3+ ternary complex has been covalently immobilized in the 

ordered MCM-41 mesoporous host through modification of a novel polyfluorinated β-diketone 

with 3-(triethoxysilyl)propylisocyanate by a co-condensation route. X-Ray diffraction confirms 

that this luminescent material has ordered hexagonal mesoporosity. Dynamic light scattering 

and SEM studies indicate that the newly designed mesoporous luminescent material has particle 

size in the range 250–300 nm. Investigations of the luminescence properties of the Eu(PFNP-

Si)3(bath)/MCM-41 mesoporous material shows that the characteristic luminescence of the 

corresponding Eu3+ occurs through intramolecular energy transfer from the modified ligand 

(PFNP-Si) to the central Eu3+ ions. Further, the photoluminescent properties indicates that the 

present hybrid material exhibits higher 5D0 quantum efficiency (ΦLn = 81%) and longer lifetime 

(1.05 ms) as compared to that of the mesoporous hybrid materials containing Eu3+-1-(2-

naphthoyl)-3,3,3-trifluoroacetonate-bipyridine complexes covalently bonded to SBA-15 (ΦLn = 

29%; τobs = 0.48 ms) [Li et al. 2008] and Eu3+-1-(2-naphthoyl)-3,3,3-trifluoroacetonate-pyridine 

complexes covalently bonded to MCM-41(ΦLn = 29.9%; τobs = 0.31 ms) [Bruno et al. 2008] 

reported elsewhere. Moreover, the MCM-based material provides several additional 

advantages, such as being able to be processed as silica based templates for optical centers 

(compatible with the silicon devices technology), opening up the possibility of designing new 

luminescent displays with highly oriented MCM-41 films impregnated with emitting centers 

showing enhanced antenna effects. 
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