Lewis Acid Catalyzed Povarov Reaction Using Pentafulvenes as Dienophiles

Thesis Submitted to AcSIR for the Award of the Degree of DOCTOR OF PHILOSOPHY
in Chemical Sciences
AcSIIR

By
Baiju T. V.
Registration No: 10CC11A39004

Under the guidance of
Dr. K. V. Radhakrishnan

CSIR-NATIONAL INSTITUTE FOR INTERDISCIPLINARY
SCIENCE AND TECHNOLOGY (CSIR-NIIST)
THIRUVANANTHAPURAM-695 019, KERALA, INDIA

September, 2016

Dedicated to My Parents and Teachers. . .

DECLARATION

I hereby declare that the Ph.D. thesis entitled "Study on the Reactivity of Bis- π allyl and Related Palladium Intermediates with Functionalized 1,3-Dienes and Carbonyl Compounds \& Lewis Acid Catalyzed Povarov Reaction Using Pentafulvenes as Dienophiles" is an independent work carried out by me at the Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram under the supervision of Dr. K. V. Radhakrishnan, Principal Scientist, and it has not been submitted anywhere else for any other degree, diploma or title.

Baiju T. V.

Thiruvananthapuram
September, 2016

NATIONAL INSTITUTE FOR INTERDISCIPLINARY SCIENCE \& TECHNOLOGY Council of Scientific \& Industrial Research GOVERNMENT OF INDIA Trivandrum-695 019, India

Dr. K. V. Radhakrishnan

Organic Chemistry Section
Chemical Sciences and Technology Division
AcsilR
Telephone: 91-471-2515420, Fax: 91-471-2491712

CERTIFICATE

This is to certify that the work incorporated in this Ph.D. thesis entitled "Study on the Reactivity of Bis- π-allyl and Related Palladium Intermediates with Functionalized 1,3-Dienes and Carbonyl Compounds \& Lewis Acid Catalyzed Povarov Reaction Using Pentafulvenes as Dienophiles" submitted by Mr. Baiju T. V. to Academy of Scientific and Innovative Research (AcSIR), New Delhi, in partial fulfillment of the requirements for the award of the Degree of Doctor of Philosophy in Chemical Sciences, embodies original research work under my guidance. I further certify that this work has not been submitted to any other University or Institution in part or full for the award of any degree or diploma.

K. V. Radhakrishnan

(Thesis Supervisor)

Thiruvananthapuram

September, 2016
email: radhu2005@gmail.com; radhupreethi@rediffmail.com

ACKNOWLEDGEMNTS

It is my great pleasure to express my deep sense of gratitude to my research supervisor Dr. K. V. Radhakrishnan for suggesting the research problem and for his guidance, constant support and encouragement that led to the successful completion of this work.

I thank Dr. A. Ajayaghosh, present Director, and former Directors Dr. Suresh Das and Dr. Gangan Prathap of CSIR-NIIST, Trivandrum, for providing me the necessary facilities and infrastructure of the institute for carrying out this work.

My Sincere thanks are also due to:
Dr. Mangalam S. Nair and Dr. Luxmi Varma former and present AcSIR programme coordinators at CSIR-NIIST for timely help and advice for the academic procedures of AcSIR.

Dr. K. R. Gopidas, Head and Dr. D. Ramaiah, Former Head, Chemical Sciences and Technology Division for their support.

Dr. Ravi Shankar L., Dr. U. S. Hareesh, (DAC members) for their immense support and valuable suggestions throughout the research period.

Dr. G. Vijay Nair, Emeritus Scientist, Organic Chemistry Section for his inspiring presence and fruitful discussions.

Dr. A. Jayalekshmy, Dr. Kaustabh Kumar Maiti and Dr. B. S. Sasidhar, Scientists of Organic Chemistry Section, for their encouragement and support.

Dr. Jubi John and Dr. Ganesh Nandi for their valuable suggestions and support.
Mrs. Saumini Mathew, Mr. B. Adarsh, Mr. Arun, Mr. Vipin M. G., Mr. Saran P. Raveendran, Mr. Syam and Mr. Rakesh Gokul for recording NMR spectra. Thanks are also due to Mrs. S. Viji and Ms. Aathira for mass spectral analysis.

Dr. Sunil Varughese, CSIR-NIIST, Dr. E. Suresh, CSIR-CSMCRI, Bhavnagar, and Dr. Alex Andrews, IISER, Trivandrum for Single Crystal X-ray analysis.

Prof. Yoshinori Yamamoto, Tohoku University, Japan for sharing the knowledge on bis- π allyl palladium chemistry.

Dr. Sholly Clair George, Dr. Nayana Joseph, Dr. Praveen Prakash, Dr. Ajish K. R. and Dr. Sarath Chand S for giving me basic ideas of research and immense support.

Mr. Ajesh Vijayan, Mr. Preethanuj Preethalayam, Ms. Roshni Retar, Ms. Sidheeka, Ms. Jainu Ajith and Mr. Akshay J. Kurup for their assistance in conducting some of the experiments reported in this thesis.

Dr. Jijy E., Mrs. Saranya S., Ms. Dhanya B. P., Ms. Aparna P. S., Ms. Santhini P. V., Mrs. Remya Raj, Mr. Sasikumar P., Ms. Greeshma Gopalan and Ms. Prabha B. for their companionship and great support.

Dr. Anupriya S., Dr. Jisha Babu, Ms. Maya R. J., Mrs. Athira Krsihna, Ms. Santhi, Mr. Rajeev K. K., Ms. Dhanya S. R., Mr. Sjain Francis K., Dr. Parvathy Ratnam, Dr. Sinu C. R., Dr. Anu Jose, Dr. Rony Rajan Paul., Mrs. Seethalakshmi, Mr. Jagadheesh, Mr. Jayakrishnan A., Ms. Sreedevi P. and Ms. Jyothi for their friendship.

Dr. Suchitra M. V. and Dr. Praveen L. for their valuable suggestions and support during different stages of my research career.

Mr. Manu Jose, Dr. P. K. Sajith, Dr. Jatish Kumar, Mr. Shyju, Mr. Sujai P. T. and Mr. Sujith for their great companionship during my stay in Thiruvananthapuram.

I express my sincere gratitude to Dr. Anil Kumar, Director, and Mr. V. V. Sivan, M. S. Swaminathan Research Foundation-Community Agro biodiversity Centre (MSSRF-CAbC), Kalpetta, Wayanad, Kerala for the successful completion of my CSIR-800 project.

I am grateful to CSIR and DST New Delhi, for the financial assistance.
I would like to extend my sincere thanks to all my friends at CSIR-NIIST.

I take this opportunity to pay respect to my parents, teachers and friends starting from my school days to those at NIIST, who motivated and blessed me.

Above all, I bow to Almighty for bestowing his blessings upon me.

Baiju T. V.

CONTENTS

Declaration i
Certificate ii
Acknowledgements iii
Contents V
List of Tables X
List of Figures xi
Abbreviations xiii
Preface xvi
CHAPTER 1
Palladium-Catalyzed Allylation Reactions: A Brief Overview 1-28
1.1. Introduction 1
1.2. Palladium catalyzed cross coupling 2
1.2.1. Heck reaction 3
1.2.2. Negishi coupling 3
1.2.3. Suzuki coupling 4
1.2.4. Stille reaction 4
1.2.5. Sonogashira reaction 5
1.2.6. Kumada coupling 5
1.3. Palladium catalyzed allylation: Tsuji-Trost reaction 5
1.3.1. Mechanism and catalytic Cycle 8
1.4. Palladium catalysed allylic C-H alkylation 9
1.5. Nucleophilic reactivity of π-allyl palladium complex 11
1.5.1. Bis- π-allyl palladium complexes 12
1.5.2. Amphiphilicity of bis- π-allyl palladium complex: A double allylation 14 strategy1.5.3. Bis-functionalization of activated olefins by related π-allyl palladium 17complexes
1.5.3.1. Alkoxy allylation 17
1.5.3.2. Cycloaddition reactions of π-allyl palladium complex 18
1.5.3.3. Aminoallylation 19
1.5.3.4. Acetonation-allylation 20
1.5.3.5. Alkyl-allylation 21
1.5.3.6. Propargylallylation 21
1.5.3.7. Cyanoallylation 22
1.5.3.8. Hydroallylation 22
1.6 Conclusion and present work 22
1.7 References 25
CHAPTER 2
Bis-functionalization of 1,3-Dienes via 1,4-Conjugate Addition of Amphiphilic 29-75 Bis- π-Allyl and Related Palladium Intermediates
2.1. Introduction 29
2.1.1. Bis-funtionalization of 1,3-dienes under transition metal catalysis 30
2.1.1.1. Hydrovinylation of 1,3-dienes 30
2.1.1.2 1,4-diboration reaction in 1,3-dienes 31
2.1.1.3 Palladium catalyzed functionalization of dienes 32
2.1.2. Palladium catalyzed allylation reactions in conjugated system 35
2.2. Statement of the problem 38
2.3. Results and discussion 38
2.3.1. Bis-functionalization of 1,3-dienes via 1,4-conjugate addition of bis- π - 38 allyl palladium complexes
2.3.1.1. Mechanistic considerations 43
2.3.2. Palladium catalyzed allylation-oxyallylation reaction of 1,3-dienes 44 using diallyl carbonate
2.3.2.1. Palladium catalyzed 1,4-difunctionalization of 1,3-butadiene 48 derivative using allyl methyl carbonate and dimethallyl carbonate
2.3.3. Mechanistic considerations 52
2.3.4. Palladium catalyzed decarboxylative allylation acetonation reaction 52 in 1,3-butadiene derivatives
2.3.5. Reactivity of other functionalized diene towards π-Aallyl palladium 54 related complexes
2.4. Conclusion 59
2.5. Experimental details 59
2.5.1. General experimental procedure for the preparation of 60 arylidenemalononitrile derivatives (62)
2.5.2. General experimental procedure for the preparation of substituted 1,3- 60 butadienes (64a-h)
2.5.3. General experimental procedure for bis-allylation of 1,3-butadiene 61 derivatives
2.5.4. General experimental procedure for allylation-oxyallylation reaction of 61 1,3-butadiene derivative
2.6. References 74
CHAPTER 3
Palladium-Catalyzed Interceptive Decarboxylative Addition of Allyl Carbonates 76-135 to Squarates, Isatins and Other Electrophilic Carbonyl Compounds
3.1. Introduction 76
3.1.1. Interceptive decarboxylative allylations (IDcA) 77
3.1.2. Reactivity of π-allylpalladium intermediates towards carbonyl compounds 80
3.1.3. Squarates: A brief discussion 82
3.2. Present work 85
3.3. Results and discussion 85
3.3.1. Palladium catalyzed interceptive decarboxylative 1,4 -addition of allyl 85 carbonates to squarates
3.3.2. Mechanistic pathway 92
3.3.3. Synthesis of spiro 4,7-dihydro-1,3-dioxepine 92
3.3.4. Palladium catalyzed interceptive decarboxylative 1,2 -addition of allyl 95 carbonates with isatins
3.3.5. Synthesis of dioxepine fused spiro-oxindole 99
3.3.6. Decarboxylative addition of allyl acetoacetate with N -substituted isatins 101
3.3.7. Reductive cyclization of 3-hydroxy oxindoles 104
3.3.8. Interceptive decarboxylative addition of allyl carbonates with other 106 carbonyl compounds
3.3.8.1. Interceptive addition with acenaphthenequinone 106
3.3.8.2 Interceptive addition with diethyl ketomalonate 106
3.3.8.3. Reaction of diallyl carbonate with methyl benzoylformate 107
3.4. Conclusion 107
3.5. Experimental section 107
3.5.1. General procedure for the palladium catalyzed interceptive 107 decarboxylative allylation of squaric acid esters
3.5.2. General procedure for the palladium catalyzed decarboxylative addition 108 of allyl carbonates to isatin
3.5.3. General procedure for the palladium catalyzed decarboxylative addition 108 of allyl acetoacetate to isatins
3.6. Reference 134

CHAPTER 4

Lewis Acid Catalyzed Povarov Reaction Using Pentafulvenes as Dienophiles 136-183
4.1. Introduction 136
4.1.1. Reactivity of pentafulvenes 137
4.1.1.1. Cycloaddition chemistry of pentafulvenes 137
4.1.2. Povarov reaction: A brief introduction 144
4.2. Present work 146
4.3. Results and discussion 147
4.3.1. Lewis acid catalyzed aza Diels-Alder cycloaddition reaction of fulvenes 148 with aryl imines generated from phenyl glyoxal
4.3.2. Optimization studies 151
4.3.3.Three component Povarov reaction 155
4.3.4. Three component Povarov reaction using ethyl glyoxalate as aldehyde 157 component
4.3.5. Mechanistic proposal 159
4.3.6. Oxidation of Povarov adduct: Access of quinoline derivatives 160
4.4. Conclusion 161
4.5 Experimental section 162
4.5.1. General procedure for two component Povarov reaction of imine and 162 pentafulvenes (Method A)
4.5.2. General procedure for three component Povarov reaction of aniline, 162 phenyl glyoxal/ethyl glyoxalate and pentafulvenes (Method B)
4.5.3. General procedure for the oxidation of tetrahydroquinoline derivatives to 162 quinoline derivatives
4.6 References 182
Summary 184
List of Publications 186

List of Tables

2.1. Reaction optimization studies 42
2.2. Palladium catalyzed bis-allylation of various 1,3-butadiene derivatives 43
2.3. Reaction optimization studies 47
2.4. Palladium catalyzed allylation-oxyallylation reaction of 1,3-dienes 48
3.1. Screening of parameters for best catalyst system 90
3.2. Decarboxylative 1,4 -addition of allyl carbonates with squarates 91
3.3. Decarboxylative addition of allyl carbonates with N -substituted isatins 98
3.4. Ring closing metathesis of bis-allyloxy-2-oxindoles 101
3.5. Decarboxylative addition of allyl acetoacetate to C-3 carbonyl group of isatin 104
4.1. Optimization studies 152
4.2. Povarov reaction of fulvenes with phenylglyoxal derived imines 153
4.3. Three-component Povarov reaction 156

List of Figures

1.1. π-Allyl palladium intermediate 7
1.2. Amphiphilic reactivity of bis- π-allylpalladium complex 14
1.3. Amphiphilic π-allylpalladium complexes 17
2.1. Natural products containing polyenes 29
2.2. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 65 a 40
2.3. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 65 a 41
2.4. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 66 a 45
2.5. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 66 a 46
2.6. ORTEP diagram of compound 66b 46
2.7. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 68 49
2.8. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 68 50
2.9. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 70 51
2.10. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 70 51
2.11. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 73 53
2.12. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 73 54
2.13. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 74 55
2.14. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 74 56
2.15. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 76 57
2.16. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 76 58
3.1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 62 aa 86
3.2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 62 aa 87
3.3. DEPT-135 NMR spectrum of compound 62aa 87
3.4. ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HMQC spectrum of compound 62 aa 88
3.5. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of compound 62 aa 89
3.6. Expansion of ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HMBC spectrum of compound 62 aa 89
3.7. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 63 93
3.8. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 63 94
3.9. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC spectrum of compound 63 94
3.10. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of compound 63 95
3.11. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 65 a 96
3.12. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 65 a 97
3.13. ORTEP diagram of compound 71a 97
3.14. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 75 100
3.15. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 75 100
3.16. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 80 102
3.17. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 80 103
3.18. ORTEP diagram of compound 80 103
3.19. Bioactive 3-hydroxy-3-substituted oxindoles 104
3.20. Natural product core containing furoindoline skelton 105
4.1. Common fulvenoids 136
4.2. Order of aromaticity of pentafulvenes 137
4.3. Frontier molecular orbitals of fulvene 140
4.4. Natural products and a biologically active THQ prepared by Povarov 145
cycloaddition reaction
4.5. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 67 a 149
4.6. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 67 a 150
4.7. ORTEP diagram of compound 67 a 150
4.8. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 69 a 158
4.9. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 69 a 158
4.10. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 70 a 161
4.11. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 70a 161

	ABBREVIATIONS
Ar	: Aryl group
A	: Angstrom
ACMP	: O-Anisylcyclohexylmethylphosphine
AcOH	: Acetic acid
OAc	: Acetyl
BDPP	: 2,4-Diphenylphosphinopentane
BQ	: Benzoquinone
Bu	: n-Butyl
${ }^{\text {'Bu }}$: tert-butyl
Bz	: Benzoyl
bpy	: Bipyridine
Calcd.	: Calculated
COSY	: Correlation spectroscopy
Cp	: Cyclopentadiene
d	: Doublet
dd	: Doublet of doublet
dba	: Dibenzylideneacetone
DCM	: Dichloromethane
DEPT	: Distortionless enhancement by polarisation transfer
DMIP	: Dimethylisopropylphosphine
DMBQ	: 2,6-Dimethoxy-1,4-benzoquinone
DDQ	: 2,3-dichloro-5,6dicyanobenzoquinone
DIOP	: 2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane
DMA	: N,N-dimethylacetamide
IDcA	: Interceptive decarboxylative allylation
J	: Coupling constant
DMAD	: Dimethyl acetylene dicarboxylate
DMF	: Dimethylformamide
DMSO	: Dimethylsulphoxide
dppf	: 1,1'-(Bisdiphenylphosphino)ferrocene
dppp	: 1,3-(Bisdiphenylphosphino) propane
dppb	: 1,4-(Bisdiphenylphosphino) butane
dppe	: 1,4-(Bisdiphenylphosphino) ethane
DcA	: Decarboxylative allylation

dr	: Diastereomeric ratio
${ }^{\circ} \mathrm{C}$: Degree celsius
EDG	: Electron donating group
ee	: Enantiomeric excess
ESI	: Electron spray ionization
Et	: Ethyl
EtOH	: Ethanol
EtOAc	: Ethyl acetate
equiv	: Equivalents
$\mathrm{Et}_{3} \mathrm{~N}$: Triethylamine
h	: Hour
Hz	: Hertz
HRMS	: High-resolution mass spectrometry
HMBC	: Heteronuclear multiple-bond correlation
HMQC	: Heteronuclear multiple quantum correlation
HOMO	: Highest occupied molecular orbital
IR	: Infrared
IEDDA	: Inverse electron demand Diels-Alder reaction
${ }^{i} \mathrm{Pr}$: Isopropyl
In	: Indium
IMDA	: Intramolecular Diels-Alder reaction
LDA	: Lithium diisopropyl amide
LG	: Leaving group
LA	: Lewis acid
LUMO	: Lowest unoccupied molecular orbital
Me	: Methyl
MHz	: Megahertz
MeOH	: Methanol
mp	: Melting point
mL	: Milliliter
mg	: Milligram
MS	: Molecular sieves
m	: Multiplet
N	: Normality
NMR	: Nuclear magnetic resonance
NHOMO	: Next highest occupied molecular orbital

NMP	$:$ N-methyl pyrrolidinone
Nu	$:$ Nucleophile
O_{2}	$:$ Oxygen
OTf	$:$ Triflate
p	$:$ para
ppm	$:$ Parts per million
pin	$:$ Pinacol
Ph	$:$ Phenyl
PTSA	$:$ para-toluene sulphonic acid
q	$:$ Room temperature
rt	$:$ Singlet
s	$:$ Tetrabutet
t	$:$ Tetrahydromydrofuran
TBAB	$:$ Trifluoroacetic acid
THF	Trifluoroacetic anhydride
THQ	Turnover number
TFA	Ultraviolet
TFAA	TON

PREFACE

Reactions involving the construction of new carbon-carbon and carbon-heteroatom bonds have a significant role in synthetic organic chemistry as it allows the synthesis of complex organic molecules with potent biological and material properties using short synthetic procedures. Transition metal catalyzed reactions played a major role in carboncarbon and carbon-heteroatom bond forming reactions, which allow the economically benign synthetic transformation with readily available starting materials. Among the various transition metals investigated for coupling reactions, palladium catalyst stands out because of its easily convertible stable oxidation states $(0$ and +2$)$ and the reactions proceeded with very high turnover numbers.

The prominent palladium-catalyzed cross coupling reactions that are widely employed in organic synthesis include Suzuki coupling, Heck coupling, Negishi coupling, Stille coupling, Kumada coupling, etc. In addition, palladium catalyzed allylic alkylation reaction accomplished a significant position among other palladium catalyzed coupling reactions and is popularly known as Tsuji-Trost reaction. Tsuji-Trost reaction proceeds through the formation of electrophilic π-allyl palladium intermediate and subsequently allylation occurs by the attack of a nucleophile to π-allyl palladium intermediate. Subsequent investigation on the palladium-catalyzed allylation reactions lights the way to nucleophilic allylation of ketones and imines. The nucleophilic allylation reaction proceeds through the generation of bis- π-allyl palladium complex from allyl stannanes in the presence of palladium catalyst. Further study on the reactivity of bis- π-allyl palladium intermediate disclosed the diallylation reaction of activated olefins. Amphiphilicity of the bis- π-allyl palladium intermediate leads to the bis-allylation reaction. The reactivity of bis- π-allyl palladium and related amphiphilic palladium complexes with functionalized conjugated dienes and carbonyl compounds forms the main theme of this thesis entitled "Study on the Reactivity of Bis- π allyl and Related Palladium Intermediates with Functionalized 1,3-Dienes and Carbonyl Compounds \& Lewis Acid Catalyzed Povarov Reaction Using Pentafulvenes as Dienophiles."

The thesis is divided into four chapters. Appropriate references are given at the end of each chapter. A brief overview on the reactivity of mono- and bis- π-allyl palladium complexes is discussed in the first chapter. Bis-functionalization of activated alkenes using
bis- π-allyl palladium and related complexes were well studied. However, conjugate addition of these amphiphilic palladium complexes with substrates containing conjugated double bonds is less explored. The second chapter of the thesis describes the conjugate 1,4 -addition of bis- π-allyl palladium and related complexes with functionalized dienes. The third chapter outlines palladium catalyzed interceptive decarboxylative 1,4-addition of allyl carbonates with the carbonyl group of squaric acid esters. The developed method is also compatible for the 1,2-interceptive addition of C-3 carbonyl group of N -substituted isatin derivatives and other electrophilic carbonyl group containing substrates such as acenaphthenequinone and diethylketomalonate.

Lewis acid catalyzed [4+2] cycloaddition between aromatic imines and electron-rich alkenes is known as Povarov reaction. The cycloaddition strategy is well utilized for synthesizing tetrahydroquinoline derivatives. The tetrahydroquinoline ring system is a very common structural motif and is found in numerous biologically active natural products and pharmacologically relevant therapeutic agents. Pentafulvenes are considered to be excellent candidates for constructing fused ring systems through intra- and intermolecular cycloaddition reactions. Cycloaddition reactions involving pentafulvenes are well studied, and they can participate as $2 \pi, 4 \pi$ or 6π candidates in various cycloaddition reactions. The detailed investigation on Lewis acid catalyzed Povarov reaction involving pentafulvenes and aromatic imines generated from phenylglyoxal and anilines constitute the subject matter of the fourth chapter of the thesis.

It may be mentioned that each chapter of the thesis is presented as an independent unit and therefore the structural formulae, schemes and figures are numbered chapter wise. A summary of the work is given towards the end of the thesis.

CHAPTER 1

Palladium-Catalyzed Allylation Reactions: A Brief Overview

1.1. Introduction

Organic reactions involving the formation of carbon-carbon bond has been emerged as a valuable tool for the synthesis of both biologically relevant molecular scaffolds and organic materials with excellent mechanical and electrical properties. Among the various methods, transition metal catalyzed carbon-carbon bond forming strategy stands out since they require mild reaction conditions. ${ }^{1}$ Over the last few decades, palladium has emerged as one of the most versatile and useful metals in organic synthesis, in particular for the formation of carbon-carbon bonds. The ready accessibility of two interconvertible stable oxidation states (0 and +2) and the simultaneous availability of one or more empty and filled nonbonding orbitals are the important factors responsible for the versatility and usefulness of palladium complexes as catalysts in organic synthesis. ${ }^{2}$ Palladium can readily participate in reductive elimination, carbometallation, migratory insertion and nucleophilic substitution reactions which makes palladium as an efficient catalyst for carbon-carbon bond formation.

The importance of the palladium catalyzed carbon-carbon bond formation is reflected by 2010 Nobel Prizes in Chemistry, which was awarded jointly to Heck, Negishi and Suzuki for the invention of palladium-catalyzed cross coupling reactions in organic synthesis. Within a short time, the area of palladium-catalyzed coupling reactions has experienced a tremendous growth. ${ }^{3}$ The transition of stoichiometric use of palladium based reagents to catalysts with impressive turnover numbers (TONs) has achieved in just a few decades. Discovery of the palladium-catalyzed oxidation of ethylene to acetaldehyde, later became the industrially relevant Wacker process has made a significant influence in organic synthesis. Subsequent investigation on palladium-catalyzed reactions paved the way for the discovery of new methods for the creation of carbon-carbon and carbon-hetero atom bonds. ${ }^{1}$

1.2. Palladium Catalyzed Cross Coupling

The main principle of palladium-catalyzed cross coupling is that two molecules are assembled on the metal via the formation of metal-carbon bonds. ${ }^{1}$ In this way, the carbon atoms bound to palladium are brought very close to one another. In the next step, they couple to one another and this leads to the formation of a new carbon-carbon single bond. ${ }^{1}$ There are two types of cross coupling reactions according to this principle that has become important in organic synthesis. These two categories of reactions are shown in Scheme 1.1.

Scheme 1.1

Zero-valent palladium catalyzes both reactions, and both reactions employ an organohalide RX (or analogous compound) as the electrophilic coupling partner. However, the nucleophilic coupling partner differs in the two reactions. In the first type (eq. 1) it is an olefin whereas in the second category (eq. 2) it is an organometallic compound R "M. ${ }^{1}$ In this way, the palladium-catalyzed cross coupling reactions in equations 1 and 2 complements one another with regards to the nucleophilic coupling partner. A common feature of the two types of cross couplings is that the organic groups from the reagents are assembled on palladium. Furthermore, both reactions begin by generating an organopalladium complex RPdX from the reaction of the organic halide with $\operatorname{Pd}(0)$. The organopalladium species RPdX will subsequently react with the nucleophilic coupling partner. The reaction conditions are very mild since they utilize organic halides and olefins/organometallic compounds R " M, where M is typically zinc, boron or tin. ${ }^{1}$ A brief overview of various palladium catalyzed cross-coupling reactions is discussed in the successive sections.

1.2.1. Heck reaction

The palladium catalyzed Mizoroki-Heck reaction is the most efficient route for the vinylation of aryl/vinyl halides or triflates. In the late 1960s, Heck reported that arylated alkenes were formed in the reaction of alkenes with a stoichiometric amount of [$\mathrm{Ar}-\mathrm{Pd}-\mathrm{Cl}$] or [$\mathrm{Ar}-\mathrm{Pd}-\mathrm{OAc}$], generated in situ by reacting ArHgCl with PdCl_{2} or ArHgOAc with $\mathrm{Pd}(\mathrm{OAc})_{2}$ respectively. ${ }^{4,5,6}$ In 1971, Mizoroki et al. reported preliminary results on the PdCl_{2} catalyzed arylation of alkenes by iodobenzene in the presence of potassium acetate as a base. ${ }^{6,7}$ In 1972, Heck and Nolley improved the reactions by using $\mathrm{Pd}(\mathrm{OAc})_{2}$ as catalyst and $n-\mathrm{Bu}_{3} \mathrm{~N}$ as a base. ${ }^{8}$ The reactions were performed without any solvent or in N-methyl pyrrolidone (NMP) at $100{ }^{\circ} \mathrm{C} .{ }^{6}$ In general, the palladium catalyzed carbon-carbon coupling between aryl halides or vinyl halides $\mathbf{1}$ and activated alkenes $\mathbf{2}$ in the presence of a base is referred as the Heck Reaction.

Scheme 1.2

1.2.2. Negishi coupling

In 1976, Negishi initiated studies to explore more chemoselective organometallic species in the palladium-catalyzed couplings with organohalides. In the earlier attempts, Negishi employed organozirconium or organoaluminum compounds as coupling partners. ${ }^{9}$ Motivated from the results of these studies Negishi and coworkers tried even less reactive organometallic species as coupling partners. The breakthrough came in 1977 when Negishi introduced organozinc compounds $\mathbf{4}$ as the nucleophilic coupling partners in palladiumcatalyzed cross coupling, and now it is popularly known as the Negishi reaction. ${ }^{1,10}$

Scheme 1.3

1.2.3. Suzuki coupling

In 1979 Suzuki and co-workers reported the use of organoboron compounds 7 as coupling partners with vinyl and aryl halides $\mathbf{8}$ in palladium catalyzed cross coupling reaction. ${ }^{11}$ Base activates organoboron reagents to boronate intermediates and facilitates the transfer of organic group from boron to palladium (transmetallation). A significant advancement came after the observation that aryl boronic acids can participate as coupling partners in the palladium catalyzed cross coupling reaction. Boron compounds are non-toxic, and the reaction can be performed under very mild conditions which have made the reaction popular in the pharmaceutical industry.

Scheme 1.4

1.2.4. Stille reaction

The palladium catalyzed coupling of organotin compounds (organostannanes) $\mathbf{1 0}$ with various organic electrophiles $\mathbf{1 1}$ is known as Stille coupling. ${ }^{12}$ The reaction takes place generally under mild conditions and is compatible with different electrophiles like halides, triflates, sulfonates or phosphates. However, the toxicity of organostannanes limits its application in pharmaceutical industry.

Scheme 1.5

1.2.5. Sonogashira reaction

Sonogashira coupling reaction is the palladium catalyzed coupling of vinyl or aryl halides $\mathbf{1 3}$ with terminal alkynes $\mathbf{1 4}$ in the presence of copper(I) co-catalyst and an amine base. ${ }^{13}$ This coupling reaction is widely used to synthesize conjugated enynes or aryl alkynes, which have applications in natural product chemistry, pharmaceuticals and material science. ${ }^{14}$

Scheme 1.6

1.2.6. Kumada coupling

Kumada cross coupling reaction is the reaction of an organohalide $\mathbf{1 6}$ with an organomagnesium compound (Grignard reagent) $\mathbf{1 7}$ to give the coupled product $\mathbf{1 8}$ using a palladium or nickel catalyst. ${ }^{15}$

Scheme 1.7

1.3. Palladium Catalyzed Allylation: Tsuji-Trost Reaction

The palladium mediated carbon-carbon bond forming reactions started with the pioneering work reported by Tsuji in $1965 .{ }^{16}$ A mixture of PdCl_{2} (cyclooctadiene) complex 19 and diethyl malonate $\mathbf{2 0}$ under basic conditions successfully generated the carbo-palladation products $\mathbf{2 4}$ and $\mathbf{2 5}$ at room temperature by intra- and intermolecular nucleophilic substitution. This discovery led to the development of the powerful palladium chemistry.

Scheme 1.8

Subsequently, Tsuji investigated the reaction of allylpalladium chloride dimer 26 with the sodium salt of diethyl malonate $\mathbf{2 0}$. The reaction afforded a mixture of mono- and di-allyl ethyl malonate 27 and 28. ${ }^{17}$ Construction of carbon-carbon bonds to generate secondary and tertiary centers is a powerful method in synthetic chemistry.

Scheme 1.9

The catalytic version of the allylation of nucleophiles via π-allylpalladium intermediates was reported independently by Hata et al. and Atkin et al. in 1970 using allylic alcohol as well as esters and allyl phenyl ethers as substrates. ${ }^{18,19}$ Trost later introduced asymmetric allylic
alkylation reaction with the aid of chiral phosphine ligands in $1973 .{ }^{20}$ Among the various chiral ligands tried, Trost observed that sparteine and (+)-ACMP [oanisylcyclohexylmethylphosphine] furnished higher optical yields compared to (+)-DIOP [2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane] and (-)-DMIP [dimenthylisopropylphosphine].

Scheme 1.10

Thus, the palladium catalyzed allylation of nucleophiles via π-allylpalladium complex $\mathbf{3 1}$ (figure 1.1) has been widely referred as Tsuji-Trost reaction.

31
Figure 1.1π-allylpalladium intermediate
Tsuji-Trost reaction has been well utized for architecting synthetically and medicinally valuable compounds by employing various carbon, nitrogen and oxygen based nucleophiles. Also, the reaction compatible with allylic functionality containing different leaving groups such as acetates, halides, carbonates, epoxides and phosphates. ${ }^{21}$ Introduction of phosphine ligands to the catalytic system of allylation reaction improved the reactivity of reactants and enabled numerous asymmetric allylic alkylation strategies. This modification greatly expands the utility of this reaction for many synthetic applications. A schematic representation of the Tsuji-Trost reaction is shown in Scheme 1.11.

Scheme 1.11

1.3.1. Mechanism and catalytic Cycle

The initial step of the Tsuji-Trost reaction involves the co-ordination of the $\operatorname{Pd}(0)$ complex to the allylic substrate $\mathbf{3 2}$ to generate a η^{2} - palladium complex \mathbf{A} (Scheme 1.12). Thereafter, via oxidative addition, a (η^{3}-allyl)Pd complex \mathbf{B} with the leaving group as a counter ion is formed. The oxidative addition of these types of complexes is also referred as ionization. The resulting (η^{3}-allyl)Pd complex reacts with the nucleophile, yielding a η^{2} complex \mathbf{C}. In the final step, the product is released after dissociation from the $\operatorname{Pd}(0)$ complex.

Scheme 1.12 Catalytic cycle for palladium catalyzed allylic alkylation

The ionization step occurs with inversion of configuration and the nucleophilic attack also proceeds with inversion when using soft, stabilized carbon nucleophiles (e.g. malonates) forming the final product with an overall retention of stereochemistry (Scheme 1.13). Hard unstabilized carbon nucleophiles (e.g. organometallic reagents) react with the η^{3}-allyl complex by another mechanism: first a transmetallation to Pd occurs and then transfer to an allylic carbon atom by reductive elimination. Thus the final product forms with an overall inversion of stereochemistry (Scheme 1.13). ${ }^{22}$ Heteroatom based nucleophiles such as amines 23 and alcohols ${ }^{24}$ are also feasible, and they usually react via inversion, as for the stabilized carbon nucleophiles. Carboxylates can react with both soft and hard nucleophiles, depending on the reaction conditions. ${ }^{25}$

Scheme 1.13 Stereochemical outcome with soft and hard nucleophiles

1.4. Palladium Catalyzed Allylic C-H Alkylation

In 1973, Trost and Fullerton observed that allylic alkylation of non-functionalized alkenes could proceed in the presence of stoichiometric amounts of palladium(II) reagent. ${ }^{26}$ The reaction of alkene 41 with PdCl_{2} in the presence of sodium chloride and sodium acetate in acetic acid furnished the dimeric palladium complex 42 in almost quantitative yield. Treatment of the palladium complex with the anion of methyl (methylsulfonyl)acetate afforded $\mathbf{4 4}$ as a single stereoisomer. Furthermore, the addition of ligand, triphenylphosphine increased the electrophilic character of the π-allylpalladium and facilitated the nucleophilic alkylation.

Scheme 1.14

After nearly half a century, significant progress has been made by White et al. in the area of allylic $\mathrm{C}-\mathrm{H}$ functionalization of acyclic alkenes by introducing a bissulfoxide $/ \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst $46 .{ }^{27}$ One of the difficulties in the oxidation of olefinic compound is the formation of Wacker type products. White et al. demonstrated a sulfoxide ligated $\mathrm{Pd}(\mathrm{II})$ salts which selectively promote C-H oxidation over Wacker oxidation and control the regioselectivity in C-H functionalization reactions. ${ }^{27}$ This system has proven general for allylic C-H functionalization, esterification, amination, alkylation, Heck addition and dehydrogenation of terminal olefins via a π-allylpalladium intermediate. ${ }^{28,29}$

Scheme 1.15

Shi et al. demonstrated the intra/intermolecular palladium(II) catalyzed allylic alkylation between allylic $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bond and methylenic $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bond via $\mathrm{C}-\mathrm{H}$ activation. ${ }^{30}$ In presence of 1,2-bis(benzylsulfinyl)ethane palladium acetate $\mathbf{4 6}$ catalyst and the oxidant benzoquinone, allylbenzene 49 was alkylated with benzoyl acetone 50 .

Scheme 1.16
Later on, Kaneda et al. ${ }^{31}$ and Stahl et al. ${ }^{32}$ independently developed palladium catalyzed acetoxylation of terminal alkenes under aerobic conditions in the absence of BQ. The ligand 4,5-diazafluorenone was found to be essential for the allylic C-H bond functionalization. 4,5Diazafluorenone facilitates C-O reductive elimination from π-allyl-Pd(II) intermediate and successfully replaced benzoquinone oxidant in the catalytic step.

Scheme 1.17

Recently hypervalent iodine $\mathbf{5 5}$ has been explored as an oxidant to achieve allylic $\mathrm{C}-\mathrm{H}$ oxygenation and amination. ${ }^{33,34,35}$ Szabo and co-workers proposed that the allylic C-H acetoxylation proceeds through a $\operatorname{Pd}(I I / I V)$ catalytic cycle and the (η^{3}-allyl)palladium(IV) complex is the key intermediate in iodonium salt mediated oxidation reactions. ${ }^{33}$

Scheme 1.18

Very recently, Trost and co-workers designed pyroglutamic acid derived phosphoramidite ligands for the enantioselective allylic C-H activation and demonstrated the synthesis of chiral 2,2,-dialkyl-1,2-diketones. ${ }^{36}$ The ligand is also compatible for the traditional palladium-catalyzed asymmetric allylic alkylation. Covell and White reported that phosphine ligands were unsuitable for allylic C-H activation under the oxidative conditions. ${ }^{37}$

Scheme 1.19

1.5. Nucleophilic Reactivity of π-Allyl Palladium Complex

Palladium-catalyzed nucleophilic allylic substitution is a well explored area in synthetic organic chemistry. In the traditional palladium catalyzed allylic alkylation reactions, the allyl moiety has an electrophilic character which reacts with nucleophilic substrates. Application of electrophilic reagents in allylic substitution requires umpolung electrophilic reactivity for the allylic moiety in η^{3}-allylpalladium complexes. Possibilities to extend the synthetic scope of the allyl-palladium chemistry to electrophilic reagents, such as aldehydes, imines and Michael acceptors have been the subject of great interest in mechanistic and in synthetic organic chemistry. The most significant challenge in these processes is to generate an allyl-palladium intermediate with a nucleophilic allyl moiety. There exist two major strategies to achieve this
umpolung reactivity of the allyl functionality. The first strategy involves the transformation of the electrophilic η^{3}-allylpalladium intermediate $\mathbf{3 1}$ into nucleophilic allyl-metal species by treatment with low valent metal reagents (such as $\mathrm{ZnEt}_{2}, \mathrm{BEt}_{3}$, InI , or SnCl_{2}). ${ }^{38}$ These highly reactive species subsequently react with electrophiles such as aldehydes $\mathbf{6 1}$ directly. The latter approach is based on the generation of bis- π-allylpalladium intermediates 64 from allylstannanes 63 followed by the nucleophilic attack of one of the allyl moieties with various types of electrophiles (Scheme 1.20).

The difference between these two strategies is that in the second process (eq. 2, Scheme 1.20) the electrophile reacts directly with the allyl moiety of the bis- π-allylpalladium complex, while in the former case (eq. 1, Scheme 1.20) the highly reactive allyl-metal species attack the electrophile without any assistance of palladium. This mechanistic difference leads to difference in reactivity and selectivity in catalytic applications. ${ }^{39}$

$$
\begin{aligned}
& \mathrm{LG}=\mathrm{Cl}, \mathrm{COOR} \\
& \mathrm{MX}_{\mathrm{n}}=\mathrm{ZnEt}_{2}, \mathrm{SnCl}_{2}, \mathrm{BEt}_{3}, \text { InI etc }
\end{aligned}
$$

Scheme 1.20

1.5.1. Bis- π-allyl palladium complexes

A wide range of palladium catalyzed allylation reactions of electrophiles involving bis- $\pi-$ allylpalladium intermediates $\mathbf{6 4}$ has been established. These complexes incorporate with two allyl moieties that can bind with different hapticity to palladium (Scheme 1.21). These π-allyl palladium complexes may interconvert by ligand coordination. Bis- π-allylpalladium complexes can easily be generated by the reaction of mono-allylpalladium complexes and allyl-metal species, such as Grignard reagents (Scheme 1.21). ${ }^{40}$
(a)

(b)

Scheme 1.21. (a) Bis- π-allylpalladium complexes with different hapticity; (b) Generation of bis- π-allyl palladium complexes from allyl-metal species and mono-allylpalladium complexes

Yamamoto and co-workers generated bis- π-allylpalladium intermediate 64 from allyltributylstannane 63 in the presence of catalytic amount of palladium reagent. The bis- $\pi-$ allylpalladium complex formed is readily attacked by electrophiles such as aldehydes or imines and delivers the corresponding homoallylic alcohols and homoallylic amines respectively. ${ }^{41}$ NMR spectroscopic analysis supports that the reaction is proceeding through the formation of intermediate $\left(\eta^{3} \text {-allyl }\right)_{2}$ palladium complex 64 . ${ }^{40}$

Scheme 1.22

Since phosphine ligand, such as PPh_{3}, is also present under applied conditions, it was assumed that 64 coordinates with a phosphine ligand and the actual substrate of the electrophilic attack is the η^{1}, η^{3} - allylpalladium complex 64' (Scheme 1.21). The nature of the allyl-metal interactions is fundamentally different in (η^{3}-allyl)palladium and (η^{1} allyl)palladium complexes. In (η^{3}-allyl)palladium complexes, the allyl system donates electrons to the PdL_{2} fragment, and therefore, π-acceptor ligands (L) such as phosphines, activate the allyl moiety towards the nucleophilic attack. On the other hand, in (η^{1} allyl)palladium complexes the palladium atom donates electrons to the allyl moiety.

Accordingly, the allyl moiety can be activated toward electrophilic reagents by the employment of electron donating ligands on palladium. ${ }^{42}$

Yamamoto and co-workers also described a catalytic asymmetric version of the allylation reaction of aldimines. ${ }^{43}$ In this process, the bis- π-allylpalladium intermediate 70 is formed from (1S)- $\beta-(-)$ pinene based mono-allylpalladium complex 69 (Scheme 1.23). Subsequently, this complex underwent electrophilic attack by aldimine 67 afforded homoallylamine 71 up to 91% enantiomeric excess. The best results were accomplished by using benzylimine derivatives. It was found that the chiral information from the η^{3}-allyl ligand is propagated in the electrophilic attack involving bis- π-allylpalladium intermediate 70. The sterically bulky π-allyl group acts as a nontransferable π-allyl ligand, whereas the other allylic moiety reacts with imines in an asymmetric fashion.

Scheme 1.23

1.5.2. Amphiphilicity of bis- π-allyl palladium complex: A double allylation strategy

Bis- π-allylpalladium complex 64 reacts with electrophiles such as aldehydes and imines to form the carbon-carbon bond. ${ }^{40}$ In this reaction, one of the two allyl groups of the bis- π allylpalladium complex reacts with electrophiles and the other stays on the palladium atom. In 1997, Yamamoto and co-workers introduced the catalytic amphiphilic reactivity of bis- π allylpalladium complex; it reacted with both nucleophilic and electrophilic carbons at once resulting the double allylated products. ${ }^{44}$

Figure 1.2. Amphiphilic reactivity of bis- π-allyl palladium complex

The bis-allylation of activated electrophilic olefin was achieved by reacting with in situ generated bis- π-allyl palladium complex from allyl chloride 74 and allyltributylstannane 63. The reaction of phenylethylidene malononitrile 75, allyltributylstannane 63 and allyl chloride 74 in THF was carried out in the presence of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ under an argon atmosphere at room temperature afforded the intercepted diallyl product 4,4-dicyano-5-phenyl-1,7-octadiene 77 in excellent yield (Scheme 1.24). Allylic bromide, iodide, acetate and alcohol were found to be less efficient to replace allyl chloride. Different substituted activated olefins underwent the double allylation and furnished the corresponding 1,7-octadienes in high yields. Among the electron withdrawing groups, one group must be -CN and the other group can be $-\mathrm{CN},-\mathrm{SO}_{2} \mathrm{Ph}$ or $-\mathrm{CO}_{2} \mathrm{Et} .^{44}$

Scheme 1.24
Mechanism of this reaction is particularly interesting. The first step of the reaction is the oxidative addition of the palladium(0) catalyst to allyl chloride to give a mono-allylpalladium complex 31 (Scheme 1.24). This complex undergoes transmetallation providing the bis- $\pi-$ allylpalladium intermediate $\mathbf{6 4}$ which is in equilibrium with η^{1}, η^{3} - allylpalladium complex 64 . Subsequently, the η^{1}-allyl moiety of $\mathbf{6 4}$ ' reacts with alkylidene malononitrile $\mathbf{7 5}$ generating a π allylpalladium complex and a malononitrile anion 76. This malononitrile derivative undergoes the second allylation by the nucleophilic attack with cationic π-allyl palladium counter ion to give compound 77. This peculiar behavior of bis- π-allylpalladium complexes involving an initial nucleophilic attack followed by an electrophilic attack is classified as amphiphilic (or ambiphilic) reactivity. Control of the regioselectivity became an important issue when substituted allyl chlorides and allyl stannanes were employed as reagents. An important feature is that the reaction with mono-alkyl-substituted precursors usually gives a poor regioselectivity. ${ }^{42}$

Bis-allylation reactions can also be performed by using the functionalized allyl chloride precursor together with hexamethylditin (Scheme 1.25). ${ }^{45}$ This catalytic transformation proceeds with very high regioselectivity. A particularly interesting mechanistic aspect of this reaction is that palladium catalyzes three processes in each catalytic cycle: (a) generation of the allylstannane precursor from allyl chloride and hexamethylditin, (b) the electrophilic attack and (c) the nucleophilic attack. ${ }^{45}$

Scheme 1.25

In 2001, Yamamoto and Bao reported an interesting palladium catalyzed allylative dearomatization reaction of benzylic chlorides 80 with allyltributyltin $\mathbf{6 3}$ through the formation of bis- π-allylpalladium intermediate. ${ }^{46}$ This process appears to involve the formation and isomerization of the η^{3}-allyl- η^{3}-benzylpalladium intermediate $\mathbf{8 1}$ and $\mathbf{8 1}$ ' which led to $\mathbf{8 2}$, where an allyl group is linked at para position relative to the exocyclic methylene group.

Scheme 1.26

Recently, Bao et al. extended the allylative de-aromatization strategy to naphthalene derivatives bearing allyl chloride units. ${ }^{47}$ The reaction is proceeding through the formation and isomerization of bis- π-allylpalladium intermediate $\mathbf{8 4}$ to $\mathbf{8 4}{ }^{\prime}$, which is then converted to ortho-allylated product $\mathbf{8 5}$ (Scheme 1.27). The de-aromatization of the benzene derivatives bearing allyl chloride was not feasible and afforded only the Stille cross-coupling product. ${ }^{47}$

Scheme 1.27

1.5.3. Bis-functionalization of activated olefins by related π-allyl palladium complexes

Yamamoto and co-workers conducted a detailed investigation on the reactivity of π-allyl palladium complexes with activated olefins. ${ }^{48}$ These reactions worked when the olefins contain at least one electron withdrawing groups such as nitrile, which indicate the special nature of those olefins in the palladium catalyzed processes. The basic principle of bis-functionalization reactions relates to the amphiphilic nature of π-allylpalladium complexes \mathbf{A} and \mathbf{B} (figure 1.3). These complexes react with both nucleophilic and electrophilic carbons of activated olefins at once to produce bis-functionalized products. Some of the palladium catalyzed bis-functionalization of activated olefins are described in the following sections.

$X, Y, Z=$ carbon or heteroatom
Figure 1.3 Amphiphilic π-allylpalladium complexes

1.5.3.1. Alkoxy-allylation

In 1998, Yamamoto and co-workers reported the β-alkoxy- α-allylation of activated olefins by the interceptive addition of allyl carbonate in the presence of a palladium catalyst. ${ }^{49}$ The reaction is proceeding through in situ generation of π-allylpalladium complex 88 by the oxidative addition of the allylic carbonate 87 to palladium(0) catalyst. A subsequent attack of alkoxide anion of intermediate $\mathbf{8 8}$ with olefin $\mathbf{8 6}$ gives the intermediate 89. Further, reductive elimination of palladium(0) from $\mathbf{8 9}$ delivers the product $\mathbf{9 0}$ (Scheme 1.28).

Scheme 1.28

When the decarboxylative alkoxy allylation reaction performed with tetra-substituted activated olefins 91, afforded a mixture of α-adduct 92, β-adduct 93 and α, γ-adduct 94 (Scheme 1.29). The alkoxy allylation adduct, which was the sole product in the previous case of trisubstituted olefins, was not observed.

Scheme 1.29
In 2007, the same research group had reported the alkoxy allylation of chromone by palladium catalyzed three component coupling with allyl acetate and alcohols. ${ }^{50}$ This method is useful for the diversity-oriented synthesis of chromones. However, these reactions are limited to 2-cyano and 2-formyl chromones.

Scheme 1.30

1.5.3.2. Cycloaddition reactions of $\boldsymbol{\pi}$-allyl palladium complex

Yamamoto and co-workers also utilized the π-allyl palladium chemistry for cycloaddition reactions. Palladium-catalyzed [3+2] cycloaddition of vinylic oxirane 99a and aziridine 99b with activated olefin 75 provided five-membered cyclic ether 102a and pyrrolidine derivative 102b, respectively. ${ }^{51,52}$ Oxidative addition of $\operatorname{Pd}(0)$ to $\mathbf{9 9}$ generates the π-allylpalladium complex 100. The Michael addition of the heteroatomic nucleophile in $\mathbf{1 0 0}$
to activated olefin $\mathbf{7 5}$ gives 101, which undergoes intramolecular nucleophilic attack at the π allylic carbon atom provided cyclized products 102.

Scheme 1.31

Recently Zhang et al. developed an efficient method for the diastereo- and enantioselective construction of vicinal all-carbon quaternary stereocenters through palladium catalyzed decarboxylative cycloaddition of vinyl ethylene carbonates $\mathbf{1 0 3}$ with activated Michael acceptors. ${ }^{53}$ In the presence of $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] \cdot \mathrm{CHCl}_{3}$ and a phosphoramidite ligand, the reaction furnished multi-functionalized tetrahydrofurans $\mathbf{1 0 4}$ bearing vicinal quaternary stereocenters in high yields with a high level of absolute and relative stereocontrol (Scheme 1.32).

Scheme 1.32

1.5.3.3. Aminoallylation

Palladium-catalyzed aminoallylation reaction of activated olefins has been realized by using phthalimide and oxazolidinone as amine sources. The three component aminoallylation reaction of the activated olefins with the phthalimide and allyl chloride 74 was achieved by $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] . \mathrm{CHCl}_{3} / \mathrm{P}\left(4-\mathrm{FC}_{6} \mathrm{H}_{4}\right)_{3} / \mathrm{Cs}_{2} \mathrm{CO}_{3}$ catalyst system at room temperature. ${ }^{52}$ Cyclic amines having an electron withdrawing group is essential for the reaction, since higher electron density on a nitrogen atom induces the direct allylation to the π-allylpalladium
complex, and the palladium(II) complex promotes the Michael addition of the nitrogen nucleophiles to the activated olefins. Authors also demonstrated the feasibility of aminoallylation with activated olefins derived from Meldrum's acid yielding the corresponding adducts in good to excellent yields. ${ }^{53}$

Scheme 1.33

Another strategy for amino-allylation is the decarboxylative addition of allyl carbamates $\mathbf{1 0 7}$ with activated olefins in the presence of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ catalyst in THF. ${ }^{54}$ Activated olefins containing two nitrile groups as well as 2-cyano enones underwent azaMichael addition-allylation with various allylic carbamates affording the corresponding β -amino- α-allylated products in high yields with high diastereoselectivities.

Scheme 1.34

1.5.3.4. Acetonation-allylation

Another significant development in the palladium catalyzed bis-functionalization of activated olefin was the use of allyl acetoacetate $\mathbf{1 0 9}$ as an amphiphilic reagent. ${ }^{55}$ In the presence of catalytic amounts of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in THF at room temperature, the reaction afforded β-acetonated- α-allylated products $\mathbf{1 1 3}$ in good yields. Furthermore, the three-component version of β-acetonation- α-allylation reaction was established by using α-halo ketone and allyltributylstannane as an acetonate and an allyl source respectively. It is proposed that the reaction is proceeding through oxa- π-allyl- π-allylpalladium intermediate $\mathbf{1 1 1}$.

Scheme 1.35

1.5.3.5. Alkyl-allylation

The palladium catalyzed three component β-alkyl- α-allylation reaction of activated olefins was reported by Yamamoto et al. in $2006 .{ }^{56}$ In the presence of $5 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, the reaction of activated olefins $\mathbf{8 6}$ with triethyl borane $\mathbf{1 1 4}$ and allyl acetate $\mathbf{9 7}$ in THF at $40^{\circ} \mathrm{C}$ yielded the corresponding alkyl-allylated products $\mathbf{1 1 5}$.

Scheme 1.36

1.5.3.6. Propargylallylation

An efficient method for the synthesis of 1,7-enyne derivative 117 via a palladiumcatalyzed three-component assembling of activated olefin 75, allylic chloride 74 and allenylstannane $\mathbf{1 1 6}$ has been described by Cheng et al. ${ }^{57}$ In this propargylallylation reaction, the η^{1}-allenyl η^{3}-allyl palladium intermediate which is generated in situ reacted with the activated olefins faster than the coupling of the allenyl and allyl groups in the intermediate.

Scheme 1.37

1.5.3.7. Cyanoallylation

Cyanoallylation was achieved by the three-component coupling reaction of the activated olefins $\mathbf{7 5}$, allylic chlorides $\mathbf{7 4}$ and trimethylsilyl cyanide $\mathbf{1 1 8} .{ }^{58}$ In the presence of $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] \cdot \mathrm{CHCl}_{3}$-dppf catalyst in THF, the reaction proceeded smoothly and afforded the cyanoallylation products $\mathbf{1 1 9}$ in good to excellent yields. The key factor in cyanoallylation strategy is the stability of the π-allylpalladium cyanide complex during the reaction pathway.

Scheme 1.38

1.5.3.8. Hydroallylation

Yamamoto and co-workers developed a palladium catalyzed β-hydro- α-allylation of activated olefins using tributylstannane and allyl acetate. ${ }^{59}$ Activated olefins reacted with allyl acetate $\mathbf{9 7}$ and tributylstannane $\mathbf{1 2 0}$ in the presence of catalytic amounts of a palladium reagent $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right.$ and dppp ligand] in THF at room temperature to give the corresponding hydroallylated products. The key step in the reaction mechanism is the transmetallation of η^{3} allylpalladium acetate with tributylstannane to produce π-allylpalladium hydride.

75

97
$\mathrm{Bu}_{3} \mathrm{SnH}$
120

121, 97%

Scheme 1.39

1.6. Conclusion and Present Work

The creation of carbon-carbon bonds through palladium catalysis is widely used in synthetic organic chemistry and has recently been highlighted by the 2010 Nobel Prize to Heck, Negishi and Suzuki for their ground-breaking discoveries of palladium catalyzed carbon-carbon bond formation. Another strategy which is exceptionally useful for carboncarbon and carbon-heteroatom bond formation is palladium catalyzed allylic alkylation
(Tsuji-Trost reaction). In Tsuji-Trost reaction, the allyl moiety has an electrophilic character and it reacts with various nucleophilic substrates. The discovery of catalytic amphiphilic bis-π-allyl palladium complex makes it possible to achieve the palladium catalyzed allylation of a range of electrophiles. The normally used Michael acceptor is arylidene malononitrile which is a suitable substrate for palladium catalyzed bis-functionalization reactions including bisallylation, alkoxy-allylation, acetonation-allylation, cyanoallylation, etc. under mild and neutral conditions.

The functionalization of activated alkenes by bis- π-allylpalladium complexes is well explored in organic synthesis, but their reactivity towards the functionalized conjugated systems remains unexplored. Encouraged by the results of our earlier investigation on the 1,8 -conjugate addition of cyclic cross-conjugated dicyanoheptafulvenewith bis- π-allyl palladium and relaed complexes, ${ }^{60}$ we envisioned the 1,4 -functionalization of 1,3 -diene bearing electron withdrawing ester groups would be feasible. Our investigations in this direction led to a simple and efficient method for the bis-functionalization of 1,3-butadiene derivatives by amphiphilic bis- π-allyl palladium and related complexes and the results are described in the second chapter. ${ }^{61}$

The third chapter outlines the results of our investigations on the palladium-catalyzed interceptive decarboxylative 1,4 -addition of allyl carbonates with squaric acid esters. ${ }^{62}$ Interceptive decarboxylative 1,2-addition of allyl carbonates with N -substituted isatins, acenaphthenequinone and diethylketomalonate, are also discussed. The ring closing metathesis of bis-allylaoxy-2-oxindole derivatives offers an efficient approach for the preparation of biologically relevant spirooxindole derivatives.

Cycloadditions of fulvenes offer versatile and powerful approaches to synthesize various natural products and biologically active molecules. ${ }^{63}$ Povarov reaction, which was developed in the 1960s by the Russian Scientist L. S. Povarov, one of the most powerful Lewis acid catalyzed [4+2] cycloaddition strategies for synthesizing tetrahydroquinoline derivatives. ${ }^{64}$ The tetrahydroquinoline ring system is a very common structural motif and is found in numerous biologically active natural products and pharmacologically relevant therapeutic agents. Our group has made significant achievements in the cycloaddition chemistry of pentafulvenes ${ }^{65}$ and Lewis acid catalyzed regioselective hydroheteroarylation of pentafulvenes with indole. ${ }^{66}$ Lewis acid catalyzed Povarov reaction of aromatic imines using pentafulvene as dienophile has a severe disadvantage because of the lower product yield and
substrate scope. ${ }^{67}$ Given this more demanding background, we undertook a detailed investigation on Povarov reaction of pentafulvenes with aryl imines generated from phenylglyoxal and various substituted anilines. Our effort in this line is discussed in the final chapter.

1.7. References

1. (a) Bäckvall, J.-E. Scientific Background on the Nobel Prize in Chemistry. 2010, 1-12. (b)

Negishi, E.-i.; Editor, Handbook of Organopalladium Chemistry for Organic Synthesis, Volume 2. John Wiley \& Sons, Inc. 2002; p 1616 pp.
2. Negishi, E.-i.; Coperet, C.; Ma, S.; Liou, S.-Y.; Liu, F. Chem. Rev. 1996, 96, 365-393.
3. Ronson, T. O.; Fairlamb, I. J. S. Appl. Organomet. Chem. 2014, 28, 315.
4. (a) Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518-5526. (b) Heck, R. F. J. Am. Chem. Soc. 1969, 91, 6707-6714.
5. Heck, R. F. J. Am. Chem. Soc. 1971, 93, 6896-6901.
6. Jutand, A. In The Mizoroki-Heck Reaction; Oestreich, M., Ed.; John Wiley and Sons: Hoboken, 2009; p 1.
7. Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jap. 1971, 44, 581.
8. Heck, R. F.; Nolley, J. P., Jr. J. Org. Chem. 1972, 37, 2320-2322.
9. Baba, S.; Negishi, E. J. Am. Chem. Soc. 1976, 98, 6729-6731.
10. Negishi, E.; King, A. O.; Okukado, N. J. Org. Chem. 1977, 42, 1821-1823.
11. Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1979, 866-867.
12. Stille, J. K. Angew. Chem. Int. Ed. 1986, 25, 508-524.
13. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467-4470.
14. Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874-922.
15. Tamao, K.; Kiso, Y.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 9268-9269.
16. Tsuji, J.; Takahashi, H J. Am. Chem. Soc. 1965, 87, 3275-3276.
17. Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 4387-4388.
18. Hata, G.; Takahashi, K.; Miyake, A. J. Chem. Soc. D. 1970, 1392-1393.
19. Atkins, K. E.; Walker, W. E.; Manyik, R. M. Tetrahedron Lett. 1970, 11, 3821-3824.
20. Trost, B. M.; Dietsch, T. J. Am. Chem. Soc. 1973, 95, 8200-8201.
21. Tsuji, J. Tetrahedron 1986, 42, 4361-4401.
22. Tsuji, J., Palladium Reagents and Catalysts: Innovations in Organic Synthesis. 1995, John Wiley and sons, New York; p 560
23. Frost, C. G.; Howart, J.; Williams, J. M. J. Tetrahedron: Asymmetry 1992, 3, 1089-1122.
24. Baeckvall, J. E.; Andersson, P. G. J. Am. Chem. Soc. 1992, 114, 6374-6381.
25. Baeckvall, J. E.; Nordberg, R. E. J. Am. Chem. Soc. 1981, 103, 4959-4960.
26. Trost, B. M.; Fullerton, T. J. J. Am. Chem. Soc. 1973, 95, 292-294.
27. Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126, 1346-1347.
28. White, M. C. Synlett. 2012, 23, 2746-2748.
29. Liu, G.; Yin, G.; Wu, L. Angew. Chem. Int. Ed. 2008, 47, 4733-4736.
30. Lin, S.; Song, C.-X.; Cai, G.-X.; Wang, W.-H.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 12901-12903.
31. Mitsudome, T.; Umetani, T.; Nosaka, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Angew. Chem. Int. Ed. 2006, 45, 481-485.
32. Campbell, A. N.; White, P. B.; Guzei, I. A.; Stahl, S. S. J. Am. Chem. Soc. 2010, 132, 15116-15119.
33. Pilarski, L. T.; Selander, N.; Böse, D.; Szabó, K. J. Org. Lett. 2009, 11, 5518-5521.
34. Yin, G.; Wu, Y.; Liu, G. J. Am. Chem. Soc. 2010, 132, 11978-11987.
35. Check, C. T.; Henderson, W. H.; Wray, B. C.; Vanden Eynden, M. J.; Stambuli, J. P. J. Am. Chem. Soc. 2011, 133, 18503-18505.
36. Trost, B. M.; Donckele, E. J.; Thaisrivongs, D. A.; Osipov, M.; Masters, J. T. J. Am. Chem. Soc. 2015, 137, 2776-2784.
37. Covell, D. J.; White, M. C. Angew. Chem. Int. Ed. 2008, 47, 6448-6451.
38. (a) Marshall, J. A. Chem. Rev. 2000, 100, 3163-3186. (b) Tamaru, Y.; Tanaka, A.; Yasui, K.; Goto, S.; Tanaka, S. Angew. Chem. Int. Ed. 1995, 34, 787-789.
39. Wallner, O. A.; Szabó, K. J. J. Org. Chem. 2003, 68, 2934-2943.
40. Nakamura, H.; Iwama, H.; Yamamoto, Y. J. Am. Chem. Soc. 1996, 118, 6641-6647.
41. Nakamura, H.; Asao, N.; Yamamoto, Y. J. Chem. Soc., Chem. Commun. 1995, 12731274.
42. Szabó, K. J. Chem.- A Eur. J. 2004, 10, 5268-5275.
43. (a) Nakamura, H.; Nakamura, K.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 42424243. (b) Fernandes, R. A.; Stimac, A.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 14133-14139.
44. Nakamura, H.; Shim, J.-G.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 8113-8114.
45. Wallner, O. A.; Szabó, K. J. J. Org. Chem. 2003, 68, 2934-2943.
46. Bao, M.; Nakamura, H.; Yamamoto, Y. J. Am. Chem. Soc. 2001, 123, 759-760.
47. Lu, S.; Xu, Z.; Bao, M.; Yamamoto, Y. Angew. Chem. Int. Ed. 2008, 47, 4366-4369.
48. Patil, N. T.; Yamamoto, Y. Synlett. 2007, 1994-2005.
49. Nakamura, H.; Sekido, M.; Ito, M.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 68386839.
50. Patil, N. T.; Huo, Z.; Yamamoto, Y. Tetrahedron 2007, 63, 5954-5961.
51. Shim, J.-G.; Yamamoto, Y. J. Org. Chem. 1998, 63, 3067-3071.
52. Aoyagi, K.; Nakamura, H.; Yamamoto, Y. J. Org. Chem. 2002, 67, 5977-5980.
53. Khan, A.; Yang, L.; Xu, J.; Jin, L. Y.; Zhang, Y. J. Angew. Chem. Int. Ed. 2014, 53, 11257-11260.
54. Patil, N. T.; Huo, Z.; Yamamoto, Y. J. Org. Chem 2006, 71, 6991-6995.
55. Shim, J.-G.; Nakamura, H.; Yamamoto, Y. J. Org. Chem 1998, 63, 8470-8474.
56. Patil, N. T.; Huo, Z.; Yamamoto, Y. J. Org. Chem. 2006, 71, 2503-2506.
57. (a) Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. Org. Lett. 2003, 5, 881-884.;
(b) Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. J. Org. Chem 2004, 69, 4053-4062.
58. Nakamura, H.; Shibata, H.; Yamamoto, Y. Tetrahedron Lett. 2000, 41, 2911-2914
59. Shim, J.-G.; Park, J. C.; Cho, C. S.; Shim, S. C.; Yamamoto, Y. Chem. Commun. 2002, 852-853.
60. George, S. C.; Thulasi, S.; Anas, S.; Radhakrishnan, K. V.; Yamamoto, Y. Org. Lett. 2011, 13, 4984-4987.
61. Baiju, T. V.; Vijayan, A.; Joseph, N.; Preethalayam, P.; Radhakrishnan, K. V.; Suresh, E.; Yamamoto, Y. Synlett 2014, 25, 359-364.
62. Baiju, T. V.; Joseph, N.; Ajit, J.; Prakash, P.; Radhakrishnan, K. V.; Varughese, S.; Yamamoto, Y. Synlett 2014, 25, 1246-1252.
63. (a) Harre, M.; Raddatz, P.; Walenta, R.; Winterfeldt, E. Angew. Chem., Int. Ed. 1982, 21, 480-492. (b) Gleiter, R.; Borzyk, O. Angew. Chem., Int. Ed. 1995, 34, 1001-1003.
64. (a) Povarov, L. S.; Mikhailov, B. M. Izv. Akad. Nauk SSSR, Ser. Khim.1963, 953. (b) Povarov, L. S.; Grigos, V. I.; Mikhailov, B. M. Izv. Akad. Nauk SSSR, Ser. Khim.1963, 2039.(c) Fochi, M.; Caruana, L.; Bernardi, L. Synthesis 2014, 46, 135-157 (d) Povarov, L. S. Russ. Chem. Rev. 1967, 36, 656.
65. (a) Radhakrishnan, K. V.; Syam Krishnan, K.; Bhadbhade, M. M.; Bhosekar, G. V. Tetrahedron Lett. 2005, 46, 4785-4788.(b) Krishnan, K. S.; Sajisha, V. S.; Anas, S.; Suresh, C. H.; Bhadbhade, M. M.; Bhosekar, G. V.; Radhakrishnan, K. V. Tetrahedron 2006, 62, 5952-5961.(c) Krishnan, K. S.; Kuthanappillil, J. M.; John, J.; Suresh, C. H.; Suresh, E.; Radhakrishnan, K. V. Synthesis 2008, 2134-2140 (d) Kuthanapillil, J. M.; Thulasi, S.; Rajan, R.; Krishnan, K. S.; Suresh, E.; Radhakrishnan, K. V. Tetrahedron 2011, 67, 1272-1280.
66. Chand, S. S.; Gopalan, G.; Santhini, P. V.; Preethanuj, P.; John, J.; Harakat, D.; Jaroschik, F.; Radhakrishnan, K. V. Org. Lett. 2016, 18, 964-967.
67. Stepakova, A. V.; Boitsovb, V. M.; Larinaa, A. G.; Molchanov, A. P. Russ. J. Org. Chem. 2014, 50, 400-404.

CHAPTER 2

Bis-functionalization of 1,3-Dienes via 1,4-Conjugate Addition of Amphiphilic Bis- π-Allyl and Related Palladium Intermediates

2.1. Introduction

Functionalization of 1,3-dienes in regio- and stereoselective fashion has found widespread applications in organic synthesis. There exist different strategies for 1,4functionalization of 1,3 -dienes which include classical cycloaddition reactions involving singlet oxygen, ${ }^{1}$ hetero dienophiles such as nitroso compounds ${ }^{2}$ and azodicarboxylates. ${ }^{3}$ The transition metal catalyzed transformations of 1,3-dienes are useful reactions in organic synthesis. In contrast to cycloaddition reaction of 1,3-dienes with dienophiles, transition metal catalyzed regioselective difunctionalization process yields molecular frameworks such as skipped polyenes with high regio- and stereoselectivity. ${ }^{4,5}$ Synthesis of stereochemically defined skipped polyenes still remains as a challenge in modern synthetic organic chemistry. ${ }^{4}$ Some of the biologically relevant terpenoid natural products with polyene skeleton are shown in figure 2.1. ${ }^{5}$

Figure 2.1. Natural products containing polyenes

Transition metal catalyzed 1,2- and 1,4-functionalization of 1,3-dienes have been investigated by different research groups. A brief discussion on the transition metal catalyzed regioselective functionalization of 1,3-dienes will be presented in the following sections. In this chapter, we wish to describe bis-functionalization of 1,3-butadiene derivatives via 1,4conjugate addition of amphiphilic bis- π-allyl and related palladium intermediates which resulted in functionalized triene and diene derivatives.

2.1.1. Bis-functionalization of $\mathbf{1 , 3}$-dienes under transition metal catalysis

2.1.1.1. Hydrovinylation of $\mathbf{1 , 3}$-dienes

The transition metal catalyzed co-dimerization of 1,3-dienes with alkenes is known as hydrovinylation. The hydrovinylation reaction was first reported by Alderson et al. in 1965. ${ }^{6}$ They employed rhodium and ruthenium salts under high ethylene pressure with a variety of substrates. Subsequently, other metals such as iron, cobalt, nickel and palladium have been used. ${ }^{7}$ Styrene has been used as a standard substrate in many studies especially for asymmetric variants of the reaction. Hydrovinylation of 1,3-diene with ethene using cobalt catalyst was reported by Sharma and Rajan Babu in 2010 (Scheme 2.1). ${ }^{8}$ By conducting the hydrovinylation reaction using $(E)-1,3$ - nonadiene 1 as the substrate at $-10{ }^{\circ} \mathrm{C}$, a mixture of $(Z)-1,4-$ and (E)-1,4-hydrovinylation products were obtained in 93% and 7% yields respectively. The other regioselective product distribution was found to be strongly dependent on the nature of the ligand and temperature.

Scheme 2.1

Further, they have extended the cobalt catalyzed 1,4-hydrovinylation reaction to vinyl cycloalkenes $\mathbf{4}$ using ethylene as a source of alkene. ${ }^{9}$ In addition to the 1,4-conjugate addition product 5, a slight amount of 1,2-hydrovinylation product $\mathbf{6}$ was also observed (Scheme 2.2).

Scheme 2.2
Hilt et al. also contributed to the cobalt catalyzed 1,4-hydrovinylation reaction of 1,3butadienes with alkenes. ${ }^{10}$ Linear and branched 1,4-dienes were obtained under mild reaction conditions with good regioselectivity and in good to excellent yields (Scheme 2.3).

Scheme 2.3

Recently, Sigman and co-workers reported palladium catalyzed intermolecular 1,2hydrovinylation of 1,3-dienes. ${ }^{11}$ The reaction of 1,3-dienes $\mathbf{1 0}$ and vinyl triflates $\mathbf{1 1}$ in the presence of sodium formate as the reductant under mild reaction conditions provided highly functionalized tri- and tetrasubstituted alkenes.

Scheme 2.4

2.1.1.2. 1,4-Diboration reaction in 1,3-dienes

The dimetalation of unsaturated substrates is an effective tool for enriching the functional and stereochemical complexity of simple hydrocarbon substrates. Diboration reaction of dienes provides reactive intermediates which can be transformed to synthetically useful organic compounds. Morken et al. reported the enantioselective 1,4-diboration of trans

1,3-dienes using $\left[\mathrm{Pt}(\mathrm{dba})_{3}\right]$ and a chiral phosphonite ligand. ${ }^{12}$ This method provides a synthetic route for the preparation of chiral 2-buten-1,4-diols. Extension of the enantioselective 1,4 -diboration reaction to cyclic dienes was achieved by using a taddolderived phosphonite ligand. ${ }^{13}$

Scheme 2.5

Further, regio-and enantioselective catalytic 1,2-diboration of 1,3-dienes was realized by replacing the trans diene with cis diene substrate. ${ }^{14}$

Scheme 2.6

2.1.1.3. Palladium catalyzed functionalization of dienes

Conjugated dienes coordinated to a transition metal can readily be transformed into a π allyl metal complex by functionalization at the $4^{\text {th }}$-position. This strategy makes dienes as useful substrates for catalytic transformations since the π-allyl complex can undergo further transformations. In many cases, palladium-catalyzed reactions of conjugated dienes are proceed via π-allylpalladium intermediate and which leads to 1,4 - or 1,2 - functionalization of the diene. ${ }^{15}$ Bäckvall et al. extensively studied the palladium catalyzed 1,4-functionalizations of conjugated dienes which mainly involves the regioselective nucleophilic additions to π allylpalladium intermediates. One of the well-studied 1,4-functionalization of diene is 1,4diacetoxylation reaction. ${ }^{16}$ The 1,4 -addition to the diene is highly regio- and stereoselective, and the ligand plays a major role in controlling the stereoselectivity. The chloride and acetate ligands (as LiC1 and LiOAc) significantly influences the stereochemical outcome of the reaction. ${ }^{16}$

Palladium-catalyzed oxidation of 1,3-cyclohexadiene in acetic acid in the absence of LiCl and LiOAc gave a 1:1 mixture of cis- and trans- 1,4-diacetoxy-2-cyclohexene. ${ }^{16}$ If the oxidation was performed in the presence of lithium acetate, the reaction yielded transdiacetoxylated cyclohexene stereoselectively. Oxidation of 1,3-cyclohexadiene in the presence of lithium acetate and catalytic amounts of lithium chloride gave exclusively cisdiacetoxylated cyclohexene 21. ${ }^{16}$ In the presence of chloride ligands, mainly trans attack on the π-allylpalladium complex takes place whereas in the absence of chloride ligands both cisand trans attack can occur depending on the acetate concentration. The explanation for the dual stereo control in the presence of catalytic amounts of LiCl and the in absence of LiCl is that chloride blocks the coordination of acetate to palladium in the catalytic intermediate, thus suppressing the cis migration of acetate in the presence of LiCl . The 1,4 -diacetoxylation is quite general for all cyclic dienes such as 1,3-cycloheptadiene and 1,3-cyclopentadiene. ${ }^{16}$

Scheme 2.7

If the palladium catalyzed oxidation of 1,3-dienes in acetic acid is performed at a slightly higher chloride concentration, the product pattern changes and 1,4-chloroacetate $\mathbf{2 3}$ becomes the sole product. This reaction is highly stereospecific which proceeds with overall cis-stereochemistry with cyclic dienes. ${ }^{16}$

Scheme 2.8

The intramolecular 1,4-oxidation of conjugated dienes offered efficient pathways to synthesize fused carbocyclic and heterocyclic rings in a stereocontrolled manner. ${ }^{17}$ The intramolecular oxyacetoxylation and oxychlorination worked well for six- and seven-
membered dienes containing amide and alcohol nucleophilic moiety to afford the corresponding heterocyclic products. Bäckvall et al. performed the reaction under three different reaction conditions: (a) without adding LiCl , (b) by adding a catalytic amount of LiCl and (c) by adding two equiv. of LiCl . These slight variations of reaction conditions had a dramatic effect on the outcome of the reaction and furnished different product with complete product control. ${ }^{18,19}$

Scheme 2.9

Palladium-catalyzed regioselective 1,2-diarylation of conjugated terminal 1,3-dienes using organostannanes was reported by Sigman and co-workers. ${ }^{20}$ In this reaction, two aryl groups originating from an arylstannane 29 are added across a 1,3-diene 28 to yield 1,2diarylation product $\mathbf{3 0}$. Mechanistically, this reaction is proposed to be initiated by transmetalation to form Pd-aryl species \mathbf{A} followed by Heck insertion of a conjugated diene yielding B which is then stabilized as a π-allyl intermediate \mathbf{C} (Scheme 2.10). Subsequent cross-coupling of the other equivalent of an aryl stannane results in the product formation. The introduction of two identical aryl groups from the arylstannane and reasonably complex reaction conditions limits the synthetic utility of this 1,2-alkene difunctionalization reaction.

Scheme 2.10

In 2010, the same research group developed 1,2-hydroarylation of 1,3-dienes by generating π-allyl palladium intermediates directly using a coupled aerobic alcohol oxidation to access a palladium hydride. ${ }^{21}$ Aryl boronic ester $\mathbf{3 2}$ couples with the π-allyl intermediate and furnishes the regioselective 1,2-addition product 33 .

Scheme 2.11

Sigman and co-workers further developed the 1,2-difunctionalization of terminal 1,3dienes by a three-component coupling of vinyl triflates and boronic acids. ${ }^{22}$ The reaction proceeds through the initial formation of π-allylpalladium intermediate from Heck insertion to diene, which is faster than the probable Suzuki cross coupling. By utilizing the same strategy, they could achieve the 1,4 -addition across the commodity chemical 1,3-butadiene (Scheme 2.12). ${ }^{4}$ Through a palladium $\sigma \rightarrow \pi \rightarrow \sigma$ allyl isomerization, two new carbon-carbon bonds are formed with high regioselectivity and trans stereoselectivity. Very recently, they have reported a palladium catalyzed 1,4-difunctionalization of isoprene by utilizing pyrox ligands and established a synthetic route for the preparation of skipped polyenes. ${ }^{5}$

Scheme 2.12

2.1.2. Palladium catalyzed allylation reactions in conjugated system

The $\operatorname{Pd}(0)$ catalyzed allylic substitution reaction has been studied in cyclic crossconjugated systems such as pentafulvene. In 1991, Nystrom and co-workers reported a
regioselective allylation reaction in pentafulvene. Vinyl cyclopentadienyl anion 40 generated by the reaction of dimethyl fulvene 39 with LDA underwent palladium catalyzed allylation at the exocyclic position in presence allyl chloride, allyl acetate or allyl carbonate. ${ }^{23}$

Scheme 2.13

Later, Sato and co-workers succeeded in developing a $\operatorname{Pd}(0)$-catalyzed deconjugative allylation of functionalized diene derivatives like alkenylidenemalonates (Scheme 2.14). ${ }^{24}$ This finding provided a useful method for synthesizing conjugated diene 48 that contains a 1,3-diene unit attached to a quaternary carbon center.

Scheme 2.14

Our group also investigated the reactivity of cyclic conjugated heptafulvene system towards palladium catalyzed allylation. We have disclosed the 1,8 -conjugate addition of bis-π-allyl palladium complex to dicyanoheptafulvenes which furnished cycloheptatriene derivatives (Scheme 2.15). ${ }^{25}$ We explored the synthetic potential of this methodology towards the synthesis of heptalene by the ring closing metathesis of $\mathbf{5 1}$ using Grubbs' first generation catalyst. 1,8-Alkoxy allylation of dicyanoheptafulvenes 49 was also achieved by conducting the reaction with diallyl carbonate 52 .

Scheme 2.15

In 2004, Cheng and co-workers conducted a detailed study on the palladium catalyzed bisfunctionalization reaction of alkene as well as conjugated diene with allyl chloride $\mathbf{4 2}$ and allenyl stannane 56. ${ }^{26}$ This propargyl allylation reaction proceeds with high regio- and chemoselectively affording 1,2 addition product 57 in the case of conjugated diene (Scheme 2.16).

Scheme 2.16

Ranu et al. demonstrated the palladium nanoparticle catalyzed vicinal double allylation of activated alkenes by reacting with allyl acetates and allyl stannanes (Scheme 2.17). ${ }^{27}$ 1,3Butadiene 55 derived from cinnamaldehyde and malononitrile was reacted with bis- π-allyl palladium complex generated in situ from allyl acetates and allyl stannanes afforded regioselective 1,2-diallylated product 61 in good yield.

Scheme 2.17

2.2. Statement of the Problem

The functionalization of activated alkenes by bis- π-allylpalladium complexes is well explored in organic synthesis, ${ }^{28}$ but their reactivity towards the functionalized conjugated system remains unexplored. Investigation from our laboratory has exposed the reactivity of bis- π-allyl palladium and related complexes with isatylidenes ${ }^{29}$ and dicyanoheptafulvenes. ${ }^{25}$ It is evident from the literature background presented above that, the reactions of functionalized 1,3-diene $\mathbf{5 5}$ derived from cinnamaldehyde and malononitrile underwent regioselective 1,2 -addition with bis- π-allylpalladium and related complexes. Prompted by this, we reasoned that 1,4-difunctionalization of 1,3-diene could be achieve by installing an electron withdrawing group. A detailed investigation of the 1,4-functionalization of 1,3dienes by utilizing bis- π-allylpalladium and related complexes forms the central theme of the present chapter.

2.3. Results and Discussion

2.3.1. Bis-functionalization of 1,3 -dienes via 1,4-conjugate addition of bis- π-allyl palladium complexes

The 1,3-butadiene derivatives, starting material for our investigation was prepared from dicyanostyrene 62 through a pyridine catalyzed reaction with dimethyl acetylene dicarboxylate (DMAD) 63. ${ }^{30}$ Different substituted functionalized dienes (64a-h) were prepared from various substituted arylidene malononitriles $\mathbf{6 2}$ using this strategy.

Scheme 2.18

We commenced our investigations with the reaction of 1,3-butadiene derivative 64a with allyl chloride $\mathbf{4 2}$ and allyltributylstannane 50 in the presence of $5 \mathrm{~mol} \% \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ in THF at room temperature. The reaction afforded 1,4-bis-allylated product 65a in 78% yield.

Scheme 2.19

The structure of the compound 65a was characterized by various spectroscopic analysis. In the IR spectrum, the peak at $2225 \mathrm{~cm}^{-1}$ was assigned to the cyano group, and a sharp signal at $1730 \mathrm{~cm}^{-1}$ was attributed to the ester carbonyl group. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 5 a}$ (Figure 2.2) provided clear indication of the formation of the bis-allylated product. In ${ }^{1} \mathrm{H}$ NMR spectrum, protons at C-2 and C-9 appeared as multiplets in the region δ 5.94-5.86 and $5.56-5.47 \mathrm{ppm}$ respectively. The $\mathrm{sp}^{2}-\mathrm{CH}_{2}$ protons at $\mathrm{C}-1$ and $\mathrm{C}-10$ observed as two multiplets in the region $\delta 5.42-5.35$ and 5.05-4.98 ppm respectively. The $\mathrm{sp}^{3} \mathrm{CH}_{2}$ protons at $\mathrm{C}-3$ resonated as multiplet in the region $\delta 2.87-2.75 \mathrm{ppm}$ and protons at $\mathrm{C}-8$ appeared as two separate multiplets in the region $\delta 2.63-2.58$ and $2.27-2.21 \mathrm{ppm}$. The proton attached to C-7 resonated as a multiplet in the region $\delta 3.18-3.15 \mathrm{ppm}$ and two carbomethoxy protons discernible as singlets at $\delta 3.89$ and 3.72 ppm , while the methoxy group attached to the aromatic ring observed as a singlet at $\delta 3.85 \mathrm{ppm}$.

Figure 2.2. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 5 a}$
In ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 2.3), the cyanide carbons resonated at $\delta 113.74$ and 113.71 ppm . The peaks visible at 42.7 and 33.8 ppm correspond to C-3 and C-8 carbons respectively. The quaternary carbons $\mathrm{C}-5$ and C-6 resonated at 137.4 and 126.0 ppm respectively. The sp^{2} carbons $\mathrm{C}-2$ and C-9 observed at $\delta 114.5$ and 114.3 ppm and sp^{2} carbons C-1 and C-10 resonated at $\delta 123.5$ and 118.1 ppm . Characteristic peaks of two carbomethoxy carbonyl groups observed at $\delta 171.0$ and 166.0 ppm . Further evidence for the structure was obtained from the high-resolution mass spectral analysis which showed the molecular ion peak at $m / z 431.15646[\mathrm{M}+\mathrm{Na}]^{+}$.

Figure 2.3. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 5 a}$

The reaction was then optimized for the best conditions, and the efforts are summarized in Table 2.1. Among different catalysts screened, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ gave the product in 78% yield. THF was found to be the best solvent for the transformation. Based on the studies, the optimal condition for the transformation was found to be a combination of 1.0 equiv. diene, 2.0 equiv. allyl chloride, 2.0 equiv. allyltributylstannane and $5 \mathrm{~mol} \% \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ in 3 mL THF at room temperature.

Table 2.1. Reaction optimization studies

		catalyst, ligand solvent, temperature, 8 h		
Entry	Catalyst	Ligand	Solvent	Yield (\%) ${ }^{\text {a }}$
1	$\mathrm{PdCl}_{2}\left(\mathrm{PPH}_{3}\right)_{2}$	-	THF	78
2	PdCl_{2}	PPh_{3}	THF	44
3	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	PPh_{3}	THF	20
4	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	PPh_{3}	THF	69
5	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	THF	30
6	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	-	DCM	39
7	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	-	Toluene	No reaction
8	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	-	DMF	45
9	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	-	$\mathrm{CH}_{3} \mathrm{CN}$	77
10	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	-	THF	$74^{\text {b }}$

${ }^{\text {a }}$ Conditions: 1,3 -diene 64a (1.0 equiv), allyl chloride 42 (2.0 equiv), allyl tributylstannane 50 (2.0 equiv), catalyst ($5 \mathrm{~mol} \%$), ligand ($10 \mathrm{~mol} \%$), solvent $(3 \mathrm{~mL}), \mathrm{rt}, 8 \mathrm{~h} .{ }^{\mathrm{b}} \mathrm{THF}$ at $60^{\circ} \mathrm{C}$.

The substrate scope for the bis-allylation strategy was investigated by utilizing various functionalized 1,3-butadienes. A variety of 1,3-dienes derived from substituted benzylidene malononitriles ($\mathbf{6 4 a - d}, 64 \mathrm{~g}$ and $\mathbf{6 4 h}$) and heteroaryl malononitriles ($\mathbf{6 4 e}$ and 64f) showed moderate to good compatibility. The use of highly substituted 1,3-butadienes makes this method potentially valuable towards the synthesis of functionalized triene derivatives, and the results are summarized in Table 2.2.

Table 2.2. Palladium-catalyzed bis-allylation of various 1,3-butadiene derivatives

65b, 69\%

65d, 49\%

65e, 61\%

65f, 71\%

65g, 30\%

Reaction conditions: 1,3-diene 64 (1.0 equiv), allyl chloride 42 (2.0 equiv), allyl tributylstannane
50 (2.0 equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5 \mathrm{~mol} \%)$, THF (3 mL), rt, 8 h .

2.3.1.1. Mechanistic considerations

A plausible mechanistic pathway for bis-allylation is illustrated in Scheme 2.20. The initial event involves the oxidative addition of the allyl chloride $\mathbf{4 2}$ to palladium(0) species to produce the η^{3}-allylpalladium intermediate \mathbf{A}. The intermediate \mathbf{A} undergo ligand exchange with allyltributylstannane $\mathbf{5 0}$ to generate bis- η^{3}-allylpalladium intermediate \mathbf{B}, which subsequently undergo nucleophilic 1,4-addition with diene $\mathbf{6 4}$ to form intermediate \mathbf{C}. Further, the reductive elimination of palladium from \mathbf{C} gives the 1,4-bis-allylated product $\mathbf{6 5}$.

Scheme 2.20

2.3.2. Palladium catalyzed allylation-oxyallylation reaction of 1,3 -dienes using diallyl carbonate

To demonstrate the further application of the developed method, we evaluated the reactivity of other amphiphilic bis- π-allyl palladium complexes. With this idea in mind, we initiated our investigations with allylation-oxyallylation reaction of dimethyl 2-(2,2-dicyano-1-(4-methoxyphenyl)vinyl)maleate 64a and diallyl carbonate 52 in the presence of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as the catalyst and THF as the solvent (Scheme 2.21). The reaction provided the desired 1,4-allylated-oxyallylated product 66a in 71\% yield.

Scheme 2.21

The structure of the allyl-oxyallylated product 66a was assigned on the basis of spectral data. The compound showed characteristic -CN stretching at $2247 \mathrm{~cm}^{-1}$ and carbonyl stretching at $1727 \mathrm{~cm}^{-1}$ in the IR spectrum. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 6 a}$ (Figure 2.4), protons at $\mathrm{C}-2$ and $\mathrm{C}-9$ appeared as multiplets in the region $\delta 5.93-5.82$ and 5.76-5.63 ppm respectively. The sp^{2} methylene protons at $\mathrm{C}-1$ and $\mathrm{C}-10$ observed as two
separate multiplets in the region $\delta 5.43-5.34$ and $5.10-5.04 \mathrm{ppm}$ respectively. The proton at C-7 appeared as a singlet at $\delta 4.28 \mathrm{ppm}$. Protons at C-8 observed as a multiplet at $\delta 3.90 \mathrm{ppm}$. The protons at C-3 were visible as two separate multiplets at $\delta 2.99-2.92$ and 2.77-2.74 ppm. The methoxy protons were discernible at $\delta 3.87,3.83$ and 3.78 ppm .

Figure 2.4. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 6 a}$
In ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 2.5), the nitrile carbons were observed at $\delta 113.48$ and 113.45 ppm . The peak visible at $\delta 42.6$ corresponds to C-3 carbon. The quaternary carbons C5 and C-6 resonated at $\delta 138.2$ and 135.9 ppm respectively. The sp^{2} carbons C-2 and C-9 observed at $\delta 132.1$ and 133.0 ppm and sp^{2} carbons $\mathrm{C}-1$ and $\mathrm{C}-10$ resonated at $\delta 123.6$ and 118.6 ppm . The sp ${ }^{3} \mathrm{C}-8$ carbon resonated at $\delta 70.9 \mathrm{ppm}$. The carbon at $\mathrm{C}-7$ resonated at δ 76.4 ppm and the characteristic peaks of two carbomethoxy carbonyl groups observed at δ 168.9 and 165.2 ppm .

Figure 2.5. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 6 a}$

Further evidence for the structure was obtained from the mass spectral analysis which showed molecular ion peak at $m / z 447.15103,[\mathrm{M}+\mathrm{Na}]^{+}$. Finally, the proposed structure of the product (66b) formed from the diene derived from benzylidene malononitrile (64b) was confirmed unambiguously by single crystal X-ray analysis (Figure 2.6). ${ }^{31}$

Figure 2.6. ORTEP diagram of compound 66b

To develop conditions suitable for this transformation, we surveyed a variety of palladium catalysts and solvents, and the optimization results are summarized in Table 2.3. Among various palladium catalysts tested, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PdCl}_{2}$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ were totally
ineffective for the reaction and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was found to be the best catalyst. THF was found to be the best solvent for the transformation. After screening various catalysts and solvents, the optimal conditions for this reaction are as follows: 1:2 mixture of 1,3-diene/diallyl carbonate with $5 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in 3 mL THF at room temperature for 8 h (Entry 1, Table 2. 3).

Table 2.3. Reaction optimization studies

Entry	Catalyst	Ligand	Solvent	Yield (\%)
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	THF	71
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PPh_{3}	THF	No reaction
3	PdCl_{2}	PPh_{3}	THF	No reaction
4	$[\mathrm{Pd}(\mathrm{alyl}) \mathrm{Cl}]_{2}$	PPh_{3}	THF	9
5	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	PPh_{3}	THF	30
6	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	PPh_{3}	THF	No reaction
7	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}$	PPh_{3}	THF	7
8	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	PPh_{3}	THF	67
9	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	DCM	8
10	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	Toluene	28
11	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	$\mathrm{CH}_{3} \mathrm{CN}$	11
12	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	DMF	22

Reaction conditions: 1,3-diene 64a (1.0 equiv), diallyl carbonate 52 (2.0 equiv), catalyst ($5 \mathrm{~mol} \%$), ligand ($10 \mathrm{~mol} \%$), solvent (3 mL), rt, 8 h

A detailed study was performed under the optimized condition to expand the scope of 1,4-allylation-oxyallylation strategy to other 1,3-dienes ($\mathbf{6 4 b}-\mathbf{f}$), which proved that a wide range of substitution patterns are tolerated. This reaction is compatible with a range of substituents including phenyl, substituted phenyl (electron-donating and electronwithdrawing groups), furyl, and thiophenyl group containing 1,3-dienes. The results of the investigation are summarized in Table 2.4.

Table 2.4. Palladium-catalyzed allylation-ox yallylation reaction of 1,3-dienes

Reaction conditions: 1,3-diene 64 (1.0 equiv), diallyl carbonate 52 (2.0 equiv), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%$), THF (3 mL), rt, 8 h

2.3.2.1. Palladium catalyzed 1,4 -difunctionalization of 1,3 -butadiene derivative

 using allyl methyl carbonate and dimethallyl carbonateWe were then interested in checking the reactivity of allyl methyl carbonate $\mathbf{6 7}$ with 1,3-butadiene derivative 64a. Under similar reaction condition employed for diallyl carbonate, the reaction afforded the expected decarboxylative 1,4-conjugate methoxyallylated product 68 in 27% yield.

Scheme 2.22

The structure of the product 68 was elucidated by spectroscopic analysis. The IR spectrum showed characteristic carbonyl absorptions at $1731 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of the compound 68 (Figure 2.7), sp^{2} methylene protons of allyl part resonated as multiplet in the region $\delta 5.45-5.38 \mathrm{ppm}$. The multiplet in the region $\delta 5.95-5.87 \mathrm{ppm}$ was assigned to the sp^{2} methine CH proton of allyl group. Four methoxy protons were discernible as singlets at δ $3.90,3.86,3.81$ and 3.27 ppm . The proton on the carbon attached to the methoxy and carbomethoxy group resonated as a singlet at $\delta 4.15 \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 2.8), the ester carbonyl carbons observed at $\delta 168.4$ and 164.9 ppm . All other signals in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were in agreement with the proposed structure. The molecular ion peak at $m / z 421.13844,[\mathrm{M}+\mathrm{Na}]^{+}$in the mass spectrum, provided further information about the proposed structure.

Figure 2.7. ${ }^{1}$ H NMR spectrum of compound 68

Figure 2.8. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 8}$
Dimethallyl carbonate 69 also reacted in the same fashion with 1,3-butadiene derivative 64a under similar reaction conditions and provided the 1,4- addition product 70 in 25% yield (Scheme 2.23).

Scheme 2.23

The structure of the product 70 was assigned based on various spectroscopic analysis. The strong absorption at $1732 \mathrm{~cm}^{-1}$ in the IR spectrum indicates the presence of carbonyl group. In ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 2.9), terminal olefin protons resonated as doublets at δ 5.15 and 4.75 ppm . The proton on the carbon attached to the oxygen atom and the carbomethoxy group resonated as a singlet at $\delta 4.29 \mathrm{ppm}$. Sharp singlets observed at $\delta 1.93$ and 1.65 ppm were characteristic of the methyl protons of methallyl group. The carbonyl carbons resonated at $\delta 168.9$ and 165.3 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 2.10). All
other peaks in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were in agreement with the proposed structure. The structure of $\mathbf{7 0}$ further supported by the mass spectral analysis which showed a molecular ion peak at $m / z 475.18565,[\mathrm{M}+\mathrm{Na}]^{+}$.

Figure 2.9. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 70

Figure 2.10. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 70

2.3.3. Mechanistic considerations

A mechanistic postulate suggested for this reaction would involve the oxidative addition of palladium(0) to allyl carbonate to afford the intermediate \mathbf{D} which then will undergo decarboxylation to produce the π-allylpalladium intermediate \mathbf{E}. The alkoxy anion of intermediate \mathbf{E} will then undergo 1,4-addition with diene $\mathbf{6 4}$ producing intermediate \mathbf{F}. The final step involves reductive elimination of palladium from \mathbf{F} to give the 1,4-double addition product (Scheme 2.24).

Scheme 2.24

2.3.4. Palladium catalyzed decarboxylative allylation-acetonation reaction in 1,3butadiene derivatives

In the next phase, we evaluated the reactivity of allyl acetoacetate 71 with the functionalized diene 64a. We were pleased to find that 1,4-difunctionalization occurs by the decarboxylative addition of allyl acetoacetate. The reaction was carried out in the presence of $5 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in 3 mL THF at room temperature, which after 8 h furnished the $1,4-$ acetonation-allylated product 73 in 41% yield. The reaction is presumed to be proceeding through oxa- π-allyl- π-allylpalladium complex 72' derived from allyl acetoacetate.

Scheme 2.25

Spectral analysis was carried out to assign the structure of 73. The IR spectrum displayed the characteristic carbonyl absorption at $1724 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 2.11), terminal olefin protons of allyl group resonated as multiplet in the region δ $5.43-5.30 \mathrm{ppm}$. The $\mathrm{sp}^{2}-\mathrm{CH}$ proton of the allyl moiety was located at $\delta 5.92-5.85 \mathrm{ppm}$ as a multiplet. A sharp singlet observed at $\delta 2.13 \mathrm{ppm}$ corresponds to sp^{3} methyl protons.

Figure 2.11. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 73
In the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 2.12), the carbonyl carbon was detected at $\delta 204.4$ ppm whereas the ester carbonyls observed at $\delta 170.9$ and 166.1 ppm . The nitrile carbons resonated at $\delta 113.7$ and 113.6 ppm . The signal corresponding to methyl carbon attached to carbonyl group appeared at $\delta 30.1 \mathrm{ppm}$. All other peaks in the spectrum were in agreement
with the proposed structure. The high-resolution mass spectral analysis which showed $[\mathrm{M}+\mathrm{Na}]^{+}$peak at $m / z 447.15299$ provided further proof for the structure.

Figure 2.12. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 73

2.3.5. Reactivity of other functionalized dienes toward π-allyl palladium related complexes

To further understand the regioselectivity of this catalytic bis-functionalization reaction, we have investigated the reactivity of bis- π-allyl palladium and related complexes with other functionalized dienes. We have synthesized diene $\mathbf{5 5}$ from cinnamaldehyde and malononitrile. The reactivity of bis- π-allylpalladium complex with this diene is already reported. ${ }^{29}$ We have performed palladium catalyzed allylation-oxyallylation reaction in diene 55 using diallyl carbonate 52 . Treatment of diene $\mathbf{5 5}$ with diallyl carbonate $\mathbf{5 2}$ in the presence of $5 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ afforded exclusively 1,2-addition product 74 in 49% yield. No other regioisomer or 1,4 -addition product was observed, indicating that 1,4 -addition can only be achieved by introducing suitable electron withdrawing group on the conjugated system.

Scheme 2.26
The structure of the product 74 was elucidated by spectroscopic techniques. The IR spectrum of the compound showed characteristic -CN stretching at $2259 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 2.13), the aromatic protons resonated as a multiplet in the region δ $7.47-7.34 \mathrm{ppm}$. Olefinic protons at $\mathrm{C}-1$ resonated as a doublet at $\delta 6.79(J=15.5 \mathrm{~Hz}) \mathrm{ppm}$ and proton at $\mathrm{C}-2$ resonated as multiplet at $\delta 6.17-6.12 \mathrm{ppm}$. The sp^{2} methine protons of allyl group at C-6 and C-10 observed as a multiplet at $\delta 5.94-5.87 \mathrm{ppm}$. The peak at δ 5.43-5.26 ppm corresponds to $\mathrm{sp}^{2}-\mathrm{CH}_{2}$ protons of the allyl group at $\mathrm{C}-7$ and $\mathrm{C}-11$.

Figure 2.13. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 74

In the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 2.14), the nitrile carbons were discernible at $\delta 114.0$ and 113.8 ppm . The olefinic carbons at $\mathrm{C}-1$ and $\mathrm{C}-2$ were located at $\delta 138.9$ and 121.1 ppm respectively. The quaternary $\mathrm{C}-4$ carbon resonated at $\delta 43.7 \mathrm{ppm}$ and the signals
corresponding to C-3 and C-9 appeared at $\delta 80.1$ and 70.1 ppm respectively. All other signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were in agreement with the proposed structure.

Figure 2.14. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 74
Further, we synthesized 1,3-butadiene derivative $\mathbf{7 5}$ containing an electron withdrawing ester group on the conjugated system by PPh_{3}-catalyzed reaction of methyl propiolate with 2-(4-methoxybenzylidene)malononitrile. ${ }^{32}$ The reaction of conjugated diene 75 with allyl chloride and allyltributyltin in the presence of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ exclusively afforded 1,4conjugate addition product 76 in 63% yield.

Scheme 2.27

Spectral data provided sufficient information for the structural analysis of the product 76. The IR spectrum of the compound $\mathbf{7 6}$ showed characteristic carbonyl absorptions at 1741 cm^{-1}. The absorption indicative of the -CN stretching was seen at $2234 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 76 (Figure 2.15), the alkene protons at $\mathrm{C}-2$ and $\mathrm{C}-9$ were identified as two
multiplets at $\delta 5.94-5.85$ and $5.59-5.52 \mathrm{ppm}$. The sp^{2} methylene protons of the allyl groups at $\mathrm{C}-1$ and $\mathrm{C}-10$ resonated as multiplets in the region $\delta 5.41-5.34$ and $4.94-4.89 \mathrm{ppm}$. Two methoxy protons were discernible as singlets at $\delta 3.92$ and 3.85 ppm . The sp^{3} methylene protons at C-7 appeared as multiplet at $\delta 2.21-2.18 \mathrm{ppm}$. All other signals were in good agreement with the assigned structure.

Figure 2.15. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 76
The ${ }^{13} \mathrm{C}$ NMR spectrum (figure 2.16) positioned the carbonyl peak at $\delta 168.1 \mathrm{ppm}$. A signal at $\delta 160.1 \mathrm{ppm}$ was ascribed to the aromatic carbon attached to the methoxy group. The sp^{3} carbons at $\mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-7$ and $\mathrm{C}-8$ appeared at $\delta 42.8,42.3,32.7$ and 32.0 ppm respectively. Two cyano carbons resonated at $\delta 114.4$ and 113.9 ppm . The methine carbons of allyl group C-2 and C-9 were located at $\delta 126.3$ and 136.3 ppm respectively. The sp^{2} methylene carbons at C-1 and C-10 resonated at $\delta 123.3$ and 115.9 ppm . The structure was further confirmed by high-resolution mass spectral analysis which showed a molecular ion peak at $m / z 351.17142,[\mathrm{M}+1]^{+}$.

Figure 2.16. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 76

In similar fashion, the reaction of diallyl carbonate $\mathbf{5 2}$ with diene $\mathbf{7 5}$ in the presence of $5 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ provided the 1,4-allyloxy allylation product $77 \mathrm{in} 41 \%$ yield.

Scheme 2.28

The structure of the product 77 elucidated with the help of spectroscopic data. The IR spectrum of the compound showed characteristic carbonyl absorption at $1738 \mathrm{~cm}^{-1}$. In ${ }^{1} \mathrm{H}$ NMR spectrum, the two sp^{2} methylene protons of allyl groups were resonated as multiplets in the region $\delta 5.29-5.22$ and 5.12-5.03 ppm. The sp^{2} methine protons of allyl groups located at δ 5.88-5.83 and 5.58-5.49 ppm as multiplets. The ${ }^{13} \mathrm{C}$ NMR spectrum presented the carbonyl carbon at $\delta 170.4 \mathrm{ppm}$. The carbons of methoxy groups located at $\delta 55.3$ and 52.8 ppm . All other signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were in agreement with the proposed structure.

The structure was further supported by high-resolution mass spectral analysis which showed a molecular ion peak at $m / z 367.16639[\mathrm{M}+1]^{+}$.

In the light of the results obtained with different dienes containing nitrile group as the essential functional group, we attempted the allylation reaction of diene 78 derived from glutaconic diester. The diene $\mathbf{7 8}$ was prepared by reacting glutaconic dimethyl ester with benzaldehyde in the presence of piperidine base. ${ }^{33}$ We have carried out both bis-allylation and allylation-oxyallylation reaction with diene $\mathbf{7 8}$ under the standard reaction conditions. In both cases the reactions were unsuccessful, and the diene was recovered as such. The reason for the failure of the reaction might be the destabilization of intermediate due to the lack of nitrile group. ${ }^{34}$

Scheme 2.29

2.4. Conclusion

In conclusion, we have developed a simple, clean and efficient strategy for the bisfunctionalization of the 1,3 -butadiene derivative using bis- π-allyl palladium and related complexes. To the best of our knowledge, this is the first report on a palladium catalyzed 1,4conjugate addition reaction of 1,3-butadiene derivative via amphiphilic bis- π-allylpalladium and associated complexes. Functionalized trienes and dienes were synthesized by introducing allyl, oxyallyl and acetonyl groups. The reactivity of π-allylpalladium complex with different functionalized dienes was verified, and a 1,4-conjugate addition was achieved only by installing electron withdrawing group such as ester on the conjugated system. Although these reactions are limited to highly activated dienes, the use of cyano group for further structural manipulation is noteworthy.

2.5. Experimental Details

General methods: All reactions were conducted in oven-dried glass wares. Solvents used for the experiments were distilled and dried as specified. All chemicals were commercially available and are used without further purification. The progress of the reaction was
monitored by thin layer chromatography, which was performed on Merck pre-coated plates (silica gel $60 \mathrm{~F} 254,0.25 \mathrm{~mm}$), and was visualized with UV light. Gravity column chromatography was done using 100-200 mesh silica gel or neutral aluminium oxide and mixtures of hexane-ethyl acetate were used for elution. The solvents were removed using Buchi E.L. rotary evaporator.

The melting point of the solid compounds was determined on a Buchi melting point apparatus and are uncorrected. IR spectra were recorded on Bruker Alpha FT-IR spectrometer. Proton nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR) were recorded on a Bruker Avance DPX 300 and Bruker AMX 500 MHz spectrophotometers (CDCl_{3} as solvent). Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported as δ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta 0.0)$ and relative to the signal of chloroform-d ($\delta 7.25$, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (double doublet); m (multiplet). Coupling constants are reported as J value in Hz . Carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}$ NMR) are reported as δ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta 0.0)$ and relative to the signal of chloroform-d ($\delta 77.03$, triplet). Mass spectra were recorded under ESI/HRMS at 60000 resolution using Thermo Scientific Exactive mass spectrometer.

2.5.1. General experimental procedure for the preparation of arylidene malononitrile derivatives (62)

A solution of aromatic aldehyde (1.0 equiv.), malononitrile (3.0 equiv.) and ammonium acetate (1.0 equiv.) were taken together in 10 mL of benzene. To this, a drop of glacial acetic acid was added and refluxed for 6 hours. Then the solvent was removed and extracted with dichloromethane and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Products were purified by silica gel column chromatography using hexane-ethyl acetate mixture.

2.5.2. General experimental procedure for the preparation of substituted 1,3 butadienes (64a-h)

A solution of dimethyl acetylenedicarboxylate (1.2 equiv.) and dicyanostyrene (1.0 equiv.) in dry THF (6 mL) under an argon atmosphere was cooled to $-10^{\circ} \mathrm{C}$. To this pyridine (0.2 equiv.) was added and the reaction mixture was stirred for 3-4 hours at room temperature, and the completion of the reaction was monitored by TLC analysis. The solvent
was then removed under vacuum and the residue on chromatographic separation on silica gel column using hexane-ethyl acetate mixture afforded dienes in good yields.

2.5.3. General experimental procedure for bis-allylation of 1,3-butadiene derivatives

To a degassed solution of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5 \mathrm{~mol} \%)$ in dry THF (2 mL) in a Schlenk tube, allyltributylstannane $\mathbf{5 0}$ (2 equiv.) was added followed by allyl chloride $\mathbf{4 2}$ (2 equiv.). The reaction mixture stirred at room temperature till the yellow colour turns to colourless. Then 1,3-buadiene derivative (1 equiv.) was added (in THF) and stirred at room temperature for 8 hours. After completion of the reaction (as evident by TLC), the solvent was removed under reduced pressure, and the residue on silica gel (100-200 mesh) column chromatography yielded functionalized 1,4-addition products (65a-h).

2.5.4. General experimental procedure for allylation-oxyallylation reaction of 1,3-butadiene derivative

1,3-butadiene derivatives (1 equiv.) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ were taken in a Schlenk tube, degassed and diallyl carbonate 52 (2 equiv.) was added followed by 3 mL THF. Argon gas is purged into the reaction mixture and stirred at room temperature for 8 hours. After the completion of reaction (as evident by TLC), the solvent was evaporated in vacuo and the residue on silica gel (100-200 mesh) column chromatography afforded the 1,4-allyloxyallylated products ($\mathbf{6 6 a} \mathbf{- f}$).
(Z)-Dimethyl-2-allyl-3-(2,2-dicyano-1-(4-methoxyphenyl)pent-4-enylidene)succinate (65a)

Following the general experimental procedure, 1,3-diene $\mathbf{6 4 a}(42 \mathrm{mg}, 0.12 \mathrm{mmol}$), allyl chloride 42 ($19 \mathrm{mg}, 0.25 \mathrm{mmol}$), allyltributylstannane $50(85 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(4 \mathrm{mg}, 0.0064 \mathrm{mmol})$ in 3 mL THF at room temperature under argon atmosphere for 8 h gave the product $\mathbf{6 5 a}$ as a pale yellow viscous liquid in 78% (41 mg) yield.

$\mathbf{R}_{f}: 0.46$ (4:6 Ethyl acetate/hexane). IR (neat) $\mathbf{u}_{\text {max }}: 3079$, 2955, 2919, 2850, 2313, 2246, 1734, 1604, 1510, 1461, 1376, 1290, 1248, 1177, 1118, $1032 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, CDCl $_{3}, \mathbf{T M S}$): $\delta 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.98-6.94 (m, 2 H), 5.94-5.86 (m, 1 H), 5.56-5.47 (m, 1 H), 5.42-5.35 (m, 2 H), 5.05-4.98 (m, 2 H), 3.89 (s, 3 H), 3.84 (s, 3 H), 3.72 ($\mathrm{s}, 3 \mathrm{H}$), 3.18-3.15 (m, 1 H), 2.87-2.75(m,2 H), 2.63-2.58(m, 1 H$), 2.27-2.21(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (125MHz, $\mathbf{C D C l}_{3}$): $\delta 171.0,166.0,160.4,137.4,136.6,134.0,131.1,130.1$, $128.7,126.0,123.5,118.1,114.5,114.3,113.7$ (2C), 55.3, 52.6, 52.5, 48.2, 42.7, 42.5, 33.8. HRMS (ESI): m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 431.15829$; Found: 431.15646 .

(Z)-Dimethyl 2-allyl-3-(2,2-dicyano-1-phenylpent-4-enylidene)succinate (65b)

Following the general experimental procedure, 1,3 -diene $\mathbf{6 4 b}(61 \mathrm{mg}, 0.21 \mathrm{mmol})$, allyl chloride 42 ($32 \mathrm{mg}, 0.42 \mathrm{mmol}$), allyl tributyl tin $50(139 \mathrm{mg}, 0.42 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ $(4 \mathrm{mg}, 0.010 \mathrm{mmol})$ in 3 mL THF at room temperature under argon atmosphere for 8 h gave the product 65b as a pale yellow viscous liquid in 69% (54 mg) yield.

$\mathbf{R}_{f}: 0.49$ (4:6 Ethyl acetate/hexane); IR (neat) $v_{\text {max }}: 3083,2954$, 2922, 2853, 2312, 2243, 1735, 1645, 1599, 1437, 1252, 1120, 933, $849 \mathrm{~cm}^{-1} \cdot{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$, TMS): $\delta 7.47-7.43$ (m, 3 H), 7.37-7.31 (m, 1 H), 7.16-7.15 (m, 1 H), 5.96-5.82 (m, 1 H), 5.57-5.33 (m, 3 H), 5.04-4.95 (m, 2 H), 3.89 (s, 3 H), 3.71 (s, $3 \mathrm{H}), 3.11-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 1 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR (75MHz, $\mathbf{C D C l}_{3}$): $\delta 170.6,165.7,137.3,136.4,134.3,134.0,129.7,129.6,129.2$, 128.9, 128.7, 128.3, 123.4, 118.1, 113.5, 113.4, 52.5, 52.4, 48.2, 42.7, 42.0, 33.8.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 401.14773$, Found: 401.14563.

(Z)-Dimethyl 2-allyl-3-(2,2-dicyano-1-p-tolylpent-4-enylidene)succinate (65c)

Following the general experimental procedure, 1,3-diene $\mathbf{6 4 c}$ ($72 \mathrm{mg}, 0.23 \mathrm{mmol}$), allyl chloride 42 ($35 \mathrm{mg}, 0.46 \mathrm{mmol}$), allyltributylstannane $50(152 \mathrm{mg}, 0.46 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(8 \mathrm{mg}, 0.012 \mathrm{mmol})$ in 3 mL THF at room temperature under argon atmosphere for 8 h gave the product $\mathbf{6 5 c}$ as a pale yellow viscous liquid in $76 \%(105 \mathrm{mg})$ yield.
 $\mathbf{R}_{f}: 0.50$ (4:6 Ethyl acetate/hexane); IR (neat) $v_{\text {max }}: 3080,2921$, 2868, 2377, 2312, 1725, 1639, 1510, 1435, 1258, 1111, 1022, $826 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$, TMS): δ 7.27-7.18 (m, 3 H), 7.04 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.96-5.82$ (m, 1 H$), 5.58-5.44$ (m, 1 H), 5.42-5.33 (m, 2 H), 5.03-4.95 (m, 2 H), 3.88 ($\mathrm{s}, 3 \mathrm{H}$), 3.71 (s, 3 H), 3.14-3.09 (m, 1 H), 2.86-2.72 (m, 2 H), 2.63-2.54 (m, 1 H), 2.39 (s, 3 H), 2.282.20 (m, 1 H).; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.8,165.9,139.7,137.4,136.3,134.1$, 131.2, 129.9, 129.6, 129.5, 128.8, 128.7, 123.4, 118.0, 113.6, 52.4, 48.2, 42.7, 42.2, 33.9, 21.3.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 415.16338$, Found: 415.16123.

(Z)-Dimethyl 2-allyl-3-(1-(4-chlorophenyl)-2,2-dicyanopent-4-enylidene)succinate (65d)

Following the general experimental procedure, 1,3 -diene $\mathbf{6 4 d}$ ($106 \mathrm{mg}, 0.32 \mathrm{mmol}$), allyl chloride 42 ($49 \mathrm{mg}, 0.64 \mathrm{mmol}$), allyltributylstannane $\mathbf{5 0}(211 \mathrm{mg}, 0.64 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(11 \mathrm{mg}, 0.016 \mathrm{mmol})$ in 3 mL THF at room temperature under argon atmosphere for 8 h gave the product $\mathbf{6 5 d}$ as a pale yellow viscous liquid in 49% (65 mg) yield.

$\mathbf{R}_{f}: 0.56$ (4:6 Ethyl acetate/hexane); IR (neat) $v_{\text {max }}: 2924,2856$, 2378, 2221, 1745, 1730, 1650, 1591, 1470, 1266, 1158, 1020, 852, $776 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}, \mathbf{T M S}\right.$): $\delta 7.44-7.41$ (m, 2 H), 7.30-7.25 (m, 1 H), 7.13-7.10 (m,1 H), 5.95-5.81 (m, 1 H), 5.57-5.34 (m, 3 H), 5.05-4.96 (m, 2 H), 3.89 ($\mathrm{s}, 3 \mathrm{H}$), 3.71 (s , $3 \mathrm{H}), 3.06-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.17(\mathrm{~m}, 1 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 170.3,165.6,142.0,137.0,136.1,133.8,132.5,131.4,130.3$, 129.6, 129.2, 128.5, 123.7, 118.4, 113.3, 52.6, 48.3, 42.7, 42.5, 42.0, 34.1.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 435.10875$, Found: 435.10675.

(E)-Dimethyl 2-allyl-3-(2,2-dicyano-1-(furan-2-yl)pent-4-enylidene)succinate (65e)

Following the general experimental procedure, 1,3-diene 64e ($70 \mathrm{mg}, 0.24 \mathrm{mmol}$), allyl chloride 42 ($36 \mathrm{mg}, 0.48 \mathrm{mmol}$), allyltributylstannane 50 ($159 \mathrm{mg}, 0.48 \mathrm{mmol}$) and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(9 \mathrm{mg}, 0.012 \mathrm{mmol})$ in 3 mL THF at room temperature under argon atmosphere for 8 h gave the product $\mathbf{6 5 e}$ as a pale yellow viscous liquid in $61 \%(54 \mathrm{mg})$ yield.

$\mathbf{R}_{f}: 0.37$ (4:6 Ethyl acetate/hexane); IR (neat) $\cup_{\text {max }}: 3146,3083$, 2954, 2918, 2850, 2630, 2339, 2255, 2210, 1735, 1640, 1578, 1435, 1290, 1260, 1139, 1055, 1016, 913, $794 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (300 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}, \mathbf{T M S}\right): \delta 7.55(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.51-6.49 (m, 1 H), $5.98-5.87$ (m, 1 H$), 5.58-5.41$ (m, 3 H), $5.04-$ 4.97 (m, 2 H), 3.87 ($\mathrm{s}, 3 \mathrm{H}$), $3.75(\mathrm{~s}, 3 \mathrm{H}$), $3.53-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.01$ (m, 2 H), 2.68-2.63 $(\mathrm{m}, 1 \mathrm{H}), 2.34-2.19(\mathrm{~m}, 1 \mathrm{H})$.; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.5,165.3,145.7,144.2$, 139.4, 133.7, 128.8, 128.2, 127.6, 123.4, 118.0, 113.9, 113.0, 111.2, 52.7, 52.3, 48.5, 42.8, 42.0, 34.0.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 391.12699$, Found: 391.12476.

(E)-Dimethyl 2-allyl-3-(2,2-dicyano-1-(thiophen-2-yl)pent-4-enylidene)succinate (65f)

Following the general experimental procedure, 1,3-diene $\mathbf{6 4 f}(91 \mathrm{mg}, 0.30 \mathrm{mmol})$, allyl chloride 42 ($46 \mathrm{mg}, 0.61 \mathrm{mmol}$), allyltributylstannane 50 ($201 \mathrm{mg}, 0.61 \mathrm{mmol}$) and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(11 \mathrm{mg}, 0.015 \mathrm{mmol})$ in 3 mL THF at room temperature under argon atmosphere for 8 h gave the product $\mathbf{6 5 f}$ as a pale yellow viscous liquid in $71 \%(82 \mathrm{mg})$ yield.

$\mathbf{R}_{f}: 0.48$ (4:6 Ethyl acetate/hexane); IR (neat) $\cup_{\text {max }}: 2981,2925$, 2245, 1587, 1463, 1418, 1363, 1315, 1266, 1121, $1037 \mathrm{~cm}^{-1} . ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~ C D C l} 3$, TMS): $\delta 7.48(\mathrm{dd}, J=4.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1$ H), 7.13-7.08 (m, 2 H), $5.90-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.48(\mathrm{~m}, 1 \mathrm{H})$, 5.45-5.38 (m, 2 H), 5.05-4.98 (m, 2 H), $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, 3.33-3.28 (m, 1 H), 3.03-2.87 (m, 2 H), 2.68-2.59 (m, 1 H), 2.28-2.18 (m, 1 H$). ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}$ (75MHz, $\mathbf{C D C l}_{3}$): $\delta 170.4,165.4,139.8,133.7,133.4,130.6,130.4,128.6,128.4,127.6$, 123.6, 118.2, 113.1, 52.7, 52.5, 48.6, 42.9, 42.7, 33.8.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 407.10415$, Found: 407.10220.

(Z)-Dimethyl 2-allyl-3-(2,2-dicyano-1-(3,4-dimethoxyphenyl)pent-4-enylidene)succinate (65g)

Following the general experimental procedure, 1,3-diene $\mathbf{6 4 g}(52 \mathrm{mg}, 0.14 \mathrm{mmol})$, allyl chloride 42 ($22 \mathrm{mg}, 0.29 \mathrm{mmol}$), allyltributylstannane $50(96 \mathrm{mg}, 0.29 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5 \mathrm{mg}, 0.007 \mathrm{mmol})$ in 3 mL THF at room temperature under argon atmosphere for 8 h gave the product $\mathbf{6 5 g}$ as a pale yellow viscous liquid in $30 \%(19 \mathrm{mg})$ yield.

$\mathbf{R}_{f}: 0.35$ (4:6 Ethyl acetate/hexane).; IR (neat) $\mathbf{v}_{\text {max }}: 3742$, 3079, 2955, 2918, 2850, 2584, 2379, 2312, 2246, 1733, 1640, 1598, 1511, 1458, 1248, 1135, 1023, $818 \mathrm{~cm}^{-1} . ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$, TMS): $\delta 6.92-6.82$ (m, 2 H), 6.70-6.62 (m, 1 H), 5.94-5.83 (m, 1 H), 5.61-5.46 (m, 1 H), 5.43-5.34 (m, 2 H), 5.04-4.96 (m, 2 H), 3.90-3.87 (m, 9 H), 3.71 (s, 3 H), 3.20-3.15 (m, 1 H), 2.92-2.72 $(\mathrm{m}, 2 \mathrm{H}), 2.62-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.15(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 170.8$, $165.8,149.9,149.1,137.2,136.6,134.3,133.9,128.8$, 126.3, 123.4, 122.3, 121.0, 118.0, 113.6, 112.2, 55.9, 55.8, 52.5, 52.4, 48.3, 42.7, 42.3, 33.9.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 461.16886$, Found: 461.16669.
(Z)-Dimethyl-2-allyl-3-(2,2-dicyano-1-(2,4-dimethylphenyl)pent-4-enylidene)succinate (65h)

Following the general experimental procedure, 1,3-diene $\mathbf{6 4 h}(53 \mathrm{mg}, 0.16 \mathrm{mmol}$), allyl chloride 42 ($19 \mathrm{mg}, 0.25 \mathrm{mmol}$), allyltributyltin $50(81 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(8$ $\mathrm{mg}, 0.008 \mathrm{mmol}$) in 3 mL THF at room temperature under argon atmosphere for 8 h gave the product $\mathbf{6 4 h}$ as a pale yellow viscous liquid in $47 \% ~(31 \mathrm{mg}$) yield.

$\mathbf{R}_{f}: 0.53$ (4:6 Ethyl acetate/hexane).; IR (neat) $\mathbf{u}_{\text {max }}: 3582$, 3078, 2921, 2853, 2380, 2311, 2245, 1731, 1609, 1434, 1257, 1205, 1032, 990, 925, 826, $747 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}, \mathbf{T M S}\right): \delta 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.96-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.61-5.49(\mathrm{~m}, 1 \mathrm{H})$, 5.43-5.36 (m, 2 H), 5.04-4.95 (m, 2 H), 3.88 (s, 3 H), 3.68 (s, 3 H), 3.08-3.02 (m, 1 H), 2.75$2.68(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.32(\mathrm{~m}, 8 \mathrm{H}) . ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 170.8$, 165.8 , 139.8, 138.5, 137.3, 136.3, 134.3, 132.1, 130.9, 129.0, 128.9, 126.7, 123.4, 118.0, 113.6, 113.5, 52.6, 52.3, 52.1, 48.0, 42.5, 34.3, 21.2, 20.0.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 429.17903$, Found: 429.17688.

(Z)-Dimethyl-2-(allyloxy)-3-(2,2-dicyano-1-(4-methoxyphenyl)pent-4enylidene)succinate (66a)

Following the general experimental procedure, 1,3-diene 64a ($110 \mathrm{mg}, 0.33 \mathrm{mmol}$), diallyl carbonate $52(95 \mathrm{mg}, 0.67 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(19 \mathrm{mg}, 0.016 \mathrm{mmol})$ in 3 mL THF at
room temperature under argon atmosphere for 8 h gave the product 66a as a pale yellow viscous liquid in 71% (99 mg) yield.

$\mathbf{R}_{\text {f }}$: 0.31 (4:6 Ethyl acetate/hexane); IR (neat) $\cup_{\text {max }}$: 2954, 2921, 2852, 2377, 2312, 1727, 1604, 1507, 1456, 1378, 1246, 1178, 1023, $838 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$, TMS): $\delta 7.34-$ $7.32(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.93-5.82$ $(\mathrm{m}, 1 \mathrm{H}), 5.76-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.34(\mathrm{~m}, 2 \mathrm{H}), 5.10-5.04(\mathrm{~m}$, 2 H), $4.28(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.99-2.92(\mathrm{~m}, 1$ H), 2.77-2.70 (m, 1 H).; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.9,165.2,160.6,138.2,135.9$, $133.0,132.1,128.7,128.5,125.2,123.6,118.6,114.5,114.2,113.5,113.4,76.4,71.0,55.3$, 52.9, 52.8, 42.6, 42.3.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 447.15321$, Found: 447.15103.

(Z)-Dimethyl-2-(allyloxy)-3-(2,2-dicyano-1-phenylpent-4-enylidene)succinate (66b)

Following the general experimental procedure, 1,3-diene 64b ($161 \mathrm{mg}, 0.54 \mathrm{mmol}$), diallyl carbonate 52 ($155 \mathrm{mg}, 1.09 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(31 \mathrm{mg}, 0.027 \mathrm{mmol})$ in 3 mL THF at room temperature under argon atmosphere for 8 h gave the product $\mathbf{6 6 b}$ as a pale yellow solid in 55\% (118 mg) yield.

$\mathbf{R}_{\text {f }}: 0.37$ (4:6 Ethyl acetate/hexane); mp: $82-85^{\circ} \mathrm{C}$; IR (neat) $v_{\max }: 3320,3045,2962,2926,2862,2378,2309,1658,1591$, 1153, 1111, 1020, $853 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, TMS): δ 7.49-7.46 (m, 3 H), 7.43-7.42 (m, 1 H), 7.27-7.24 (m, 1 H), 5.93-5.87 (m, 1 H), 5.71-5.66 (m, 1 H), 5.44-5.37 (m, 2 H), 5.07-5.03 (m, 2 H), 4.24 (s, 1 H), 3.93-3.90 (m, 5 H), 3.81 (s, 3 H), 2.97-2.93 (m, 1 H), 2.77-2.73 (m, 1 H).; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.6,164.9,138.1,135.7,133.4,130.7$, $129.9,129.0,128.9,128.5,127.4,123.7,118.6,113.2$ (2C), 76.2, 70.9, 52.8, 52.7, 42.5, 41.9.; HRMS (ESI) : m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 417.14264$, Found: 417.14075.

(Z)-Dimethyl-2-(allyloxy)-3-(2,2-dicyano-1-p-tolylpent-4-enylidene)succinate (66c)

Following the general experimental procedure, 1,3-diene 64c ($87 \mathrm{mg}, 0.28 \mathrm{mmol}$), dially lcarbonate $52(80 \mathrm{mg}, 0.56 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(16 \mathrm{mg}, 0.014 \mathrm{mmol})$ in 3 mL THF at
room temperature under argon atmosphere for 8 h gave the product $\mathbf{6 6 c}$ as a pale yellow viscous liquid in 66% (76 mg) yield.

$\mathbf{R}_{f}: 0.41$ (4:6 Ethyl acetate/hexane); IR (neat) $\mathbf{v}_{\text {max }}: 3083,2924$, 2856, 2313, 2247, 1732, 1641, 1604, 1511, 1431, 1253, 1208, 1121, 1017, $933,826 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): $\delta 7.26-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.81(\mathrm{~m}, 1$ H), $5.75-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.33(\mathrm{~m}, 2 \mathrm{H}), 5.09-5.03(\mathrm{~m}, 2 \mathrm{H})$, $4.25(\mathrm{~s}, 1 \mathrm{H}), 4.02-3.87(\mathrm{~m}, 5 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.98-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.39$ (s, 3 H).; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.6,165.0,140.0,138.3,135.7,133.2,130.6$, $130.5,129.8,129.5,128.6,127.4,123.6,118.4,113.3,76.5,70.9,52.7,52.6,42.6,42.1,21.3 . ;$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 431.15829$,found: 431.15616 .
(Z)-Dimethyl-2-(allyloxy)-3-(1-(4-chlorophenyl)-2,2-dicyanopent-4-enylidene)succinate (66d)

Following the general experimental procedure, 1,3-diene 64d ($64 \mathrm{mg}, 0.19 \mathrm{mmol}$), diallyl carbonate $52(55 \mathrm{mg}, 0.38 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11 \mathrm{mg}, 0.009 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 8 h gave the product $\mathbf{6 6 d}$ as a pale yellow viscous liquid in 31% (26 mg) yield.

$\mathbf{R}_{f}: 0.40$ (4:6 Ethyl acetate/hexane); IR (neat) $v_{\text {max }}$: 2956, 2919, 2851, 2309, 2232, 1735, 1646, 1589, 1490, 1462, 1376, 1260, 1214, 1093, $1016 \mathrm{~cm}^{-1}$.; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, TMS): $\delta 7.49-7.35$ (m, 3 H), 7.21-7.18 (m, 1 H), 5.94-5.82 (m, 1 H), $5.75-5.64$ (m, 1 H), $5.47-5.37$ (m, 2 H), 5.12-5.07 (m, 2 H), 4.21 ($\mathrm{s}, 1 \mathrm{H}$), 3.94-3.91 (m, 5 H), 3.84 ($\mathrm{s}, 3 \mathrm{H}$), 3.01-2.94 (m, 1 H), 2.78-2.71 (m, 1 H$)$.; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.4,164.7,136.8,136.5,133.0,132.3,131.8,129.5$, 129.2, 128.9, 128.3, 123.9, 118.7, 113.0, 76.3, 71.1, 53.0, 52.8, 42.6, 42.0.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 451.10367$, Found: 451.10156.

(E)-Dimethyl-2-(allyloxy)-3-(2,2-dicyano-1-(furan-2-yl)pent-4-enylidene)succinate (66e)

Following the general experimental procedure, 1,3-diene 64e ($47 \mathrm{mg}, 0.16 \mathrm{mmol}$), diallyl carbonate $52(47 \mathrm{mg}, 0.33 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(9 \mathrm{mg}, 0.008 \mathrm{mmol})$ in 3 mL THF at
room temperature under argon atmosphere for 8 h gave the product 66 e as a pale yellow viscous liquid in 69% (42 mg) yield.

66e
$\mathbf{R}_{\text {f }}$: 0.27 (4:6 Ethyl acetate/hexane); IR (neat) $\cup_{\text {max }}$: 3583, 3145, 3082, 2952, 2921, 2852, 2378, 2313, 2224, 1729, 1650, 1570, 1434, 1242, 1213, 1092, 1016, 955, 925, 846, 757, 719 $\mathrm{cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, TMS): $\delta 7.60(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52-6.51(\mathrm{~m}, 1 \mathrm{H}), 6.07-$ 5.93 (m, 1 H), 5.78-5.64 (m, 1 H), 5.53-5.47 (m, 2 H), 5.09-4.96 (m, 2 H), 4.84 (s, 1 H), 4.08$4.02(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.83(\mathrm{~m}, 7 \mathrm{H}), 3.40-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.18(\mathrm{~m}, 1 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR (75 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 168.4,164.6,145.1,144.5,136.8,132.7,128.8,123.6,119.4,115.8,112.8$, 112.7, 111.3, 75.4, 70.8, 53.1, 52.9, 42.8, 41.9.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{6}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 407.12191$, Found: 407.11987.
(E)-Dimethyl-2-(allyloxy)-3-(2,2-dicyano-1-(thiophen-2-yl)pent-4-enylidene)succinate (66f)

Following the general experimental procedure, 1,3-diene $\mathbf{6 4 f}(97 \mathrm{mg}, 0.32 \mathrm{mmol})$, diallyl carbonate 52 ($91 \mathrm{mg}, 0.64 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(19 \mathrm{mg}, 0.016 \mathrm{mmol})$ in 3 mL THF at room temperature under argon atmosphere for 8 h gave the product $\mathbf{6 6 f}$ as a pale yellow viscous liquid in 43% (55 mg) yield.

$\mathbf{R}_{f}: 0.33$ (4:6 Ethyl acetate/hexane); IR (neat) $v_{\text {max }}$: 3088, 2955, 2921, 2309, 2224, 1727, 1593, 1420, 1377, 1118, 1018, $852 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}, \mathbf{T M S}$) : $\delta 7.84-7.77$ (m, 1 H), 7.51-7.11 (m, 2 H), 6.00-5.86 (m, 1 H), 5.79-5.66 (m, $1 \mathrm{H}), 5.47-5.42(\mathrm{~m}, 2 \mathrm{H}), 5.14-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H})$, 4.01-3.97 (m, 2 H), 3.95-3.83 (m, 6 H), 3.20-3.13 (m, 1 H), 2.97-2.90 (m, 1 H$). ;{ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.3,164.6138 .8,132.9,132.5,131.7,131.2,128.4,127.6,123.8$, 118.7, 112.9, 112.8, 71.1, 53.0, 52.8, 42.9, 42.5.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 423.09906$, Found: 423.09714.
(Z)-Dimethyl-2-(2,2-dicyano-1-(4-methoxyphenyl)pent-4-enylidene)-3-methoxysuccinate (68)

Following the general experimental procedure, 1,3-diene 64a ($72 \mathrm{mg}, 0.22 \mathrm{mmol}$), allyl methylcarbonate $67(51 \mathrm{mg}, 0.44 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}, 0.011 \mathrm{mmol})$ in 3 mL THF at room temperature under argon atmosphere for 8 h gave the product 68 as a pale yellow viscous liquid in 27% (24 mg) yield.

$\mathbf{R}_{f}: 0.38$ (4:6 Ethyl acetate/hexane); IR (neat) $\cup_{\text {max }}$: 2960, 2840, 2227, 1763, 1731, 1511, 1437, 1290, $910 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0}$ MHz, CDCl ${ }_{3}$, TMS): δ 7.36-7.34 (m, 1 H), 7.18-7.16 (m, 1 H), 7.00-6.96 (m, 2 H), 5.95-5.87 (m, 1 H), 5.45-5.38 (m, 2 H), 4.15 (s, 1 H), $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H})$, 3.00-2.96 (m, 1 H), 2.79-2.75 (m, 1 H).; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.4,164.9,160.6$, $138.8,135.6,132.1,128.8,128.5,125.3,123.7,114.5,114.4,113.3(2 \mathrm{C}), 79.2,57.8,55.3$, 52.9, 52.8, 42.6, 42.3.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 421.13756$, Found: 421.13844.
(Z)-Dimethyl-2-(2,2-dicyano-1-(4-methoxyphenyl)-4-methylpent-4-enylidene)-3-(2methylallyloxy)succinate (70)

Following the general experimental procedure, 1,3-diene 64a ($104 \mathrm{mg}, 0.32 \mathrm{mmol}$), dimethallyl carbonate $69(108 \mathrm{mg}, 0.64 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(18 \mathrm{mg}, 0.015 \mathrm{mmol})$ in 3 mL THF at room temperature under argon atmosphere for 8 h gave the product 70 as a pale yellow viscous liquid in 25% (36 mg) yield.

$\mathbf{R}_{f}: 0.41$ (3:7 Ethyl acetate/hexane); IR (neat) $\mathbf{u}_{\text {max }}: 2953$, 2840, 1758, 1732, 1511, 1435, 1290, 1250, 1138, 1093, 909 $\mathrm{cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$, TMS): $\delta 7.39-7.36$ (m, $1 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~d}, J=$ $23.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ $\left.(\mathrm{d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (7 5 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta 168.9$, 165.4, 160.6, 140.5, 138.8, 137.1, 135.4, 132.4, 128.7, 125.5, 119.1, 114.4, 114.2, 113.9,
113.8, 113.7, 76.3, 73.9, 55.4, 52.9, 52.8, 45.6, 41.9, 23.1, 19.4.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 475.18451$, Found: 475.18565 .

(Z)-Dimethyl-2-(2,2-dicyano-1-(4-methoxyphenyl)pent-4-enylidene)-3-(2-

 oxopropyl)succinate (73)Following the general experimental procedure, 1,3-diene 64a ($53 \mathrm{mg}, 0.16 \mathrm{mmol}$), allylacetoacetate $71(46 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(9 \mathrm{mg}, 0.008 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 8 h gave the product 73 as a pale yellow viscous liquid in 41% (28 mg) yield.

$\mathbf{R}_{f}: 0.38$ (3:7 Ethyl acetate/hexane); IR (neat) $u_{\text {max }}: 2955$, 2847, 1724, 1606, 1510, 1291, 1250, 1180, 1163, 1029, 735 $\mathrm{cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): $\delta 7.28-7.26(\mathrm{~m}, 1$ H), 7.16 (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.99 (dq. $J=8.5,2.5 \mathrm{~Hz}, 2$ H), 5.92-5.85 (m, 1 H$), 5.43-5.30(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.85$ ($\mathrm{s}, 3 \mathrm{H}$), 3.78-3.75 (m, 1 H$), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43$ (dd, $J=18.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13 (s, 3 H):; ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 204.4,170.9$, $166.1,160.5,137.3,135.9,130.8,129.8,128.6,125.5,123.6,114.6,114.5,113.7,113.6$, 55.3, 52.8, 52.7, 43.7, 43.0, 42.6, 42.5, 30.1.; HRMS (ESI): m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 447.15321$, Found: 447.15299.

(E)-2-Allyl-2-(1-(allyloxy)-3-phenylallyl)malononitrile (74)

Following the general experimental procedure, 1,3-diene 55 ($100 \mathrm{mg}, 0.55 \mathrm{mmol}$), diallylcarbonate $52(157 \mathrm{mg}, 1.09 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(32 \mathrm{mg}, 0.028 \mathrm{mmol})$ in 3 mL THF at room temperature under argon atmosphere for 8 h gave the product 74 as a colourless viscous liquid in 49% (75 mg) yield.

$\mathbf{R}_{f}: 0.59$ (3:7 Ethyl acetate/hexane); IR (neat) $v_{\text {max }}: 3086,2927$, 2874, 2253, 1648, 1495, 1449, 1263, 1030, 990, 975, $764 \mathrm{~cm}^{-1}$.; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): $\delta 7.47-7.45(\mathrm{~m}, 2 \mathrm{H})$, 7.39-7.34 (m, 3 H), 6.79 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.17-6.12 (m, 1 H), 5.94-5.87 (m, 2 H$), 5.43-5.26(\mathrm{~m}, 4 \mathrm{H}), 4.25-4.20(\mathrm{~m}, 2 \mathrm{H})$, 4.00-3.96 (m, 1 H), 2.74 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$).; ${ }^{13} \mathbf{C}$ NMR (75
$\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 138.9,134.8,133.1,129.3,128.9,128.6,127.2,123.2,121.1,118.8,114.0$,
113.8, 80.1, 70.1, 43.7, 38.2.; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}: 301.1317$, Found: 301.1374.

(Z)-Methyl 2-(but-3-enyl)-4,4-dicyano-3-(4-methoxyphenyl)hepta-2,6-dienoate (76)

Following the general experimental procedure, 1,3-diene 75 ($45 \mathrm{mg}, 0.26 \mathrm{mmol}$), allyl chloride 42 ($26 \mathrm{mg}, 0.35 \mathrm{mmol}$), allyltributylstannane $50(115 \mathrm{mg}, 0.35 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(6 \mathrm{mg}, 0.008 \mathrm{mmol})$ in 3 mL THF at room temperature under argon atmosphere for 8 h gave the product 76 as a colourless viscous liquid in 63% (39 mg) yield.

$\mathbf{R}_{f}: 0.62$ (3:7 Ethyl acetate/hexane); IR (neat) $\mathbf{U}_{\text {max }}: 2957$, 2843, 2234, 1741, 1604, 1508, 1293, 1251, 1216, 1178, 1029, 927, 840, $823 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): δ 7.11 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.94-5.85$ (m, 1 H), 5.59-5.52 (m, 1 H), 5.41-5.34 (m, 2 H), 4.94-4.89 (m, 2 H), 3.92 (s, 3 H), 3.85 ($\mathrm{s}, 3 \mathrm{H}$), 2.78 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.21-2.18 (m, 2 H), 2.06-2.02 ($\mathrm{m}, 2 \mathrm{H}$).; ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 168.1,160.1,139.3,136.3,133.5,130.5,128.9$, 126.3, 123.3, 115.9, 114.4, 113.9, 55.3, 52.5, 42.8, 42.3, 32.7, 32.0.; HRMS (ESI): m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+}+1\right]$: 351.17087 , Found: 351.17142.

(Z)-Methyl 2-(allyloxymethyl)-4,4-dicyano-3-(4-methoxyphenyl)hepta-2,6-dienoate (77)

Following the general experimental procedure, 1,3-diene 75 ($69 \mathrm{mg}, 0.26 \mathrm{mmol}$), diallylcarbonate $52(76 \mathrm{mg}, 0.54 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(14 \mathrm{mg}, 0.013 \mathrm{mmol})$ in 3 mL THF at room temperature under argon atmosphere for 8 h gave the product 77 as a pale yellow viscous liquid in 41% (40 mg) yield.

$\mathbf{R}_{f}: 0.59$ (3:7 Ethyl acetate/hexane); IR (neat) $\boldsymbol{v}_{\text {max }}: 2951$, 2831, 1738, 1613, 1287, 1249, 1211, $819 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, CDCl $_{3}, \mathbf{T M S}$): $\delta 7.22$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.96$6.94(\mathrm{~m}, 2 \mathrm{H}), 5.88-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.58-5.49(\mathrm{~m}, 1 \mathrm{H}), 5.29-$ $5.22(\mathrm{~m}, 2 \mathrm{H}), 5.12-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.05-3.96(\mathrm{~m}, 3 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H})$, 3.79-3.76 (m, 4 H), 2.67-2.63(m, 1 H), 2.42-2.38(m, 1 H$)$.; ${ }^{13} \mathbf{C}$ NMR (75 MHz , $\mathbf{C D C l}_{3}$): $\delta 170.4,161.0,133.7,131.3,128.9,127.4,120.5,117.9,114.1,112.3,111.4,72.6$,
71.2, 55.3, 52.8, 39.0.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}\left[\mathrm{M}^{+}+1\right]: 367.16578$, Found: 367.16639 .

Crystal Data: Compound 66b

CCDC Number 933875

Chemical formula moiety	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$
Chemical formula sum	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$
Chemical formula weight	394.42
Symmetry cell setting	Monocilinic
Symmetry space group name	$\mathrm{P} 21 / \mathrm{c}$
Cell length a	$9.6286(9)$
Cell length b	$26.124(2)$
Cell length c	$9.2040(8)$
Cell angle alpha	90.00
Cell angle beta	$118.2250(10)$
Cell angle gamma	90.00
Cell volume	$2039.8(3)$
Cell formula units Z	3
Cell measurement temperature	$110 \mathrm{~K}(2)$
Cell measurement reflns used	8313
Cell measurement theta min	2.40
Cell measurement theta max	28.19
Exptl crystal description	Block
Exptl crystal size max	0.30
Exptl crystal size mid	0.28

Exptl crystal size min	0.22
Exptl crystal density diffrn	1.284
Exptl crystal_density_method	'not measured'
Exptl crystal colour	colourless
Exptl crystal F 000	832.0
Exptl absorpt coefficient mu	0.092
Exptl absorpt correction-type	Multi-Scan
Exptl absorpt correction T min	0.9730
Exptl absorpt correction T max	0.980
Diffrn ambient temperature	$110(2)$
Diffrn radiation wavelength	0.71073

2.6. References

1. Balci, M. Chem. Rev. 1981, 81, 91-108.
2. Streith, J.; Augelmann, G.; Fritz, H.; Strub, H. Tetrahedron Lett. 198, 23, 1909-1912.
3. Cookson, R. C.; Gilani, S. S. H.; Stevens, I. D. R. Tetrahedron Lett. 1962, 3, 615-618.
4. McCammant, M. S.; Liao, L.; Sigman, M. S. J. Am. Chem. Soc. 2013, 135, 4167-4170.
5. McCammant, M. S.; Sigman, M. S. Chem. Sci. 2015, 6, 1355-1361.
6. Alderson, T.; Jenner, E. L.; Lindsey, R. V. J. Am. Chem. Soc. 1965, 87, 5638-5645.
7. Vogt, D. Angew. Chem. Int. Ed. 2010, 49, 7166-7168.
8. Sharma, R. K.; RajanBabu, T. V. J. Am. Chem. Soc. 2010, 132, 3295-3297.
9. Page, J. P.; RajanBabu, T. V. J. Am. Chem. Soc. 2012, 134, 6556-6559.
10. Hilt, G.; du Mesnil, F.-X.; Lüers, S. Angew. Chem. Int. Ed. 2001, 40, 387-389.
11. Saini, V.; O'Dair, M.; Sigman, M. S. J. Am. Chem. Soc. 2015, 137, 608-611.
12. Burks, H. E.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 9134-9135.
13. Hong, K.; Morken, J. P. J. Org. Chem. 2011, 76, 9102-9108.
14. Kliman, L. T.; Mlynarski, S. N.; Ferris, G. E.; Morken, J. P. Angew. Chem. Int. Ed. 2012, 51, 521-524.
15. Takacs, J. M. Handbook of Organopalladium Chemistry for Organic Synthesis, Negishi, E. Ed. John Wiley \& Sons: Ney York, 2002, 1, 1579-1633
16. Bäeckvall, J. E. Pure Appl. Chem. 1983, 55, 1669-1676.
17. Bäeckvall, J.-E. Pure Appl. Chem. 1996, 68, 535-538.
18. Bäeckvall, J. E.; Andersson, P. G. J. Am. Chem. Soc. 1990, 112, 3683-3685.
19. Bäeckvall, J. E.; Andersson, P. G. J. Am. Chem. Soc. 1992, 114, 6374-6381.
20. Urkalan, K. B.; Sigman, M. S. Angew. Chem. Int. Ed. 2009, 48, 3146-3149.
21. Liao, L.; Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 10209-10211.
22. Liao, L.; Jana, R.; Urkalan, K. B.; Sigman, M. S. J. Am. Chem. Soc. 2011, 133, 57845787.
23. Nystroem, J. E.; Vaagberg, J. O.; Soederberg, B. C. Tetrahedron Lett. 1991, 32, 52475250.
24. Sato, Y.; Oonishi, Y.; Mori, M. J. Org. Chem. 2003, 68, 9858-9860.
25. George, S. C.; Thulasi, S.; Anas, S.; Radhakrishnan, K. V.; Yamamoto, Y. Org. Lett. 2011, 13, 4984-4987.
26. Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. J. Org. Chem. 2004, 69, 40534062.
27. Adak, L.; Bhadra, S.; Chattopadhyay, K.; Ranu, B. C. New J. Chem. 2011, 35, 430-437.
28. Patil, N. T.; Yamamoto, Y. Synlett. 2007, 1994-2005.
29. George, S. C.; John, J.; Anas, S.; John, J.; Yamamoto, Y.; Suresh, E.; Radhakrishnan, K. V. Eur. J. Org. Chem. 2010, 5489-5497.
30. Nair, V.; Devi, B. R.; Vidya, N.; Menon, R. S.; Abhilash, N.; Rath, N. P. Tetrahedron Lett. 2004, 45, 3203-3205.
31. CCDC-933875
32. Jiang, X.; Fu, D.; Shi, X.; Wang, S.; Wang, R. Chem. Commun. 2011, 47, 8289-8291.
33. Pezzati, B.; Chellat, M. F.; Murphy, J. J.; Besnard, C.; Reginato, G.; Stephens, J. C.; Alexakis, A. Org. Lett. 2013, 15, 2950-2953.
34. Nakamura, H.; Sekido, M.; Ito, M.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 68386839.

CHAPTER 3

Palladium-Catalyzed Interceptive Decarboxylative Addition of Allyl Carbonates to Squarates, Isatins and Other Electrophilic Carbonyl Compounds

3.1. Introduction

Catalytic cross-coupling reactions have had a profound impact on the synthesis of pharmaceuticals, biologically active natural products and materials. In this scenario, transition metals were employed as reagents or catalysts because they permit the reactions to proceed under mild conditions, with high functional group compatibility and often proceed in a chemo-, regio- and stereoselective manner. Among the various metal catalyzed cross coupling reactions, transition metal catalyzed decarboxylative coupling is an important environmentally benign strategy. ${ }^{1}$ Decarboxylative coupling takes place by generating an organometallic intermediate via decarboxylative metallation, and further reductive elimination provides coupled product. Decarboxylative coupling reaction has numerous advantages over the traditional cross-coupling methods: (i) the reactants, carboxylic acid derivatives, are ubiquitous and inexpensive, (ii) decarboxylation can generate reactive intermediates under neutral conditions, and (iii) the by-product formed is CO_{2}, which is nonflammable, non-toxic and easily removed from the reaction medium. ${ }^{1}$ Another advantage of decarboxylative allylation (DcA) is the ability to generate both nucleophile and electrophile in situ.

Since the pioneering work of Tsuji ${ }^{2}$ and Saegusa, ${ }^{3}$ palladium catalyzed decarboxylative allylations have emerged as an important strategy for constructing complex molecular frameworks under mild reaction conditions. They almost simultaneously reported the decarboxylative allylation of β-keto allyl esters. Tsuji and co-workers disclosed the
decarboxylative allylation of allyl esters of acetoacetic acid $\mathbf{1}$ in the presence of catalytic amount of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and PPh_{3} rendered γ, δ-unsaturated methyl ketones $\mathbf{2}$ in high yield. ${ }^{2}$

Scheme 3.1

Alternatively, Saegusa and co-workers demonstrated the decarboxylative coupling with a variety of acyclic and cyclic ketoesters using $5 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as the catalyst. A $\mathrm{Pd}(\mathrm{II})$ enolate intermediate was proposed to be involved in the reaction. ${ }^{3}$

Scheme 3.2
A few years after this initial report on the decarboxylative coupling of β-ketoesters, Tsuji demonstrated the potential of allyl vinyl carbonate 5 to undergo a decarboxylative allylation to generate product identical to those observed from the decarboxylative allylation of the β-ketoester. ${ }^{4}$

Scheme 3.3

3.1.1. Interceptive decarboxylative allylations (IDcA)

Decarboxylative allylation reactions performed in the presence of an electrophile are termed as Interceptive Decarboxylative Allylations. Electrophilic and nucleophilic intermediate species are generated from allyl esters and carbonates upon treatment with transition metal catalyst. These intermediates can be intercepted with an externally added electrophile before their combination to form decarboxylative allylation products (Scheme 3.4). ${ }^{1}$

Scheme 3.4. Representation of DcA and IDcA

Yamamoto and co-workers conducted a detailed study on the decarboxylative addition of allyl acetoacetate, allyl carbonates and allyl carbamates with activated olefins which are already discussed in chapter $1 .{ }^{5}$ Later on, the asymmetric decarboxylative addition of cyclic β-keto ester 10 with activated olefin 11 was reported by Stoltz and co-workers. ${ }^{6}$ Cyclic β ketoesters and arylidene malononitriles smoothly underwent the interceptive addition in the presence of the phosphinooxazoline ligated palladium catalyst, allowing generation of adjacent quaternary and tertiary carbon stereocenters with high enantioselectivity and diastereoselectivity.

Scheme 3.5

Ruthenium-catalyzed decarboxylative insertion of electrophiles into allyl β-ketoesters is reported by Tunge et al. in 2005. ${ }^{7}$ In addition to the olefin containing electron withdrawing nitrile groups, the Knoevenagel adduct of benzaldehyde and Meldrum's acid is also an effective Michael acceptor for the interceptive decarboxylative addition. In the presence of $2.5 \mathrm{~mol} \%[\mathrm{Cp} * \mathrm{RuCl}]_{4}$ and $10 \mathrm{~mol} \%$ bipyridine, the interceptive addition of allyl β-ketoesters with sufficiently electrophilic Michael acceptors occur to give Michael addition-allylation product.

bpy

Scheme 3.6
Chruma et al. reported palladium catalyzed interceptive decarboxylative allylation of allyl diphenylglycinate ester 20 with benzylidene malononitrile 11. ${ }^{8}$ The reaction proceeds through the formation of 2-aza-allyl anion 21 which is generated by the ionization of allyl ester 20 followed by decarboxylation in the presence of catalytic amount of palladium catalyst. The formed intermediate $\mathbf{2 1}$ is then intercepted by benzylidene malononitrile $\mathbf{1 1}$ and the resultant anion reacts with π-allyl palladium intermediate to give allylated imine 23 (Scheme 3.7).

Scheme 3.7

3.1.2. Reactivity of π-allyl palladium intermediates towards carbonyl compounds

In 1989, Tsuji and co-workers reported palladium-catalyzed intramolecular aldol reaction of aldehydes with ketone enolate generated from the allyl- β-keto ester under neutral conditions (Scheme 3.8). ${ }^{9}$ The reaction proceeds through the formation of π-allylpalladium enolate $\mathbf{2 5}$ and $\mathbf{2 5}^{\prime}$.

Scheme 3.8. Intramolecular decarboxylative aldol reaction

Later, the intermolecular version of palladium catalyzed decarboxylative aldol reaction of allyl- β-keto esters 28 and aldehyde 29 is reported by Schaus and co-workers. ${ }^{10}$ The reaction involves the in situ formation of a ketone enolate from allyl β-keto esters followed by the addition of the enolate to aldehydes and generate the product in good yield.

Scheme 3.9

Palladium-catalyzed allylation of aldehydes using bis- π-allylpalladium intermediate was reported by Yamamoto et al. for the first time. ${ }^{11}$ The reaction of allylstannanes $\mathbf{3 1}$ with aldehydes $\mathbf{3 2}$ catalyzed by $\mathrm{Pd}(\mathrm{II})$ complex produced the corresponding homoallylic alcohols 33.

Scheme 3.10

Chruma and co-workers investigated the interceptive addition of aldehydes with α-imino anions, generated under neutral reaction conditions via Pd-mediated decarboxylation of allyl diphenylglycinate imines. ${ }^{12}$ Treatment of benzaldimine 34 with $\operatorname{Pd}(\mathrm{dba})_{2} / \mathrm{dppf}$ in the presence of p-cyanobenzaldehyde $\mathbf{3 5}$ afforded the allyl ether 36a in 53% isolated yield as an inseparable mixture of diastereomers and the remaining mass balance was the 1,2 -imino alcohol 36b. The latter product, 36b presumably formed by the protonation of the intermediate alkoxide with adventitious water.

Scheme 3.11

Hayashi and co-workers reported various synthetic transformations of malonate derived valerolactones by utilizing palladium catalyzed decarboxylation chemistry. ${ }^{13}$ Palladiumcatalyzed decarboxylation of γ-methylidene- δ-valerolactones generates 1,4 -dipole which is the key intermediate for the synthetic transformations. They have reported [4+2] decarboxylative cycloadditions of γ-methylidene- δ-valerolactones with isatins and other activated ketones. ${ }^{14}$ Treatment of γ-methylidene- δ-valerolactones $\mathbf{3 7}$ with isatins $\mathbf{3 8}$ in the presence of palladium catalyst and phosphoramidite ligand $\mathbf{3 9}$ afforded the spiro-oxindoles 40 in excellent yields and diastereoselectivities (Scheme 3.12). The methodology developed is used for the straightforward synthesis of pharmaceutically relevant spiro-oxindoles. In order to expand the scope of the decarboxylative cycloaddition reaction, various activated ketones such as acenaphthenequinone and diethylketomalonate were used as coupling partners. This is an interesting transformation because ketones are usually not competent partners for Pd-catalyzed interceptive additions reactions.

Scheme 3.12

3.1.3. Squarates: A brief discussion

During the last few years, cyclobutene-1,2-diones have emerged as theoretically and synthetically interesting molecules to serve as useful synthetic intermediates. The reactivity is due to the resident functionality and high ring strain present in the four-membered dicarbonyl compounds. The addition of nucleophiles across electrophilic $\mathrm{C}=\mathrm{O}$ bond using transition metal catalysis is especially interesting since it provides alternatives to the more strongly nucleophilic and basic main group metal reagents such as organomagnesium and organolithium compounds. ${ }^{15}$

Due to the presence of two carbonyl groups, squarate esters are sufficiently electrophilic in nature. Many early investigations have been done based on the mono addition of an organometallic reagent in advance of further structural change or ring expansion. In 1985, Kraus reported the reactivity of organolithium as well as organomagnesium reagents with dimethyl squarate. ${ }^{16}$ By reacting with organolithium reagent, dimethylsquarate 41 underwent 1,2-addition leading to 2-hydroxy-3,4-dimethoxy-3cyclobutenone 42. The excess organolithium reagent led to double 1,2 -addition and afforded dihydroxy dimethoxy dialkyl cyclobutene derivative 43. The reaction of Grignard reagents with dimethyl squarate $\mathbf{4 1}$ resulted in the mono- or dialkyl-cyclobutene dione derivatives according to a 1,4 -addition process. The use of excess Grignard reagent leads to the dialkyl cyclobutene dione $\mathbf{4 5}$. ${ }^{16}$

Scheme 3.13

The 1,2 -adduct of squarate ester obtained by reacting dialkyl squarate with $\mathrm{CH}_{3} \mathrm{Li}$ is further transformed to semisquarate derivative 47 by reacting with HCl^{17} and cyclobutenedione mono acetal 48 by reacting with TFAA in methanol (Scheme 3.14). ${ }^{18}$

Scheme 3.14

The two-fold addition of alkenyl magnesium or lithium derivatives to squarate esters is a known method for preparation of cyclopentenone moiety. Paquette et al. extensively studied the two-fold addition of organolithium reagent to squarate ester. ${ }^{19}$ Squarate ester $\mathbf{4 1}$ on reaction with two equivalents of vinyl lithium afforded bicyclooctenone $\mathbf{5 0}$ whereas the two-fold addition of vinyl magnesium bromide with squarate ester furnished the regioisomer 51. ${ }^{20}$ Bicyclooctenone derivative 50 was formed by 1,2-1,2 double addition of vinyl lithium followed by ring expansion whereas the regioisomer 51 formed by the 1,2-1,4 addition of vinyl magnesium bromide and further ring expansion (Scheme 3.15).

Scheme 3.15

In 1994, Eguchi et al. developed a versatile method for the synthesis of highly substituted furanones by the oxidative rearrangement of 4-hydroxycyclobutenones $46 .{ }^{21}$ The intermediate 4-hydroxycyclobutenone was generated by the 1,2-addition of methyl lithium to diethyl squarate. The synthesis of furanone $\mathbf{5 3}$ involves oxy-radical triggered ring opening of 4-hydroxycyclobutenone and subsequent intramolecular radical addition to the carbonyl oxygen.

Scheme 3.16
TiCl_{4} catalyzed carbon-carbon bond forming reaction of squaryl chloride with allyl silanes and silyl enol ether was reported by the same group. ${ }^{22}$ The reaction of allylsilane 56 with squaryl chloride $\mathbf{5 5}$ afforded the 1,2-addition product 57 . In contrast, prenylsilane $\mathbf{5 8}$ underwent 1,4 -addition followed by dechlorosilylation to give 3-allyl-4-chlorocyclobut-3-ene1,2 -dione 59 as the predominant product along with minor 1,2-addition product $\mathbf{6 0}$. The regioselectivity is determined by the substitution pattern on the organosilanes (Scheme 3.17).

Scheme 3.17

3.2. Present Work

Palladium-catalyzed decarboxylative allylation has emerged as an important method for the construction of new carbon-carbon bonds. Recent advances toward palladium catalyzed interceptive decarboxylative allylation include the reactions of allyl- β-keto esters, allyl carbonates, allyl carbamates and allyl diphenylglycinate esters with electrophilic olefins. Squarate, a fascinating and versatile C-4 synthons, offer the prospect of serving as useful starting materials for the synthesis of a wide variety of compounds. The mono-addition and two-fold addition to the carbonyl group of squarates by organometallic reagents such as organolithium and Grignard reagents to synthesize polycyclic compounds are welldocumented in the literature. However, there have been only a few reports on palladiumcatalyzed reactions of squarates. ${ }^{23}$ In this context, we decided to explore the reactivity of allyl palladium intermediate generated in situ from allyl carbonates with squarates. Also, we extended the investigation on the reactivity of allyl palladium intermediates to isatins and other electrophilic carbonyl compounds. The results of these studies are discussed in the following section.

3.3. Results and Discussion

3.3.1. Palladium catalyzed interceptive decarboxylative 1,4 -addition of allyl carbonates to squarates

Our studies commenced with the reaction of dibutyl squarate 41a and diallyl carbonate 61a in the presence of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ in THF at room temperature. The reaction afforded 1,4-addition product 2,4-bis(allyloxy)-3,4-dibutoxycyclobut-2-enone 62aa as a colourless liquid in 22% yield.

Scheme 3.18

The structure of the product 62aa was established by usual spectroscopic techniques. In the IR spectrum, the peak at $1778 \mathrm{~cm}^{-1}$ assigned to the carbonyl group. In the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 3.1), the sp^{2} methine protons of the two allyl groups at $\mathrm{C}-10$ and $\mathrm{C}-17$ were visible as a multiplet in the region $\delta 5.98-5.91 \mathrm{ppm}$ and the sp^{2} methylene protons at $\mathrm{C}-11$ and C-18 appeared as multiplet in the area $\delta 5.39-5.15 \mathrm{ppm}$. The sp^{3} methylene protons on C-9 and C-16 were discernible as two doublets at $\delta 4.27(J=5.5 \mathrm{~Hz})$ and $4.77(J=5.5 \mathrm{~Hz}) \mathrm{ppm}$ respectively. Two methyl protons of butyl groups at C-8 and C-15 appeared as triplets at $\delta 0.96(J=7.5 \mathrm{~Hz})$ and $0.91(J=7.5 \mathrm{~Hz}) \mathrm{ppm}$. The sp^{2} methylene protons of the two butyl groups at C-5 and C-12 were visible as triplets at $\delta 3.71(J=6.5 \mathrm{~Hz})$ and $\delta 4.40(J=6.5 \mathrm{~Hz})$ ppm respectively.

In ${ }^{13} \mathrm{C}$ NMR (Figure 3.2), the carbonyl peak observed at $\delta 184.9 \mathrm{ppm}$. Signals appeared at $\delta 118.8$ and $\delta 116.8 \mathrm{ppm}$ corresponds to sp^{2} methylene carbons $\mathrm{C}-11$ and $\mathrm{C}-18$. The peaks observed at $\delta 134.3$ and 132.6 ppm assigned to $\mathrm{C}-10$ and $\mathrm{C}-17$ respectively. The quaternary carbons assigned with the help of DEPT-135 and HMQC spectral analysis. The quaternary carbon at C-3 resonated at $\delta 167.4 \mathrm{ppm}$. The peak visible at $\delta 137.08 \mathrm{ppm}$ corresponds to C-2 carbon. The quaternary $\mathrm{C}-4$ carbon attached to the two oxygen atoms resonated at $\delta 108.2$ ppm. All other signals were in good agreement with the assigned structure.

Figure 3.1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 62aa

Figure 3.2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 62aa

Figure 3.3. DEPT-135 NMR spectrum of compound 62aa

Figure 3.4. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC spectrum of compound 62aa
Further, the regiochemical 1,4-addition was confirmed by HMBC spectral analysis. From HMBC spectral analysis, it is clear that the sp^{3} methylene protons at $\mathrm{C}-5$ and $\mathrm{C}-9$ show correlation with the quaternary carbon C-4. This correlation confirms that both are attached to the same carbon atom. Also, the sp^{2} methylene protons of butyl group at $\mathrm{C}-12$ shows correlation with $\mathrm{C}-3$ carbon and sp^{2} methylene protons of allyl group at $\mathrm{C}-16$ shows correlation with C-2 carbon.

Figure 3.5. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of compound 62aa

Figure 3.6. Expansion of ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of compound 62aa
The molecular ion peak at $m / z 347.18249[\mathrm{M}+\mathrm{Na}]^{+}$, observed in the mass spectrum provided further supporting information for the proposed structure.

Detailed optimization studies were carried out to find the best condition for the reaction.Various catalysts such as $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \quad \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \quad \mathrm{PdCl}_{2}, \quad \mathrm{Pd}(\mathrm{OAc})_{2}$, $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] . \mathrm{CHCl}_{3}$ and $[\mathrm{Pd}(\text { allyl }) \mathrm{Cl}]_{2}$ were screened, from which $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ gave the highest yield. We then turned our attention to other parameters such as solvent and ligand. Among the solvents screened, dichloromethane was found to be best. The ligands examined were PPh_{3}, dppe, dppm, dppf and phosphoramidite ligand and found that none of the ligand favour to improve the yield. Temperature does not considerably impact this transformation. After the optimization studies, the best condition for the reaction was found to be a 1:2 mixture of dibutyl squarate and diallyl carbonate in the presence of $10 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in dry dichloromethane as solvent at room temperature. The results are summarized in Table 3.1.

Table 3.1. Screening of parameters for best catalyst system

Entry	Catalyst	Equiv. of Catalyst	Ligand	Solvent	Yield (\%) ${ }^{\text {a }}$
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$5 \mathrm{~mol} \%$	-	THF	22
2	$\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] . \mathrm{CHCl}_{3}$	$5 \mathrm{~mol} \%$	PPh_{3}	"	14
3	PdCl_{2}	$5 \mathrm{~mol} \%$	PPh_{3}	$"$	No Reaction
4	$\mathrm{Pd}_{2}(\mathrm{OAc})_{2}$	$5 \mathrm{~mol} \%$	PPh_{3}	"	No Reaction
5	$\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	$5 \mathrm{~mol} \%$	PPh_{3}	$"$	No Reaction
6	$\left[\mathrm{Pd}\left(\right.\right.$ allyl) $\mathrm{Cl}_{3}{ }_{2}$	$5 \mathrm{~mol} \%$	PPh_{3}	"	No Reaction
7	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$10 \mathrm{~mol} \%$	-	"	29
8	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$15 \mathrm{~mol} \%$	-	"	31
9	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$10 \mathrm{~mol} \%$	-	"	$21^{\text {b }}$
10	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$10 \mathrm{~mol} \%$	-	$\mathrm{CH}_{3} \mathrm{CN}$	23
11	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$10 \mathrm{~mol} \%$	-	Toluene	39
12	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$10 \mathrm{~mol} \%$	-	DCM	42
13	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$10 \mathrm{~mol} \%$	-	DMF	No Reaction
14	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$10 \mathrm{~mol} \%$	dppe	DCM	38
15	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$10 \mathrm{~mol} \%$	dppf	"	19
16	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$10 \mathrm{~mol} \%$	dppm	"	13
17	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$10 \mathrm{~mol} \%$	Phosphora	"	38
Reaction Conditions: dibutyl squarate (1.0 equiv.), diallylcarbonate (2.0 equiv.), solvent (2 mL), $\mathrm{rt}, 12 \mathrm{~h}$, ${ }^{\mathrm{a}}$ isolated, ${ }^{\mathrm{b}}$ performed the reaction at $60^{\circ} \mathrm{C},{ }^{\mathrm{c}} \mathrm{N}, \mathrm{N}$-Bis-((S)-1-phenylethyl)dibenzo[d,f][1.3.2]dioxaphosphepin-6-amine					

Under this optimized condition, the reaction was found to be general with different alkyl squarates (41a-c) and the results are summarized in Table 3.2. The scope of the reaction was further expanded by using different allyl carbonates such as allyl methyl carbonate 61b and dimethallyl carbonate 61c. All the reactions proceeded smoothly at room temperature to produce the desired ketals 62aa-62cc in moderate yields (Table 3.2). Regioselective 1,4addition achieved using the alkyl squarate 41b-c, but the 1,4-addition was not observed for isopropyl squarate 41d. The branched isopropyl group placed on the olefinic carbon makes the 1,4 -conjugate addition difficult. ${ }^{20}$

Table 3.2 Decarboxylative 1,4-addition of allyl carbonates with squarates

3.3.2. Mechanistic pathway

Based on the results, we propose a plausible mechanism for the 1,4 -interceptive addition of allyl carbonates to squarates and is illustrated in Scheme 3.19. The catalytic cycle is initiated by the oxidative addition of $\operatorname{Pd}(0)$ to allyl carbonate $\mathbf{6 1}$ followed by decarboxylation to generate π-allylpalladium complex \mathbf{B}. The alkoxy anion undergoes 1,4addition with squarate $\mathbf{4 1}$ to give cationic π - allylpalladium complex \mathbf{C} having oxyanion of squarate as the counter ion. Reductive elimination of palladium from \mathbf{C} results in the formation of allylated product 62 and regenerates the catalyst.

Scheme 3.19

3.3.3. Synthesis of spiro 4,7-dihydro-1,3-dioxepine

We have carried out a straightforward synthetic transformation of 2,4-bis(allyloxy)-3,4-dibutoxycyclobut-2-enone 62aa. The ring-closing metathesis of compound 62aa with Grubbs' second generation catalyst afforded spiro-4,7-dihydro-1,3-dioxepine fused 2 butenone derivative 63 in 26% yield (Scheme 3.20). The formation of product 63 is presumed to form through the 1,3 -allyloxy migration and subsequent ring closing metathesis of the intermediate \mathbf{E} (Scheme 3.20).

Scheme 3.20

The structure of the product $\mathbf{6 3}$ was elucidated by spectroscopic techniques. In the IR spectrum, the sharp band at $1779 \mathrm{~cm}^{-1}$ assigned to the carbonyl group. In the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 3.7), the olefinic protons at C-6 and C-7 discernible as a singlet at $\delta 5.69$ ppm. Two sp ${ }^{2}$ methylene protons at C-5 and C-8 observed as doublets at $\delta 4.59(J=14.5 \mathrm{~Hz})$ and $4.47(J=15.0 \mathrm{~Hz}) \mathrm{ppm}$ respectively. All other proton signals were in good agreement with the assigned structure.

Figure 3.7. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 63

In the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 3.8), the characteristic carbonyl peak was observed at $\delta 184.6 \mathrm{ppm}$. The sp^{2} carbons present in the cyclobutenone ring C-2 and C-3 were observed at $\delta 137.4$ and 166.8 ppm respectively. The characteristic peak corresponds to the spiro carbon C-4 appeared at $\delta 107.9 \mathrm{ppm}$. The peak observed at $\delta 65.5 \mathrm{ppm}$ corresponds to C-5 and C-8 carbons. All other signals were in good agreement with the proposed structure.

Figure 3.8. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 63

Figure 3.9. ${ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HMQC Spectrum of Compound 63

Further evidence for the proposed structure was obtained from the HMBC spectral analysis (Figure 3.10). The sp^{3} methylene protons at $\mathrm{C}-5$ and $\mathrm{C}-8$ show good correlation with $\mathrm{C}-4$ carbon, which indicates that the formed compound is a spirocyclic one. The sp^{3} methylene protons of butyl groups at C-9 and C-13 show correlation with carbon atoms C-3 and C-2 respectively. All other correlations are in good agreement with the proposed structure.

Figure 3.10. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of compound 63

Further evidence for the structure was obtained from the high-resolution mass spectral analysis, which showed the molecular ion peak at $m / z 319.15134[\mathrm{M}+\mathrm{Na}]^{+}$.

3.3.4. Palladium catalyzed interceptive decarboxylative 1,2 -addition of allyl carbonates with isatins

To examine the possibility of interceptive decarboxylative 1,2 -addition, we carried out the reaction of allyl carbonates with isatins. Isatins have been widely used as precursors for the synthesis of spiro-oxindoles and many other natural products. ${ }^{24}$ In an initial attempt, we carried out the reaction of 1-ethyl isatin 64a with diallyl carbonate 61a in the presence of 5 $\mathrm{mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in THF at room temperature. The C-3 carbonyl group of isatin underwent smooth allylation-oxyallylation to afford 3,3-bis(allyloxy)-1-ethylindolin-2-one 65a in 57\% yield (Scheme 3.21).

Scheme 3.21

The structure of the product was established with the aid of various spectroscopic analyses. IR spectrum confirmed the carbonyl absorptions in the region $1729 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 3.11), the sp^{2} methine protons of the two allyl groups at $\mathrm{C}-14$ and C -18 were visible as a multiplet in the region $\delta 5.95-5.89 \mathrm{ppm}$ and the sp^{2} methylene protons at C-15 and C-19 appeared as multiplet in the area $\delta 5.31-5.26 \mathrm{ppm}$. The sp^{3} methylene protons at $\mathrm{C}-13$ and $\mathrm{C}-17$ resonated as two separate multiplets in the region δ 5.15-5.13 and δ 4.47-4.43 ppm.

Figure 3.11. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 5 a}$
In the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 3.12), the carbonyl carbon at $\mathrm{C}-2$ resonated at δ 170.1 ppm . The quaternary carbon at $\mathrm{C}-3$ was located at $\delta 96.5 \mathrm{ppm}$. The sp^{2} carbons $\mathrm{C}-13$ and $\mathrm{C}-17$ were seen at $\delta 64.2 \mathrm{ppm}$. The signal corresponding to sp^{2} methine carbons $\mathrm{C}-14$ and

C-18 appeared at $\delta 134.0 \mathrm{ppm}$ and sp^{2} methylene carbons $\mathrm{C}-15$ and $\mathrm{C}-19$ resonated at $\delta 116.8$ ppm . All other signals were in good agreement with the assigned structure.

Figure 3.12. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 5 a}$
The structure was further supported by high-resolution mass spectral analysis, which showed a molecular ion peak at $m / z 296.12634[\mathrm{M}+\mathrm{Na}]^{+}$.

Finally, the structure of bis-allyloxy oxindole derivative was unambiguously confirmed by single crystal X-ray analysis of one of the derivatives 71a (Figure 3.13). ${ }^{25}$

Figure 3.13. ORTEP diagram of compound 71a
The method was also proved to be very convenient and general for the palladium catalyzed decarboxylative 1,2 -addition of allyl carbonates such as diallyl carbonate, allyl methyl carbonate and dimethallyl carbonate with the C-3 carbonyl group of a range of isatins. The reactions proceeded very efficiently under the same catalytic condition to furnish the desired 1,2-addition products 65a-71c in good yields (Table 3.3).

Table 3.3. Decarboxylative addition of allyl carbonates with N -substituted isatins

68c, 27\%

69a, 40\%

70a, 68\%

70b, 35\%

70c, 54\%

71a, 76\%

71c, 42%

Reaction Conditions: isatin (1.0 equiv), allyl carbonate (2.0 equiv), catalyst ($5 \mathrm{~mol} \%$), THF (2 mL), rt, 12 h

The reaction of isatin 72 with diallyl carbonate 61a was conducted under similar conditions. The reaction afforded 1-allylindoline-2,3-dione 73 in 52% yield along with 1-allyl-3,3-bis(allyloxy)indolin-2-one 74 in 8% yield (Scheme 3.22). From our investigations, it is noticeable that the C-3 functionalization takes place only after the N -protection.

Scheme 3.22

3.3.5. Synthesis of dioxepine fused spiro-oxindole

Synthetic utility of this chemistry is further highlighted by synthesizing spiro-dioxepine fused 2-oxindole. Ring-closing metathesis of 71a using Grubbs' first generation catalyst afforded dioxepine fused spiro-oxindole 75 in 98% yields.

Scheme 3.23

Spectroscopic analysis established the structure of the product 75. In the IR spectrum, the peak visible at $1726 \mathrm{~cm}^{-1}$ showed the presence of carbonyl group. In the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 3.14), the olefinic protons resonated as a singlet at $\delta 5.85 \mathrm{ppm}$. The methylene protons attached to oxygen atom resonated as two separate doublets at $\delta 5.09(J=$ 15.0 Hz) and $4.61(J=15.0 \mathrm{~Hz}) \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 3.15), the characteristic carbonyl peak was observed at $\delta 172.0 \mathrm{ppm}$. The peak corresponding to the spiro carbon appeared at $\delta 96.9 \mathrm{ppm}$. The peak observed at $\delta 63.8 \mathrm{ppm}$ corresponds to methylene carbons attached to two oxygen atom. All other signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were in accordance with the expected structure. Mass spectra clearly showed molecular ion peak at $m / z 330.11101[\mathrm{M}+\mathrm{Na}]^{+}$, which further supported the assigned structure.

Figure 3.14. ${ }^{1}$ H NMR Spectrum of compound 75

Figure 3.15. ${ }^{13} \mathrm{C}$ NMR Spectrum of compound 75
Analogous results were obtained with various N -protected bis-allyloxy indolin-2-one and the spiro-oxindoles (76-79) were formed in good to excellent yields. The results obtained are shown in Table 3.4. It is noteworthy that spirocyclic oxindole compounds are valuable pharmaceuticals. Spiro-oxindoles have been reported to possess a broad range of biological activities. ${ }^{24}$

Table 3.4. Ring closing metathesis of bis-allyloxy-2-oxindoles

Entry	Substrate	Product	Yield(\%)
1			76
3			97
4			96
5			88

Reaction Conditions: bis-allyloxy oxindole (1.0 equiv), catalyst (5 mol\%), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 3 h

3.3.6. Decarboxylative addition of allyl acetoacetate with \mathbf{N}-substituted isatins

Encouraged by the interceptive decarboxylative 1,2- addition of allyl carbonates with carbonyl groups, we were interested in studying the reactivity of allyl acetoacetate $\mathbf{1 4}$ with N -substituted isatins. In an initial attempt, we have tried the reaction of 1-ethyl isatin 64a with allyl acetoacetate 14. Instead of the intercepted addition product the reaction afforded 1-ethyl-3-hydroxy-3-(2-oxopropyl)indolin-2-one $\mathbf{8 0}$ in 72% yield.

Scheme 3.24

The structure of the product $\mathbf{8 0}$ was established by various spectroscopic analysis. In the IR spectrum, the characteristic O-H stretching observed at $3381 \mathrm{~cm}^{-1}$ and the carbonyl stretching was visible at $1694 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 3.16), a broad singlet observed at $\delta 4.30 \mathrm{ppm}$ was assigned to the proton of hydroxyl group attached to the C-3 carbon. The sp^{3} methylene protons resonated as two separate doublets at $\delta 3.19(J=17.0 \mathrm{~Hz})$ and $2.97(J=17.0 \mathrm{~Hz}) \mathrm{ppm}$ and the methyl protons of acetonyl group were observed as a singlet at $\delta 2.15 \mathrm{ppm}$.

Figure 3.16. ${ }^{1} \mathrm{H}$ NMR Spectrum of compound $\mathbf{8 0}$
In ${ }^{13} \mathrm{C}$ NMR spectrum, amide carbonyl was observed at $\delta 175.9 \mathrm{ppm}$, while the signal due to the carbonyl of acetonyl group appeared at $\delta 206.5 \mathrm{ppm}$. The quaternary carbon bearing hydroxyl group was located at $\delta 73.9 \mathrm{ppm}$. All other signals of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were in agreement with the proposed structure.

Figure 3.17. ${ }^{13} \mathrm{C}$ NMR Spectrum of compound $\mathbf{8 0}$
Supporting evidence for the structure was obtained from the high-resolution mass spectrum which showed the molecular ion peak at $m / z 256.09497[\mathrm{M}+\mathrm{Na}]^{+}$. Further, the structure of the product $\mathbf{8 0}$ was unambiguously confirmed by single crystal X-ray analysis (Figure 3.18). ${ }^{26}$

Figure 3.18. ORTEP Diagram of compound $\mathbf{8 0}$

The generality of the reaction was examined by reacting different N -substituted isatins with allyl acetoacetate $\mathbf{1 3}$ under identical reaction conditions, and the products were obtained in good yields. The results obtained are shown in Table 3.5

Table 3.5. Decarboxylative addition of allyl acetoacetate to C-3 carbonyl group of isatin

Reaction Conditions: isatin (1.0 equiv), allylacetotate (2.0 equiv), catalyst ($5 \mathrm{~mol} \%$), THF (2 mL), rt, 12 h

The synthesized compounds, 3-hydroxy-3-substituted oxindoles, are significant structural motifs in medicinal chemistry. Some of the biologically significant hydroxyl substituted 2-oxindoles are shown in figure 3.19.

convolutamydine A

anticonvulsant agent

antidegenerative disease agent

Figure 3.19. Bioactive 3-hydroxy-3-substituted oxindoles

3.3.7. Reductive cyclization of 3-hydroxy oxindoles

To demonstrate the utility of the present method in synthetic chemistry, further transformations of the obtained oxindoles were then investigated. The treatment of compound $\mathbf{8 1}$ with lithium aluminum hydride (LAH) in THF at $0{ }^{\circ} \mathrm{C}$ led to product $\mathbf{8 6}$ as inseparable diastereomers $(\mathrm{dr}=1: 0.7)$ in 80% yield $($ Scheme 3.25$) .{ }^{27}$

Scheme 3.25

The structure of product $\mathbf{8 6}$ was assigned with the help of various spectral data. The compound showed characteristic O-H stretching at $3390 \mathrm{~cm}^{-1}$ in the IR spectrum. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the ring junction proton which is attached to both oxygen and nitrogen was observed as a singlet at $\delta 5.19 \mathrm{ppm}$. The hydroxyl proton was discernible as a singlet at $\delta 4.76 \mathrm{ppm}$. The proton attached to an oxygen atom in the furan ring was observed as a multiplet in the area $\delta 4.39-4.32 \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum, the methyl carbon was seen at $\delta 20.4 \mathrm{ppm}$. All other signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were in agreement with the proposed structure. The mass spectral analysis showed a peak at $m / z 282.14932[\mathrm{M}+\mathrm{Na}]^{+}$, which also supported the proposed structure.

The formed furoindoline skeleton was found in indole alkaloid physovenine and it also analogue to the half fragment of natural products madindoline A and B (Figure 3.20).

(+)-Madindoline A

(+)-Madindoline B

(\pm)-Physovenine

Figure 3.20 Natural products containing furoindoline skelton

3.3.8. Interceptive decarboxylative addition of allyl carbonates with other carbonyl compounds

3.3.8.1. Interceptive addition with acenaphthenequinone

Interceptive decarboxylative addition of allyl carbonates was also proved to be general with electrophilic acenaphthenequinone under the similar reaction conditions. Allyl carbonates 61a-c reacted smoothly with 87 and furnished corresponding ketals 88a-c in moderate yields (Scheme 3.26).

Scheme 3.26 Decarboxylative addition of allyl carbonate with acenaphthenequinone

3.3.8.2. Interceptive addition with diethyl ketomalonate

The interceptive decarboxylative addition of allyl carbonates is further extended to diethyl ketomalonate. Diethyl ketomalonate 89 underwent smooth decarboxylative 1,2interceptive addition with allyl carbonates 61a-c under the optimized reaction conditions to give corresponding ketals 90a-c in good yields.

Scheme 3.27

3.3.8.3. Reaction of diallyl carbonate with methyl benzoylformate

We proceeded to examine the reactivity of methyl benzoyl formate 91 towards the interceptive addition with diallyl carbonate 61a. In this case, instead of the expected intercepted product the reaction afforded transesterification product allyl benzoylformate $\mathbf{9 2}$ in 33% yield.

Scheme 3.28

3.4. Conclusion

In summary, we have developed for the first time a palladium catalyzed interceptive decarboxylative 1,4 -addition of allyl carbonates to squarates. Interceptive decarboxylative 1,2-addition of allyl carbonates with N -substituted isatins, acenaphthenequinone and diethyl ketomalonate are also described. Furthermore, the ring-closing metathesis of bis allyloxy oxindole derived from the 1,2 -interceptive addition of diallyl carbonate with isatin derivatives furnished the corresponding spiro-dioxepine fused 2 -oxindoles in good yields. The addition of allyl acetoacetate with isatins provided the 3-hydroxy oxindole derivatives. Synthesized 3hydroxy oxindole derivative could be transformed into heterocyclic furoindoline skeleton.

3.5. Experimental Section

3.5.1. General experimental procedure for the palladium catalyzed interceptive decarboxylative allylation of squaric acid esters

Dialkyl squarate (1.0 equiv.) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ were taken in a Schlenk tube, degassed, and allyl carbonate (2.0 equiv.) was added followed by 2 mL dichloromethane . Argon gas is purged into the reaction mixture and stirred at room temperature for 12 h . The solvent was removed under reduced pressure and the residue on silica gel (100-200 mesh) column chromatography using ethyl acetate/hexane mixture afforded the product in moderate yields.

3.5.2. General experimental procedure for the palladium catalyzed decarboxylative addition of allyl carbonates to isatin

N -substituted isatin (1 equiv.) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ were taken in a Schlenk tube, degassed, and allyl carbonate (2 equiv.) was added followed by 2 mL THF. Argon gas is purged into the reaction mixture and stirred at room temperature for 12 h . The solvent was removed under reduced pressure and the residue on silica gel (100-200 mesh) column chromatography using ethyl acetate/hexane mixture as eluent afforded the product.

3.5.3. General experimental procedure for the palladium catalyzed decarboxylative addition of allyl acetoacetate to isatins

N -protected isatin (1 equiv.) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ were taken in a Schlenk tube, degassed, and allyl acetoacetate (2 equiv) was added followed by 2 mL THF. Argon gas is purged into the reaction mixture and stirred at room temperature for 12 h . The solvent was removed under reduced pressure and the residue on silica gel (100-200 mesh) column chromatography using ethyl acetate/hexane mixture as eluent to afford the product.

2,4-Bis(allyloxy)-3,4-dibutoxycyclobut-2-enone (62aa)

Dibutyl squarate 41a ($40 \mathrm{mg}, 0.18 \mathrm{mmol}$), diallyl carbonate 2a ($50 \mathrm{mg}, 0.35 \mathrm{mmol}$) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad(20 \mathrm{mg}$, 0.018 mmol$)$ were treated according to the general method. After purification by column chromatography (hexane/Ethyl acetate 97:3), compound 62aa was obtained as a colourless viscous oil in 42% yield (24 mg) and the unreacted dibutyl squarate (13 mg) was recovered.

$\mathbf{R}_{f}: 0.61$ (3:7 Ethyl acetate/hexane); IR (neat) $v_{\text {max }}$: 2961, 2935, 2874, 1778, 1638, 1460, 1331, $1061 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}$, CDCl $_{3}, \mathbf{T M S}$): $\delta 5.98-5.91$ (m, 2 H), 5.39-5.15 (m, $4 \mathrm{H}), 4.77$ (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.27$ (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.71(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.75 (quin, $J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1,58 (quin, $J=7.0 \mathrm{~Hz}, 2$), 1.47-1.36 (m, 4 H), $0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$).; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta 184.9,167.4,137.1,134.3,132.6,118.8$, 116.8, 108.2, 73.3, 71.2, 66.6, 65.5, 31.9, 31.5, 19.2, 18.7, 13.8, 13.6.; HRMS (ESI): m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 347.18344$; Found: 347.18249.

2-(Allyloxy)-3,4-dibutoxy-4-methoxycyclobut-2-enone (62ab)

Dibutyl squarate 41a ($40 \mathrm{mg}, 0.18 \mathrm{mmol}$), allyl methyl carbonate 61b ($41 \mathrm{mg}, 0.35$ mmol) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad(20 \mathrm{mg}, \quad 0.018 \mathrm{mmol})$ were treated according to the general method. After purification by column chromatography (hexane/Ethyl acetate 95:5), compound 62ab was obtained as a colourless viscous oil in 18% yield (9 mg) and the unreacted dibutyl squarate (30 mg) was recovered.

$\mathbf{R}_{f}: 0.23$ (2:8 Ethyl acetate/hexane).; IR (neat) $v_{\text {max }}: 2960,2937$, 2874, 1778, 1638, 1458, 1331, $1070 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}$, CDCl $_{3}$, TMS): $\delta 5.99-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.26(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2$ H), 3.49 (s, 3 H), 1.75 (quin, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.58 (quin, $J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 184.2,167.3,137.4,134.2,118.9,108.2,74.1,70.8,65.8,53.2,31.9$, 31.8, 18.7, 18.5, 13.7, 13.6.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 321.16779$; Found: 321.16608.

3,4-Dibutoxy-2,4-bis((2-methylallyl)oxy)cyclobut-2-enone (62ac)

Dibutyl squarate 41a ($50 \mathrm{mg}, 0.22 \mathrm{mmol}$), dimethallyl carbonate 61c ($75 \mathrm{mg}, 0.44$ $\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad(25 \mathrm{mg}, \quad 0.022 \mathrm{mmol})$ were treated according to the general method. After purification by column chromatography (hexane/Ethyl acetate 95:5), compound 62ac was obtained as a colourless viscous oil in 36% yield (28 mg) and the unreacted dibutyl squarate (24 mg) was recovered.

$\mathbf{R}_{f}: 0.54$ (2:8 Ethyl acetate/hexane).; IR (neat) $u_{\text {max }}: 2960,2933$, 2874, 1778, 1638, 1460, 1407, 1331, 1060, $1030 \mathrm{~cm}^{-1}$.; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): $\delta 5.03-4.86(\mathrm{~m}, 4 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H})$, $4.40(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.78-1.75 (m, 8 H), 1.65-1.56 (m, 2 H), 1.48-1.35 (m, 4 H), 0.96 ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), $0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 185.0,167.3$, $141.7,140.3,137.2,113.5,111.8,108.3,74.0,73.3,69.5,65.5,31.9,31.5,19.5,19.3,19.1$, 18.7, 13.7, 13.6.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 375.21474$; Found: 375.21385 .

2,4-Bis(allyloxy)-3,4-dimethoxycyclobut-2-enone (62ba)

Dimethyl squarate 41b ($50 \mathrm{mg}, 0.35 \mathrm{mmol}$), diallyl carbonate $\mathbf{6 1 a}(100 \mathrm{mg}, 0.70 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad(41 \mathrm{mg}, \quad 0.035 \mathrm{mmol})$ were treated according to the general method. After purification by column chromatography (hexane/Ethyl acetate 90:10), compound 62ba was obtained as a colourless viscous oil in 59% yield (51 mg) and the unreacted dimethyl squarate (10 mg) was recovered.

$\mathbf{R}_{f}: 0.48$ (3:7 Ethyl acetate/hexane).; IR (neat) $\cup_{\text {max }}: 2927$, 1718, 1647, 1587, 1320, $1019 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, CDCl $_{3}$, TMS): $\delta 6.02-5.88(\mathrm{~m}, 2 \mathrm{H}), 5.41-5.15(\mathrm{~m}, 4 \mathrm{H}), 4.76(\mathrm{~d}$, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}$, $3 \mathrm{H}) . ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 184.5,167.3,137.8$, 134.0, 132.5, 118.9, 116.9, 108.5, 71.4, 66.8, 60.2, 53.3.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 263.08954$; Found: 263.08845.

2-(Allyloxy)-3,4,4-trimethoxycyclobut-2-enone (62bb)

Dimethyl squarate 41b ($100 \mathrm{mg}, 0.70 \mathrm{mmol}$), allylmethyl carbonate 61b ($163 \mathrm{mg}, 1.41$ $\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad(82 \mathrm{mg}, \quad 0.074 \mathrm{mmol})$ were treated according to the general method. After purification by column chromatography (hexane/Ethyl acetate 95:5), compound 62bb was obtained as a colourless viscous oil in 45% yield (68 mg) and the unreacted dimethyl squarate (19 mg) was recovered.

$\mathbf{R}_{f}: 0.28$ (3:7 Ethyl acetate/hexane).; IR (neat) $\mathbf{v}_{\text {max }}: 2924,2854$, 1743, 1683, 1646, 1568, 1119, $1048 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathrm{H}$ NMR (500 MHz , $\left.\mathbf{C D C l}_{3}, \mathbf{T M S}\right): \delta 5.99-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.27(\mathrm{~m}, 2 \mathrm{H}), 4.77$ (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 6 \mathrm{H}) . ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 184.6,167.3,137.8,132.5,118.9,108.9,71.4$, 60.2, 53.3.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 237.07389; Found: 237.07271.

3,4-Dimethoxy-2,4-bis((2-methylallyl)oxy)cyclobut-2-enone (62bc)

Dimethyl squarate 41b ($100 \mathrm{mg}, 0.70 \mathrm{mmol}$), dimethallyl carbonate 61c ($239 \mathrm{mg}, 1.41$ mmol) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad(82 \mathrm{mg}, \quad 0.074 \mathrm{mmol})$ were treated according to
the general method. After purification by column chromatography (hexane/Ethyl acetate 95:5), compound 62bc was obtained as a colourless viscous oil in 43% yield (80 mg) and the unreacted dimethyl squarate (42 mg) was recovered.

$\mathbf{R}_{f}: 0.31$ (3:7 Ethyl acetate/hexane).; IR (neat) $v_{\text {max }}: 2924$, 1779, 1746, 1655, 1625, 1471, 1337, 1021 cm^{-1}.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}, \mathbf{T M S}\right): \delta 5.04-4.88(\mathrm{~m}, 4 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.16$ ($\mathrm{s}, 2 \mathrm{H}$), $4.15(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H})$.; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 184.6,167.2,141.6,140.1$, 137.9, 113.7, 111.9, 108.6, 74.1, 69.5, 60.1, 53.3, 19.5, 19.1.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 291.12084$; Found: 291.12021.

2,4-Bis(allyloxy)-3,4-diethoxycyclobut-2-enone (62ca)

Diethyl squarate 41c ($100 \mathrm{mg}, 0.64 \mathrm{mmol}$), diallyl carbonate 61a ($181 \mathrm{mg}, 1.27 \mathrm{mmol}$) and $\quad \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad(73 \mathrm{mg}, \quad 0.074 \mathrm{mmol})$ were treated according to the general method. After purification by column chromatography (hexane/Ethyl acetate 90:10), compound 62ca was obtained as a colourless viscous oil in 21% yield (35 mg) and the unreacted diethyl squarate (71 mg) was recovered.

$\mathbf{R}_{f}: 0.30$ (3:7 Ethyl acetate/hexane).; IR (neat) $\mathbf{v}_{\text {max }}$: 2984, 2930, 1812, 1731, 1602, 1418, 1335, $1021 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): $\delta 5.97-5.89$ (m, 2 H), 5.39-5.14 $(\mathrm{m}, 4 \mathrm{H}), 4.77(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.25(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \delta 184.5,166.9$, 137.0, 134.2, 132.6, 118.9, 116.7, 107.9, 71.2, 69.3, 66.5, 61.3, 15.4, 15.2.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 291.12084$; Found: 291.12021.

2-(Allyloxy)-3,4-diethoxy-4-methoxycyclobut-2-enone (62cb)

Diethyl squarate 41c ($100 \mathrm{mg}, 0.64 \mathrm{mmol}$), allylmethyl carbonate 61b ($147 \mathrm{mg}, 1.27$ mmol) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad(73 \mathrm{mg}, \quad 0.074 \mathrm{mmol})$ were treated according to the general method. After purification by column chromatography (hexane/Ethyl acetate 90:10), compound 62cb was obtained as a colourless viscous oil in 29% yield (44 mg) and the unreacted diethyl squarate (55 mg) was recovered.

$\mathbf{R}_{f}: 0.30$ (3:7 Ethyl acetate/hexane).; IR (neat) $v_{\text {max }}: 2924,1744$, 1590, 1423, 1318, 1119, $1020 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, TMS): $\quad \delta 5.99-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.26(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.45(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.49$ (s, 3 H), $1.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 184.7,166.9,137.0,132.6,118.9,108.4,71.2,69.3,61.3,53.1$, 15.4, 15.2.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 265.10519$; Found: 265.10367.

3,4-Diethoxy-2,4-bis((2-methylallyl)oxy)cyclobut-2-enone (62cc)

Diethyl squarate 41c ($100 \mathrm{mg}, 0.64 \mathrm{mmol}$), dimethallyl carbonate 41c ($216 \mathrm{mg}, 1.27$ mmol) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad(73 \mathrm{mg}, \quad 0.074 \mathrm{mmol})$ were treated according to the general method. After purification by column chromatography (hexane/Ethyl acetate 90:10), compound 62cc was obtained as a colourless viscous oil in 44% yield (83 mg) and the unreacted diethyl squarate (38 mg) was recovered.

$\mathbf{R}_{f}: 0.26$ (3:7 Ethyl acetate/hexane).; IR (neat) $v_{\text {max }}: 2931$, 2866, 1779, 1641, 1462, 1343, $1074 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}, \mathbf{T M S}\right): \delta 5.03-4.85(\mathrm{~m}, 4 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H})$, $4.46(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2$ H), 1.77 (s, 3 H), 1.75 ($\mathrm{s}, 3 \mathrm{H}$), 1.44 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.23 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$).; ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 184.7,166.8,141.6,140.2,137.1$, 113.6, 111.9, 108.1, 73.9, 69.3, 66.8, 61.3, 19.6, 19.2, 15.5, 15.3.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 319.15214$; Found: 319.15131.

Typical Procedure for the RCM of 2,4-bis(allyloxy)-3,4-dibutoxycyclobut-2-enone 62aa for the synthesis of 2,3-dibutoxy-5,10-dioxaspiro[3.6]deca-2,7-dien-1-one (63)

2,4-Bis(allyloxy)-3,4-dibutoxycyclobut-2-enone 62aa (43 mg, 0.13 mmol) was dissolved in 6 mL dichloromethane. To this Grubbs' second generation catalyst (12 mg , 0.013 mmol) was added and stirred at room temperature for 8 hours. The reaction was monitored by Thin Layer Chromatography. The solvent was evaporated in vacuo and the residue on silica gel ($100-200$ mesh) column chromatography using 5% ethyl acetate in hexane afforded the product 63 as colourless viscous oil in $26 \%(10 \mathrm{mg})$ yield.

$\mathbf{R}_{\boldsymbol{f}}: 0.33$ (2:8 Ethyl acetate/hexane).; IR (neat) $\boldsymbol{v}_{\text {max }}: 2960,2871$, 1779, 1638, 1465, 1413, 1334, 1071, $1049 \mathrm{~cm}^{-1}$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , CDCl $_{3}$, TMS $): \delta 5.69(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.76$ (quin, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.64 (quin, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.47-1.37 (m, 4 H), 0.99-0.93 (m, 6 H).; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 184.5,166.8,137.4,128.9,107.9$, $73.4,70.9,65.5,31.9,31.5,18.7,18.6,13.7,13.6 . ;$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 319.15214$; Found: 319.15134 .

3,3-Bis(allyloxy)-1-ethylindolin-2-one (65a)

Following the general experimental procedure, N-ethyl isatin $\mathbf{6 4 a}(100 \mathrm{mg}, 0.57 \mathrm{mmol})$, diallyl carbonate 61a $(142 \mathrm{mg}, 1.14 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(33 \mathrm{mg}, 0.028 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product $\mathbf{6 5 a}$ as a pale yellow viscous liquid ($89 \mathrm{mg}, 57 \%$ yield) after column chromatography (5% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.78$ (3:7 Ethyl acetate/hexane).; IR (neat) $\cup_{\text {max }}: 3077,2979$, 2933, 2875, 1729, 1613, 1465, 1366, 1264, 1212, 1159, 1117, 1048, 927, $754 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}, \mathbf{T M S}$): $\delta 7.41(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.95-5.89$ (m, 2 H), $5.31-5.26$ (m, 4 H), $5.15-$ 5.13 (m, 2 H), 4.47-4.43 (m, 2 H), 4.33-4.29 (m, 2 H), $1.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 170.1,142.4,134.1,130.5,125.6,124.9,122.4,116.8,108.7,96.5$, 64.2, 34.4, 12.5.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 296.12626$; Found: 296.12634.

3-(Allyloxy)-1-ethyl-3-methoxyindolin-2-one (65b)

Following the general experimental procedure, N-ethyl isatin 64a ($100 \mathrm{mg}, 0.57 \mathrm{mmol}$), allylmethyl carbonate 61b $(133 \mathrm{mg}, 1.14 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(33 \mathrm{mg}, 0.028 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product $\mathbf{6 5 b}$ as a pale yellow viscous liquid ($71 \mathrm{mg}, 50 \%$ yield) after column chromatography (15% Ethyl acetateHexane).

$\mathbf{R}_{f}: 0.39$ (3:7 Ethyl acetate/hexane).; IR (neat) $\mathbf{v}_{\text {max }}: 3061$, 2980, 2940, 1729, 1614, 1489, 1466, 1371, 1288, 1263, 1213, 1155, 1121, 1050, 931, $756 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, TMS): $\delta 7.43$ (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.49-$ 4.46 (m, 1 H), 4.36-4.33 (m, 1 H), 3.72 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.55 (s, 3 H), 1.26 (t, $J=7.5 \mathrm{~Hz}$, $3 \mathrm{H})$.; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.3,142.4,134.1,130.6,125.3,124.9,122.5$, 116.9, 108.9, 96.8, 64.2, 50.9, 34.4, 12.5.; HRMS (ESI): m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{NNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 270.11061$; Found: 270.11057.

1-Ethyl-3,3-bis(2-methylallyloxy)indolin-2-one (65c)

Following the general experimental procedure, N -ethyl isatin 64a ($100 \mathrm{mg}, 0.57 \mathrm{mmol}$), dimethallyl carbonate 61c ($194 \mathrm{mg}, 1.14 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(33 \mathrm{mg}, 0.028 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 gave the product $\mathbf{6 5 c}$ as a pale yellow viscous liquid ($82 \mathrm{mg}, 48 \%$ yield) after column chromatography (10% Ethyl acetateHexane).

$\mathbf{R}_{f}: 0.57$ (3:7 Ethyl acetate/hexane).; IR (neat) $v_{\text {max }}: 3074,2975$, 2927, 2867, 1729, 1654, 1613, 1463, 1368, 1212, 1119, 1043, 901, $752 \mathrm{~cm}^{-1} . ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, TMS): $\delta 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.98 (s, 2 H), 4.83 (s, 2 H), 4.34-4.18 (m, 4 H), 3.72 (q , $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 170.2, 142.4, 141.5, 130.4, 125.8, 124.9, 122.4, 111.8, 108.6, 96.5, 66.8, 34.4, 19.7, 12.5.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 324.15756$; Found: 324.15765.

3,3-Bis(allyloxy)-1-methylindolin-2-one (66a)

Following the general experimental procedure, N-methyl isatin ($100 \mathrm{mg}, 0.62 \mathrm{mmol}$), diallyl carbonate 61a ($176 \mathrm{mg}, 1.24 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(36 \mathrm{mg}, 0.031 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product 66 a as a brown viscous liquid ($83 \mathrm{mg}, 51 \%$ yield) after column chromatography (10% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.46$ (3:7 Ethyl acetate/hexane).; IR (neat) $\cup_{\text {max }}: 3062,2874$, 2377, 2310, 1728, 1610, 1468, 1369, 1349, 1234, 1110, 1039, 925, $752 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): $\delta 7.40(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.34-7.31 (m, 1 H), 7.06-7.03 (m, 1 H), 6.79 (d, $J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.95-5.87$ (m, 2 H), 5.28 (d, $J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.13$ (d, $J=$ $10.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.48-4.44 (m, 2 H), 4.33-4.29 (m, 2 H), 3.13 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (~} \mathbf{1 2 5} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 170.5,143.2,133.9,130.6,125.3,124.7,122.6,116.9,108.6,96.5,64.2,25.8 . ;$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 282.11061$; Found: 282.11102.

3-(Allyloxy)-3-methoxy-1-methylindolin-2-one (66b)

Following the general experimental procedure, N -methyl isatin ($50 \mathrm{mg}, 0.03 \mathrm{mmol}$), allyl methyl carbonate 61b ($72 \mathrm{mg}, 0.62 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(18 \mathrm{mg}, 0.015 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product $\mathbf{6 6 b}$ as a yellow viscous liquid ($31 \mathrm{mg}, 43 \%$ yield) after column chromatography (10% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.43$ (3:7 Ethyl acetate/hexane).; IR (neat) $u_{\text {max }}: 2955,2922$, 2089, 1725, 1648, 1612, 1465, 1369, 1612, 1465, 1369, 1347, 1234, 1112, 1040, $749 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}, \mathbf{T M S}$): $\delta 7.42$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1$ H), 6.83 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=17.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.36-4.33$ ($\mathrm{m}, 1 \mathrm{H}$), 3.56 ($\mathrm{s}, 3 \mathrm{H}$), 3.18 ($\mathrm{s}, 3 \mathrm{H}$).; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$): $\delta 170.5,143.3$, 134.0, 130.6, 125.2, 124.8, 122.6, 116.9, 108.6, 96.8, 64.2, 50.8, 25.8.; HRMS (ESI): m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 256.09496$, Found: 256.09527.

3,3-Bis-allyloxy-5-methoxy-1-methylindolin-2-one (67a)

Following the general experimental procedure, 5 -methoxy-N-methyl isatin (100 mg , $0.52 \mathrm{mmol})$, diallyl carbonate 61a ($149 \mathrm{mg}, 1.24 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(30 \mathrm{mg}, 0.026 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product 67 a as a yellow viscous liquid ($80 \mathrm{mg}, 52 \%$ yield) after column chromatography (10% Ethyl acetateHexane).

$\mathbf{R}_{f}: 0.41$ (3:7 Ethyl acetate/hexane).; IR (neat) $\cup_{\text {max }}: 3064$, 2871, 2371, 2308, 1727, 1610, 1464, 1369, 1349, 1231, 1110, 1031, 924, $752 \mathrm{~cm}^{-1} \cdot{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): δ $7.02(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1$ H), $5.96-5.88(\mathrm{~m}, 2 \mathrm{H}), 5.29(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.45-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.33-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.3,155.9,136.5,133.9,126.4,116.9,114.7,112.3,108.9,96.8$, 64.3, 55.8, 25.9.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 312.12118$, Found: 312.12145 .

3,3-Bis(allyloxy)-1-benzyl-5-fluoroindolin-2-one (68a)

Following the general experimental procedure, 5 -fluoro-N-benzyl isatin ($100 \mathrm{mg}, 0.41$ mmol), diallyl carbonate 61a ($118 \mathrm{mg}, 0.83 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(24 \mathrm{mg}, 0.021 \mathrm{mmol})$, in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product 68a as a yellow viscous liquid ($84 \mathrm{mg}, 57 \%$ yield) after column chromatography (15% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.62$ (3:7 Ethyl acetate/hexane).; IR (neat) $v_{\text {max }}: 3071,3027$, 2925, 2873, 2311, 1727, 1616, 1487, 1452, 1344, 1271, 1179, 1131, 1103, 1043, 923, 806, 752, 695, 600, $555 \mathrm{~cm}^{-1} . ;{ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): $\delta 7.31-7.28$ (m, 2 H), $7.25-7.24$ (m, 3 H), $7.17\left(\mathrm{dd}, J_{l}=7.5 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.90\left(\mathrm{dt}, J_{l}=9.0 \mathrm{~Hz}\right.$, $\left.J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.58\left(\mathrm{dd}, J_{l}=8.5 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.97-5.91(\mathrm{~m}, 2 \mathrm{H}), 5.31(\mathrm{~d}, J=$ $17.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 4.51-4.47(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.34(\mathrm{~m}, 2$ H).; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.5,159.9,158.0,138.2$ (2C), 135.0, 133.8, 128.9, $127.8,127.2,127.0,126.9,117.2,116.8,116.6,113.1,112.9,110.4,110.3,96.5,64.3,43.6 . ;$ HRMS (ESI): m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{FNO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 376.13249$, Found: 376.13315.

3-(Allyloxy)-1-benzyl-5-fluoro-3-methoxyindolin-2-one (68b)

Following the general experimental procedure, the 5 -fluoro-N-benzyl isatin (100 mg , 0.41 mmol), allyl methyl carbonate 61b ($96 \mathrm{mg}, 0.83 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(24 \mathrm{mg}, 0.021$ mmol) in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product 68b as a yellow solid ($55 \mathrm{mg}, 42 \%$ yield) after column chromatography (10% Ethyl acetateHexane).

$\mathbf{R}_{f}: 0.59$ (3:7 Ethyl acetate/hexane).; mp: 78-83 ${ }^{0} \mathrm{C}$.; IR (neat) $u_{\text {max }}: 2952,2916,2841,2311,1728,1612,1486,1451,1342,1270$, 1172, 1035, 975, 925, 803, 752, $670 \mathrm{~cm}^{-1} \cdot{ }^{\mathbf{1}}{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , $\mathbf{C D C l}_{3}, \mathbf{T M S}$): $\quad \delta 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{dd}$, $\left.J_{l}=7.5 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.94\left(\mathrm{dt}, J_{l}=8.5 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $6.61\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.01-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.92-4.82 (m, 2 H), 4.55-4.51 (m, 1 H), 4.42-4.38 (m, 1 H), 3.57 (s, 3 H).; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.5,159.9,158.0,138.2$ (2C), 134.9, 133.8, 128.9, $127.8,127.1,126.8,126.7,117.1,116.8,116.6,113.1,112.9,110.4,110.3,96.7,64.3,50.9$, 43.5.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FNO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 350.11684$, Found: 350.11762.

1-Benzyl-5-fluoro-3,3-bis((2-methylallyl)oxy)indolin-2-one (68c)

Following the general experimental procedure, 5-fluoro-N-benzyl isatin ($100 \mathrm{mg}, 0.41$ mmol), dimethallyl carbonate 61c ($141 \mathrm{mg}, 0.83 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(24 \mathrm{mg}, 0.021 \mathrm{mmol})$, in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product $\mathbf{6 8 c}$ as a pale yellow solid ($43 \mathrm{mg}, 27 \%$ yield) after column chromatography (8% Ethyl acetateHexane).

$\mathbf{R}_{f}: 0.69$ (3:7 Ethyl acetate/hexane).; mp: 76-80 ${ }^{\circ} \mathrm{C} . ;$ IR (neat) $U_{\text {max }}: 3070,3032,2986,2912,1730,1604,1487,1452,1343$, 1271, 1179, 1038, 900, 813, 753, 696, 670, $601 \mathrm{~cm}^{-1} . ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, ~ \mathbf{T M S}$): $\delta 7.35-7.32$ (m, 2 H), 7.29$7.26(\mathrm{~m}, 3 \mathrm{H}), 7.19\left(\mathrm{dd}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.94(\mathrm{dt}$, $\left.J_{1}=8.5 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.60\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}\right.$, 1 H), 5.03 ($\mathrm{s}, 2 \mathrm{H}$), 4.89-4.87 (m, 4 H), 4,39 (d, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.26$ (d, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.79 (s, 6 H).; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.5,159.9,158.0,141.2,138.2,138.1$, $135.0,128.9,127.8,127.1,127.0,116.7,116.5,113.1,112.9,112.1,110.3,110.2,96.6,66.9$, 43.5, 19.7.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{FNO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 404.16379$, Found: 404.16459 .

3,3-Bis(allyloxy)-1-benzyl-5,7-dimethylindolin-2-one (69a)

Following the general experimental procedure, 5,7-dimethyl N-benzyl isatin (100 mg, $0.37 \mathrm{mmol})$, diallyl carbonate 61a ($107 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22 \mathrm{mg}, 0.019 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product 69a as a
brown viscous liquid ($55 \mathrm{mg}, 40 \%$ yield) after column chromatography (10% Ethyl acetateHexane).

$\mathbf{R}_{f}: 0.54$ (3:7 Ethyl acetate/hexane).; IR (neat) $v_{\text {max }}: 2309$, $1723,1600,1482,1451,1344,1272,1145,1013,921,861,751$, $671 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): $\delta 7.29-7.27(\mathrm{~m}$, $2 \mathrm{H}), 7.24-7.19$ (m, 1 H), 7.14-7.12 (m, 3 H), 6.79 ($\mathrm{s}, 1 \mathrm{H}$), 5.99$5.92(\mathrm{~m}, 2 \mathrm{H}), 5.32\left(\mathrm{dd}, J_{l}=17.0 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.16(\mathrm{dd}$, $J_{l}=10.5 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}, 2 \mathrm{H}$), $5.10(\mathrm{~s}, 2 \mathrm{H}), 4.49-4.46(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.34(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}$, 3 H), 2.17 ($\mathrm{s}, 3 \mathrm{H}$).; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 171.9,137.9$, 137.2, 134.9, 134.2, $132.4,128.9,128.3,127.9,127.2,126.2,125.6,123.5,120.1,116.9,96.4,64.3,44.7,20.8$, 18.7.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 386.17321$, Found: 386.17373.

3,3-bis(allyloxy)-5-bromo-1-methylindolin-2-one (70a)

Following the general experimental procedure, N-Methyl-5-bromo isatin ($80 \mathrm{mg}, 0.25$ mmol), diallyl carbonate 61a ($72 \mathrm{mg}, 0.51 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(15 \mathrm{mg}, 0.028 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 gave the product 70a as a pale yellow viscous liquid ($57 \mathrm{mg}, 68 \%$ yield) after column chromatography (10% Ethyl acetateHexane).

$\mathbf{R}_{f}: 0.56$ (3:7 Ethyl acetate/hexane).; IR (neat) $\cup_{\text {max }}: 3078$, 2933, 2876, 1739, 1645, 1610, 1487, 1465, 1426, 1358, 1343, 1262, 1231, 1114, 1059, 1037, 977, 926, $812 \mathrm{~cm}^{-1} . ;{ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}$, CDCl $_{3}, \mathbf{T M S}$): $\delta 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 1 H), 6.69 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.95-5.87$ (m, 2 H), $5.32-5.28$ (m, 2 H), 5.18-5.15 (m, 2 H), 4.47-4.43 (m, 2 H), 4.33-4.28 (m, 2 H), 3.15 (s, 3 H).; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 169.9,142.2,133.6,133.3,127.9,127.3,117.2,115.4,110.1$, 96.2, 64.3, 25.9.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{BrNNa}[\mathrm{M}+\mathrm{Na}]^{+}: 360.02113$; Found: 360.02155 .

3-(Allyloxy)-5-bromo-3-methoxy-1-methylindolin-2-one (70b)

Following the general experimental procedure, N-Methyl-5-bromo isatin ($50 \mathrm{mg}, 0.21$ mmol), allyl methyl carbonate $\mathbf{6 1 b}(48 \mathrm{mg}, 0.42 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}, 0.014 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 gave the product $\mathbf{7 0 b}$ as a pale
yellow viscous liquid ($23 \mathrm{mg}, 35 \%$ yield) after column chromatography (10% Ethyl acetateHexane).

$\mathbf{R}_{f}: 0.56$ (3:7 Ethyl acetate/hexane).; IR (neat) $\cup_{\text {max }}$: 2940, $1735,1610,1487,1464,1427,1357,1263,1234,114,1062$, 972, $928,813 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): δ $7.51(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 1 H), 5.95-5.89 (m, 1 H), 5.33-5.16 (m, 2 H), 4.48-4.44 (m, 1 H), 4.34-4.31 (m, 1 H$), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 169.9$, 142.3, 133.7, 133.3, 127.9, 127.1, 117.2, 115.4, 110.0, 96.4, 64.2, 50.9, 25.9.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{BrNNa}[\mathrm{M}+\mathrm{Na}]^{+}: 334.00548$; Found: 334.00577.

5-Bromo-1-methyl-3,3-bis(2-methylallyloxy)indolin-2-one (70c)

Following the general experimental procedure, N -Methyl-5-bromo isatin ($50 \mathrm{mg}, 0.21$ $\mathrm{mmol})$, dimethallyl carbonate 61c ($71 \mathrm{mg}, 0.42 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}, 0.014 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 gave the product 70 c as a pale yellow viscous liquid ($41 \mathrm{mg}, 54 \%$ yield) after column chromatography (10% Ethyl acetateHexane).

$\mathbf{R}_{\boldsymbol{f}}: 0.58$ (3:7 Ethyl acetate/hexane).; IR (neat) $v_{\text {max }}: 3077$, $2920,1738,1654,1610,1488,1465,1429,1359,1342,1262$, 1230, 1114, 1039, 901, $812 \mathrm{~cm}^{-1}$.; ${ }^{1} \mathbf{H}$ NMR (500 MHz , CDCl $_{3}$, TMS): $\delta 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.99 (s, 2 H), 4.86 (s, 2 H), 4.32 (d, $J=$ $12.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.19 (d, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.15(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 6 \mathrm{H})$.; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 169.9,142.3,141.2,133.3,127.9,127.4,115.4,112.2,110.0,96.3,66.9,25.9$, 19.7.; HRMS (ESI): m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{BrNNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 388.05243; Found: 388.05270.

3,3-Bis(allyloxy)-1-benzylindolin-2-one (71a)

Following the general experimental procedure, N -benzyl isatin ($50 \mathrm{mg}, 0.21 \mathrm{mmol}$), diallyl carbonate 61a $(60 \mathrm{mg}, 0.42 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}, 0.011 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 gave the product 71a as a pale yellow viscous liquid ($53 \mathrm{mg}, 76 \%$ yield) after column chromatography (10% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.49$ (3:7 Ethyl acetate/hexane).; IR (neat) $\mathbf{v}_{\text {max }}: 3063,3030$, 2926, 2873, 1729, 1646, 1614, 1488, 1468, 1425, 1360, 1300, 1255, 1161, 1102, 1014, 925, 847, $698 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , CDCl $_{3}, \mathbf{T M S}$): $\delta 7.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.05$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-5.93(\mathrm{~m}, 2 \mathrm{H})$, 5.33 (d, J = $17.5 \mathrm{~Hz}, 2 \mathrm{H}$), $5.18(\mathrm{~d}, ~ J=10 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 4.55-4.51(\mathrm{~m}, 2 \mathrm{H}), 4.41-$ 4.37 (m, 2 H).; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.7,142.4,135.3,134.0,130.5,128.8$, 127.7, 127.2, 125.5, 124.8, 122.7, 116.9, 109.7, 96.6, 64.3, 43.4.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 358.14191$; Found: 358.14163.

1-Benzyl-3,3-bis((2-methylallyl)oxy)indolin-2-one (71c)

Following the general experimental procedure, N -benzyl isatin ($50 \mathrm{mg}, 0.21 \mathrm{mmol}$), dimethallyl carbonate 61c ($71 \mathrm{mg}, 0.42 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}, 0.014 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 gave the product 71c as a pale yellow viscous liquid ($30 \mathrm{mg}, 42 \%$ yield) after column chromatography (10% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.53$ (3:7 Ethyl acetate/hexane).; IR (neat) $v_{\text {max }}: 3064,3032$, 2974, 2918, 2866, 1731, 1655, 1614, 1490, 1467, 1361, 1300, 1254, 1184, 1138, 1077, 1041, 943, 900, 752, $698 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathrm{H}$ NMR (500 MHz, CDCl ${ }_{3}$, TMS): $\delta 7.44$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.33-7.22 (m, 6 H), $7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H})$, 4.88 ($\mathrm{s}, 4 \mathrm{H}$), 4.39 (d, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H})$, 1.78 ($\mathrm{s}, 6 \mathrm{H}$).; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.8,142.4,141.5,135.4,130.4,128.8$, 127.7, 127.2, 125.6, 124.8, 122.6, 111.9, 109.6, 96.7, 66.9, 43.4, 19.7.; HRMS (ESI): m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 386$. 17321; Found: 386.17374.

1-Allyl-3,3-bis(allyloxy)indolin-2-one (74)

Following the general experimental procedure, isatin 72 ($50 \mathrm{mg}, 0.17 \mathrm{mmol}$), diallyl carbonate $(50 \mathrm{mg}, 0.35 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{mg}, 0.008 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 gave the product 74 as a pale yellow viscous liquid after column chromatography (10% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.32$ (3:7 Ethyl acetatehexane).; IR (neat) $\boldsymbol{v}_{\max }: 3083,2922$, $2871,1728,1612,1466,1427,1361,1258,1191,1125,1045,925,752$ $\mathrm{cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl $\left.\mathbf{N O}_{3}, \mathbf{T M S}\right): \delta 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$ H), 5.96-5.89 (m, 2 H$), 5.85-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.22(\mathrm{~m}, 4 \mathrm{H}), 5.15(\mathrm{~d}$, $J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.48-4.44(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.29(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 170.3,142.5,133.9,131.1,130.5,125.4,124.8,122.6,117.8,116.9$, 109.5, 96.5, 64.3, 42.0.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 308.12626$; Found: 308.12668.

1'-Benzyl-4,7-dihydrospiro[[1,3]dioxepine-2,3'-indolin]-2'-one (75)

Following the general experimental procedure, the compound 71a $(150 \mathrm{mg}, 0.44$ mmol), Grubb's first generation catalyst ($18 \mathrm{mg}, 0.02 \mathrm{mmol}$) in 5 mL dichloromethane at room temperature under argon atmosphere for 3 h gave the product 75 as a pale yellow viscous liquid ($134 \mathrm{mg}, 98 \%$ yield) after column chromatography (15% Ethyl acetateHexane).

$\mathbf{R}_{\boldsymbol{f}}: 0.42$ (3:7 Ethyl acetate/hexane).; IR (neat) $\boldsymbol{v}_{\max }: 3782,3062$, $3033,2936,2872,1726,1611,1489,1465,1360,1257,1185,1140$, 1083, 1040, 1015, $752 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): δ $7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.03$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J$ $=15.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}) \cdot{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}$ (125 MHz, $\mathbf{C D C l}_{3}$): $\delta 172.0,142.3,135.3,130.6,129.3,128.8,127.7,127.2,126.5,124.1$, 122.7, 109.8, 96.9, 63.8, 43.3.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 330.11061, Found: 330.11101.

1'-Ethyl-4,7-dihydrospiro[[1,3]dioxepine-2,3'-indolin]-2'-one (76)

Following the general experimental procedure, the compound $\mathbf{6 5 a}(25 \mathrm{mg}, 0.0915$ mmol) and Grubbs' first generation catalyst ($4 \mathrm{mg}, 0.0046 \mathrm{mmol}$), in 4 mL dichoromethane at room temperature under argon atmosphere for 3 h gave the product 76 as a pale yellow viscous liquid ($17 \mathrm{mg}, 76 \%$ yield) after column chromatography (10% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.48$ (3:7 Ethyl acetate/hexane).; IR (neat) $v_{\text {max }}: 3031,29708$, 2936, 2873, 1727, 1613, 1489, 1467, 1371, 1259, 1213, 1123, 1084, 1051, 1024, $754 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$, TMS): $\delta 7.49(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.56$ $(\mathrm{d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 171.4,142.3,130.6,129.3,126.7,124.3,122.5,108.8,96.8,63.7,34.4$, 12.4.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 268.09496 ; Found: 268.09503.

5'-Methoxy-1'-methyl-4,7-dihydrospiro[[1,3]dioxepine-2,3'-indolin]-2'-one (77)

Following the general experimental procedure, the compound 67a ($95 \mathrm{mg}, 0.33 \mathrm{mmol}$) and Grubbs' first generation catalyst ($14 \mathrm{mg}, 0.016 \mathrm{mmol}$), in 5 mL dichloromethane at room temperature under argon atmosphere for 3 h gave the product 77 as a colourless solid (83 mg, 97% yield) after column chromatography (20% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.43$ (4:6 Ethyl acetate/hexane).; mp: $113-117{ }^{\circ} \mathrm{C}$.; IR (neat) $v_{\text {max }}: 3071,2964,2858,2312,1723,1606,1495,1452,1359,1290$, 1207, 1180, 1120, 1086, 1046, 1019, 966, 882, 797, $650 \mathrm{~cm}^{-1} . ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): $\delta 7.09$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.85 (dd, $\left.J_{l}=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 2 \mathrm{H})$, $5.01(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.5,155.9,136.5,129.2,127.5,114.6,111.8,109.0,97.0,63.6$, 55.8, 25.8.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 284.08988$, Found: 284.09018.

1'-Benzyl-5'-fluoro-4,7-dihydrospiro[[1,3]dioxepine-2,3'-indolin]-2'-one (78)

Following the general experimental procedure, the compound $\mathbf{6 8 a}(135 \mathrm{mg}, 0.38 \mathrm{mmol})$ and Grubb's first generation catalyst ($16 \mathrm{mg}, 0.019 \mathrm{mmol}$), in 5 mL dichloromethane at room temperature under argon atmosphere for 3 h gave the product 78 as a brown viscous liquid ($120 \mathrm{mg}, 96 \%$ yield) after column chromatography (15% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.57$ (3:7 Ethyl acetate/hexane).; IR (neat) $v_{\text {max }}: 3038,2985,2876$, 2311, 1727, 1619, 1489, 1454, 1348, 1275, 1180, 1132, 1083, 984, 956, 926, 877, 815, 795, 745, 699, $645 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right.$, TMS): $\delta 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}) .7 .28-7.25(\mathrm{~m}, 4 \mathrm{H}), 6.93\left(\mathrm{dt}, J_{l}=9.0 \mathrm{~Hz}, J_{2}\right.$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61\left(\mathrm{dd}, J_{l}=8.5 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.84(\mathrm{~s}, 2 \mathrm{H}), 5.08(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 2$ H), $4.85(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}) . ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta 171.8,159.9$, $158.0,138.1$ (2C), 135.9, 129.2, 128.9, 127.9, 127.8, 127.1, 116.8, 116.6, 112.6, 112.4, 110.5, $110.4,96.8,63.8,43.5$.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FNO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 348.10119$, Found: 348.10162.

1'-Benzyl-5',7'-dimethyl-4,7-dihydrospiro[[1,3]dioxepine-2,3'-indolin]-2'-one (79)

Following the general experimental procedure, the compound 69a ($63 \mathrm{mg}, 0.17 \mathrm{mmol}$) and Grubb's first generation catalyst ($7 \mathrm{mg}, 0.008 \mathrm{mmol}$), in 5 mL dichloromethane at room temperature under argon atmosphere for 3 h gave the product 79 as a pale brown viscous liquid ($51 \mathrm{mg}, 88 \%$ yield) after column chromatography (20% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.46$ (3:7 Ethyl acetate/hexane).; IR (neat) $u_{\text {max }}: 3029,2936$, $2870,1725,1602,1482,1448,1352,1271,1215,1156,1078,1022$, 863, $751 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}, \mathbf{T M S}$): $\delta 7.33-7.24$ (m, 4 H), 7.18 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.85 ($\mathrm{s}, 1 \mathrm{H}$), 5.86 ($\mathrm{s}, 2 \mathrm{H}$), 5.14 (s, 2 H), 5.10 (d, $J=15.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.29$ ($\mathrm{s}, 3 \mathrm{H}$), 2.21 ($\mathrm{s}, 3 \mathrm{H}$).; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 173.3$, 137.7, 137.0, 135.1, 132.6, 129.3, 128.9, 127.2 (2C), 125.6, 122.8, 120.5, .96.3, 63.7, 44.7, 20.7, 18.8.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 358.14191$, Found: 358.14215.

1-Ethyl-3-hydroxy-3-(2-oxopropyl)indolin-2-one (80)

Following the general experimental procedure, N-ethyl isatin 64a ($50 \mathrm{mg}, 0.285 \mathrm{mmol}$), allyl acetoacetate ($81 \mathrm{mg}, 0.57 \mathrm{mmol}$), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(16 \mathrm{mg}, 0.014 \mathrm{mmol})$, in 3 mL dichloromethane at room temperature under argon atmosphere for 12 h gave the product $\mathbf{8 0}$ as a colourless crystals ($48 \mathrm{mg}, 72 \%$ yield) after column chromatography (35% Ethyl acetateHexane).

$\mathbf{R}_{f}: 0.39$ ($8: 2$ Ethyl acetate/hexane).; mp: 144-148 ${ }^{\circ} \mathrm{C} . ;$ IR (neat) $U_{\text {max }}: 3381,2924,2821,1694,1615,1546,1492,1466,1419,1376$, 1359, 1205, 1102, 1080, $755 \mathrm{~cm}^{-1} \cdot{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$, TMS): 7.34 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 1 \mathrm{H}), 3.82-3.67(\mathrm{~m}, 2$ H), $3,19(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3$ H).; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 206.5, 175.9, 142.7, 130.0, 129.8, 123.9, 122.8, 108.6, 73.9, 49.2, 34.8, 31.1, 12.3.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 256.09496; Found: 256.09497.

1-Benzyl-3-hydroxy-3-(2-oxopropyl)indolin-2-one (81)

Following the general experimental procedure, N -benzyl isatin ($50 \mathrm{mg}, 0.21 \mathrm{mmol}$), allyl acetoacetate $(61 \mathrm{mg}, 0.42 \mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}, 0.011 \mathrm{mmol})$, in 2 mL dichloromethane at room temperature under argon atmosphere for 12 h gave the product $\mathbf{8 1}$ as a colourless crystals ($41 \mathrm{mg}, 66 \%$ yield) after column chromatography (35% Ethyl acetateHexane).

$\mathbf{R}_{f}: 0.48$ (8:2 Ethyl acetate/hexane).; mp: $148-152{ }^{\circ} \mathrm{C} . ;$ IR (neat) $v_{\max }: 3359,2956,2922,2853,1707,1612,1490,1466,1359,1173$, 1075, 966, 751, $696 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$, TMS): 7.387.32 (m, 5 H), 7.29-7.27 (m, 1 H$), 7.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.85(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4,47(\mathrm{~s}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.06 (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19(s, 3 H).; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 207.3, 176.4, 142.7, 135.4, 129.9, 129.7, 128.8, 127.7, 127.2, 123.8, 123.2, 109.7, 74.2, 48.9, 43.9, 31.3.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 318.11061$; Found: 318.11111.

3-Hydroxy-1-methyl-3-(2-oxopropyl)indolin-2-one (82)

Following the general experimental procedure, N -methyl isatin ($50 \mathrm{mg}, 0.31 \mathrm{mmol}$), allyl acetoacetate ($88 \mathrm{mg}, 0.62 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(18 \mathrm{mg}, 0.015 \mathrm{mmol})$, in 2 mL dichloromethane at room temperature under argon atmosphere for 12 h gave the product $\mathbf{8 2}$ as a pale yellow crystals ($52 \mathrm{mg}, 76 \%$ yield) after column chromatography (40% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.34$ ($8: 2$ Ethyl acetate/hexane).; mp: 134-138 ${ }^{\circ} \mathrm{C} . ;$ IR (neat) $v_{\text {max }}: 3302,2919,2850,1696,1612,1493,1468,1422,1356,1258$, 1222, 1172, 1094, 1020, 963, $754 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, TMS): $\delta 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.5$ Hz, 1 H), 4.62 (s, 1 H), 3.22-3.18 (m, 4 H), 2.99 (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.14 (s, 3 H).; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 206.6,176.4,143.6$, 129.9, 129.8, 123.8, 123.1, 108.5, 74.0, 49.2, 31.2, 26.3.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 242.07931$; Found: 242.07967.

3-Hydroxy-3-(2-oxopropyl)-1-phenylindolin-2-one (83)

Following the general experimental procedure, N-phenyl isatin ($50 \mathrm{mg}, 0.22 \mathrm{mmol}$), allyl acetoacetate ($63 \mathrm{mg}, 0.44 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13 \mathrm{mg}, 0.011 \mathrm{mmol})$, in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product $\mathbf{8 3}$ as a colourless solid (42 $\mathrm{mg}, 65 \%$ yield) after column chromatography (35% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.39$ (6:4 Ethyl acetate/hexane).; mp: 112-114 ${ }^{\circ} \mathrm{C}$.; IR (neat) $\mathbf{u}_{\text {max }}$: 3400, 3060, 2924, 2854, 1713, 1614, 1596, 1501, 1482, 1467, 1371, 1330, 1298, 1200, 1176, 1112, 1068, 1023, 971, 755, $700 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): $\delta 7.54-7.51$ (m, 2 H), 7.47-7.45 (m, 2 H), 7.43-7.37 (m, 2 H), 7.23 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07 (t, $J=7.5 \mathrm{~Hz}, 1$ H), 6.78 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.6(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1$ H), 2.11 ($\mathrm{s}, 3 \mathrm{H}$).; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 205.9,176.3,144.1,134.2,129.8,129.6$, 129.4, 128.2, 126.7, 123.8, 123.4, 109.8, 73.9, 50.3, 30.9.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 304.09496$, Found: 304.09500.

1-Benzyl-5-fluoro-3-hydroxy-3-(2-oxopropyl)indolin-2-one (84)

Following general experimental procedure, the 5 -flouro-N-benzylisatin ($100 \mathrm{mg}, 0.42$ $\mathrm{mmol})$, allyl acetoacetate ($118 \mathrm{mg}, 0.83 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(24 \mathrm{mg}, 0.02 \mathrm{mmol})$, in 3 mL THF at room temperature under argon atmosphere for 12 h gave the product $\mathbf{8 4}$ as a pale yellow viscous liquid ($76 \mathrm{mg}, 58 \%$ yield) after column chromatography (30% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.44$ (6:4 Ethyl acetate/hexane).; IR (neat) $v_{\text {max }}: 3468,2379$, 1708, 1601, 1486, 1455, 1339, 1266, 1172, 754, 696, $669 \mathrm{~cm}^{-1} . ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.33-7.31$ (m, 4 H), 7.29-7.27 (m, 1 H), $7.12\left(\mathrm{dd}, J_{1}=2.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.87(\mathrm{dt}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.61-6.58 (m, 1 H), 4.66 ($\mathrm{s}, 1 \mathrm{H}$), 4.95 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.81 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 206.4,176.8,160.4,158.4,138.8,135.1,131.5,131.4,128.9$, 127.8, 116.1, 112.2, 110.5, 110.4, 74.1, 49.5, 44.1, 30.9.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FNO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 336.10119$, Found: 336.10165.

1-Benzyl-3-hydroxy-5,7-dimethyl-3-(2-oxopropyl)indolin-2-one (85)

Following the general experimental procedure, 5,7-dimethyl N-benzyl isatin (100 mg , 0.37 mmol), allyl acetoacetate ($107 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22 \mathrm{mg}, 0.018 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product $\mathbf{8 5}$ as a brown coloured viscous liquid ($43 \mathrm{mg}, 38 \%$ yield) after column chromatography (35\% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.41$ (6:4 Ethyl acetate/hexane).; IR (neat) $v_{\text {max }}: 3393,3062$, 3029, 2922, 1717, 1605, 1452, 1386, 1169, 862, $734 \mathrm{~cm}^{-1}$.; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): $\delta 7.31-7.28$ (m, 2 H), 7.23-7.21 (m, 3 H), $6.99(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=$ $17.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11 (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$, 2.12 (s, 3 H).; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 206.3,177.9,138.4,137.4,134.3,132.7$, 130.6, 128.8, 127.1, 125.7, 122.3, 119.9, 73.3, 49.6, 45.1, 31.1, 20.7, 18.5.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 346.14191$, Found: 346.14200.

8-Benzyl-2-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (86)

Following the general experimental procedure, the compound $\mathbf{8 1}(160 \mathrm{mg}, 0.54 \mathrm{mmol})$ and $\mathrm{LiAlH}_{4}(41 \mathrm{mg}, 1.08 \mathrm{mmol})$ in 6 mL THF at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere for 4 h gave the product $\mathbf{8 6}$ as a brown coloured solid ($122 \mathrm{mg}, 80 \%$ yield) after column chromatography (15\% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.41$ (3:7 Ethyl acetate/hexane).; mp: 98-102 C.; IR (neat) $v_{\text {max }}: 3390,2965,2923,1609,1468,1453,1355,1260$, 1125, 1021, 947, 742, $696 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}$, Acetone-d ${ }_{6}$): $\delta 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 1.4 H), 7.31 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.25-7.22$ (m,3 H), 7.06-7.01 (m, 2 H), 6.67-6.62 (m, 2 H$), 6.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 5.31(\mathrm{~s}$, $0.7 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 0.7 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.58-4.52(\mathrm{~m}, 2 \mathrm{H}), 4.47-4.36(\mathrm{~m}, 2 \mathrm{H})$, 4.39-4.32 (m, 1 H), $3.90-3.84(\mathrm{~m}, 0.7 \mathrm{H}), 2.53\left(\mathrm{dd}, J_{l}=12.5 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.39(\mathrm{dd}$, $\left.J_{l}=12.0 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 0.7 \mathrm{H}\right), 2.05-2.04(\mathrm{~m}, 0.7 \mathrm{H}), 1.86-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 2.2 \mathrm{H}$), 1.12 (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$.; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, Acetone-d $\mathbf{d}_{\mathbf{6}}$: $\delta 150.6,149.1$, $139.0,138.8,133.0,131.7,129.4,129.1,128.3,128.2,127.5,127.3,126.8,126.8,126.7$, $123.8,123.4,117.5,117.3,106.6,105.5,105.0,103.8,87.7,87.5,74.3,74.2,49.7,49.1,48.6$, 48.3, 20.4, 19.2.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+1]^{+}: 282.14940$, Found: 282.14932.

2,2-Bis(allyloxy)acenaphthylen-1(2H)-one (88a)

Following the general experimental procedure, acenaphthenequinone 87 (50 mg , $0.27 \mathrm{mmol})$, diallyl carbonate $\mathbf{6 1 a}(100 \mathrm{mg}, 0.54 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(16 \mathrm{mg}, 0.013 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product 88a as a yellow viscous liquid ($33 \mathrm{mg}, 43 \%$ yield) after column chromatography (4\% Ethyl acetateHexane).

$\mathbf{R}_{f}: 0.63$ (2:8 Ethyl acetate/hexane).; IR (neat) $v_{\text {max }}: 3081,2926$, 2875, 1729, 1647, 1607, 1434, 1422, 1271, 1196, 1062, 1049, 1028, 1015, $989,925,834,782 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): $\delta 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.70(\mathrm{~m}, 2 \mathrm{H})$, 7.68-7.65 (m, 1 H$), 5.97-5.89(\mathrm{~m}, 2 \mathrm{H}), 5.28\left(\mathrm{dd}, J_{1}=17.0 \mathrm{~Hz}, J_{2}=\right.$ $1.5 \mathrm{~Hz}, \quad 2 \mathrm{H}), 5.13(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.57-4.54(\mathrm{~m}, 2 \mathrm{H}), 4.45-4.41(\mathrm{~m}, 2 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 197.4,141.0,135.3,134.1,131.8,130.8,130.2,128.2,128.1$, 126.2, 122.1, 121.3, 116.8, 99.3, 64.6.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 303.09971; Found: 303.10001.

2-(Allyloxy)-2-methoxyacenaphthylen-1(2H)-one (88b)

Following the general experimental procedure, acenaphthenequinone 87 (50 mg , 0.27 mmol), allyl methyl carbonate 61b ($64 \mathrm{mg}, 0.54 \mathrm{mmol}$), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(16 \mathrm{mg}, 0.013 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product $\mathbf{8 8 b}$ as a yellow viscous liquid ($27 \mathrm{mg}, 39 \%$ yield) after column chromatography (8% Ethyl acetateHexane).

$\mathbf{R}_{f}: 0.56$ (2:8 Ethyl acetate/hexane).; IR (neat) $v_{\text {max }}: 3054,2943$, 1731, 1607, 1494, 1465, 1271, 1196, 1065, 1049, 1031, 932, 834, 782 cm^{-1}.; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$, TMS): $\delta 8.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.96-7.92 (m, 2 H), 7.74-7.66 (m, 3 H), 5.98-5.93 (m, 1 H), 5.30 (dd, $\left.J_{l}=17.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.15\left(\mathrm{dd}, J_{l}=10.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1\right.$ H), 4.56-4.53 (m, 1 H), 4.46-4.43 (m, 1 H), 3.65 ($\mathrm{s}, 3 \mathrm{H}$).; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): δ 197.6, 141.1, 135.0, 134.1, 131.9, 130.8, 130.2, 128.3, 128.2, 126.2, 122.1, 121.3, 116.9, 99.5, 64.6, 51.3.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 277.08406$; Found: 277.08401.

2,2-Bis((2-methylallyl)oxy)acenaphthylen-1(2H)-one (88c)

Following the general experimental procedure, acenaphthenequinone 87 (50 mg , 0.27 mmol), dimethallyl carbonate 61c ($93 \mathrm{mg}, 0.54 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(16 \mathrm{mg}, 0.013 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product $\mathbf{8 8 c}$ as a yellow viscous liquid ($29 \mathrm{mg}, 35 \%$ yield) after column chromatography (8% Ethyl acetateHexane).

$\mathbf{R}_{f}: 0.49$ (2:8 Ethyl acetate/hexane).; IR (neat) $v_{\text {max }}: 3075,2920$, 2867, 1732, 1654, 1609, 1494, 1453, 1434, 1374, 1270, 1196, 1072, 1060, 899, $784 \mathrm{~cm}^{-1} . ;{ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}, \mathbf{C D C l}_{3}, \mathbf{T M S}$): $\delta 8.12(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.67(\mathrm{~m}$, $1 \mathrm{H}), 4.98$ (s, 2 H), 4.83 ($\mathrm{s}, 2 \mathrm{H}$), 4.44 (d, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.32$ (d, J $=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 197.8, 141.6, 141.0, 135.4, 131.8, 130.7, 130.2, 128.2, 128.1, 126.2, 122.0, 121.3, 111.8, 99.3, 67.2, 19.7.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 331.13101$; Found: 331.13068.

Diethyl 2,2-bis(allyloxy)malonate (90a)

Following the general experimental procedure, diethylketomalonate 89 ($50 \mathrm{mg}, 0.29$ mmol), diallyl carbonate 61a ($82 \mathrm{mg}, 0.57 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 0.014 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product 90a as a colourless viscous liquid ($63 \mathrm{mg}, 80 \%$ yield) after column chromatography (10% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.48$ (2:8 Ethyl acetate/hexane).; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, TMS): $\delta 5.94-5.87(\mathrm{~m}, 2 \mathrm{H}), 5.31(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.07(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H})$, $1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$.; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 165.0$, 132.9, 117.6, 97.7, 65.2, 62.1, 13.9.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 295.11576; Found: 295.11581.

Diethyl 2-(allyloxy)-2-methoxymalonate (90b)

Following the general experimental procedure, diethylketomalonate 89 ($50 \mathrm{mg}, 0.29$ mmol), allyl methyl carbonate 61b ($67 \mathrm{mg}, 0.57 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 0.014 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product 90 b as a colourless viscous liquid ($29 \mathrm{mg}, 41 \%$ yield) after column chromatography (10% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.44$ (2:8 Ethyl acetate/hexane).; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$, TMS): $\quad \delta 5.97-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}$, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.06(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2$ H), $3.36(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$.; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 164.9,132.9,117.7,98.2,65.0,62.2,51.6,14.0 . ;$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 269.10011$; Found: 269.10018.

Diethyl 2,2-bis(2-methylallyloxy)malonate (90c)

Following the general experimental procedure, diethylketomalonate 89 ($50 \mathrm{mg}, 0.29$ $\mathrm{mmol})$, dimethallyl carbonate 61c $(98 \mathrm{mg}, 0.57 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 0.014 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product 90 c as a colourless viscous liquid ($36 \mathrm{mg}, 43 \%$ yield) after column chromatography (5\% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.52$ (2:8 Ethyl acetate/hexane).; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}, \mathbf{T M S}\right): \delta 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4$ H), $3.99(\mathrm{~s}, 4 \mathrm{H}), 1.77(\mathrm{~s}, 6 \mathrm{H}), 1.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 165.2,140.4,112.6,97.6,67.6,62.1$, 19.5, 13.9.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 323.14706; Found: 323.14717.

Allyl 2-oxo-2-phenylacetate (92)

Following the general experimental procedure, methyl benzoylformate 91 ($50 \mathrm{mg}, 0.30$ $\mathrm{mmol})$, diallyl carbonate 61a ($87 \mathrm{mg}, 0.61 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(18 \mathrm{mg}, 0.015 \mathrm{mmol})$ in 2 mL THF at room temperature under argon atmosphere for 12 h gave the product 92 as a colourless viscous liquid ($19 \mathrm{mg}, 33 \%$ yield) after column chromatography (3\% Ethyl acetate-Hexane).

$\mathbf{R}_{f}: 0.59$ (1:9 Ethyl acetate/hexane).; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{5 0 0} \mathbf{~ M H z}$, CDCl $_{3}, \mathbf{T M S}$): $\quad \delta 8.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.06-5.98$ (m, 1 H), 5.46 (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 185.8,163.3,134.8,132.5,130.8,130.0,128.9$, 119.9, 66.5.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 213.05276$; Found: 213.05243.

Crystal Data: Compound 71a

CCDC number: 984183
Chemical formula moiety

$$
\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}
$$

Chemical formula sum	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}$
Chemical formula weight	335.39
Symmetry cell setting	Monoclinic
Symmetry space group name	P21/n
Cell length a	9.894 (2)
Cell length b	9.031 (1)
Cell length c	20.891 (3)
Cell angle alpha	90
Cell angle beta	93.28(3)
Cell angle gamma	90
Cell volume	1863.6
Cell formula units Z	4
Cell measurement temperature	571K
Cell measurement reflns used	28744
Cell measurement theta min	3.1
Cell measurement theta max	27.5
Exptl crystal description	Block
Exptl crystal size max	0.30
Exptl crystal size med	0.30
Exptl crystal size min	0.20
Exptl crystal density diffrn	1.195
Exptl crystal_density_method	'not measured'
Exptl crystal colour	colourless
Exptl crystal F 000	712
Exptl absorpt coefficient mu	0.080
Exptl absorpt correction-type	Empirical
Exptl absorpt correction T min	0.9765
Exptl absorpt correction T max	0.9842
Diffrn ambient temperature	571(2)
Diffrn radiation wavelength	0.71073

CCDC number: 984187

Chemical formula moiety	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}$
Chemical formula sum	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}$
Chemical formula weight	233.26
Symmetry cell setting	Tricilinic
Symmetry space group name	$\mathrm{P}-1$
Cell length a	$8.344(4)$
Cell length b	$8.833(5)$
Cell length c	$8.917(5)$
Cell angle alpha	$113.075(9)$
Cell angle beta	$93.003(4)$
Cell angle gamma	$92.983(9)$
Cell volume	$601.9(5)$
Cell formula units Z	2
Cell measurement temperature	300 K
Cell measurement reflns used	1024
Cell measurement theta min	3.4
Cell measurement theta max	27.5
Exptl crystal description	Block
Exptl crystal size max	0.40
Exptl crystal size mid	0.40
Exptl crystal size min	0.20
Exptl crystal density diffrn	1.287

Exptl crystal_density_method	'not measured'
Exptl crystal colour	colourless
Exptl crystal F 000	248
Exptl absorpt coefficient mu	0.092
Exptl absorpt correction-type	Empirical
Exptl absorpt correction T min	0.964
Exptl absorpt correction T max	0.981
Diffrn ambient temperature	$300(2)$
Diffrn radiation wavelength	0.71073

3.6. References

1. Weaver, J. D.; Recio, A.; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 18461913.
2. Shimizu, I.; Yamada, T.; Tsuji, J. Tetrahedron Lett. 1980, 21, 3199-3202.
3. Tsuda, T.; Chujo, Y.; Nishi, S.; Tawara, K.; Saegusa, T. J. Am.Chem. Soc. 1980, 102, 6381-6384.
4. Tsuji, J.; Minami, I.; Shimizu, I. Tetrahedron Lett. 1983, 24, 1793-1796.
5. Patil, N. T.; Yamamoto, Y. Synlett. 2007, 1994-2005.
6. Streuff, J.; White, D. E.; Virgil, S. C.; Stoltz, B. M. Nat Chem 2010, 2, 192-196.
7. Wang, C.; Tunge, J. A. Org. Lett. 2005, 7, 2137-2139.
8. Yeagley, A. A.; Lowder, M. A.; Chruma, J. J. Org. Lett. 2009, 11, 4022-4025.
9. (a) Nokami, J.; Mandai, T.; Watanabe, H.; Ohyama, H.; Tsuji, J. J. Am. Chem. Soc. 1989, 111, 4126-4127. (b) Nokami, J.; Watanabe, H.; Mandai, T.; Kawada, M.; Tsuji, J. Tetrahedron Lett. 1989, 30, 4829-4832.
10. Lou, S.; Westbrook, J. A.; Schaus, S. E. J.Am. Chem. Soc. 2004, 126, 11440-11441.
11. (a) Nakamura, H.; Asao, N.; Yamamoto, Y. J. Chem. Soc. Chem. Commun. 1995, 12731274. (b) Nakamura, H.; Iwama, H.; Yamamoto, Y. J. Am. Chem. Soc. 1996, 118, 66416647.
12. Yeagley, A. A.; Chruma, J. J. Org. Lett. 2007, 9, 2879-2882.
13. (a) Park, S.; Shintani, R.; Hayashi, T. Chem. Lett. 2009, 38, 204-205. (b) Shintani, R.; Park, S.; Shirozu, F.; Murakami, M.; Hayashi, T. J. Am. Chem. Soc. 2008, 130, 1617416175. (c) Shintani, R.; Park, S.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 1486614867. (d) Shintani, R.; Murakami, M.; Hayashi, T. Pure Appl. Chem. 2008, 80, 11351140. (e) Shintani, R.; Murakami, M.; Hayashi, T. Journal of the American Chemical Society 2007, 129, 12356-12357. (f) Shintani, R.; Murakami, M.; Hayashi, T. Org. Lett. 2009, 11, 457-459.
14. Shintani, R.; Hayashi, S.-y.; Murakami, M.; Takeda, M.; Hayashi, T. Org. Lett. 2009, 11, 3754-3756.
15. Negri, J.; Morwick, T.; Doyon, J.; Wilson, P. D.; Hickey, E. R.; Paquette, L. A. J. Am. Chem. Soc.1993, 115, 12189-12190.
16. Kraus, J. L. Tetrahedron Lett. 1985, 26, 1867-1870.
17. Liebeskind, L. S.; Fengl, R. W.; Wirtz, K. R.; Shawe, T. T. J. Org. Chem. 1988, 53, 2482-2488.
18. Santora, V. J.; Moore, H. W. J. Am. Chem. Soc. 1995, 117, 8486-8487.
19. Paquette, L. A. Eur. J. Org. Chem. 1998, 1709-1728.
20. Varea, T.; Alcalde, A.; Grancha, A.; Lloret, J.; Asensio, G.; Lledos, A. The Journal of Organic Chemistry 2008, 73, 6521-6533.
21. Yamamoto, Y.; Ohno, M.; Eguchi, S. The Journal of Organic Chemistry 1994, 59, 47074709.
22. Ohno, M.; Yamamoto, Y.; Eguchi, S. J. Chem. Soc., Perkin Trans. 1 1991, 2272-2273.
23. (a) Liebeskind, L. S. Tetrahedron 1989, 45, 3053-3060. (b) Liebeskind, L. S.; Chidambaram, R.; Mitchell, D.; Foster, B. S. Pure Appl. Chem. 1988, 60, 27-34.
24. Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104-6155.
25. CCDC 984183
26. CCDC 984187
27. Jia, F.; Liu, K.; Xi, H.; Lu, S.; Li, Z. Tetrahedron Lett. 2013, 54, 6337-6340.

CHAPTER 4

Lewis Acid Catalyzed Povarov Reaction Using Pentafulvenes as Dienophiles

4.1. Introduction

Fulvenes are cyclic cross-conjugated molecules with an odd number of carbon atoms in the ring and are highly colored compounds. Fulvenes and their derivatives are at the center stage of research attributed to their theoretical, mechanistic and synthetic viewpoints. ${ }^{1}$ Fulvene backbone possesses an exocyclic carbon-carbon double bond which generates a unique polar system. According to the ring size, fulvenes are named as triafulvenes, pentafulvenes, heptafulvenes etc. (Figure 4.1). Among them, pentafulvenes stands out because of its peculiar reactivity pattern and the versatility of the reaction products. Pentafulvenes are excellent candidates for the preparation of polycyclic compounds through a diverse array of cycloaddition reactions. ${ }^{2}$ Pentafulvenes are mainly utilized as synthetic intermediates to access new carbo- as well as heterocyclic systems, containing one or more five-membered rings such as natural products pallambins A and $\mathrm{B},{ }^{3}$ kigelinol, neoamphilectane and kempane skeletons. ${ }^{4}$

Figure 4.1. Common fulvenoids
Pentafulvenes possess high polarizability and non-benzenoid aromaticity. The ground state of fulvenes presents a strong polyolefinic character as compared to the aromaticity exhibited by a benzene ring. The electronic nature of substituents at the exocyclic position significantly influences the aromatic character of pentafulvenes. ${ }^{5}$ Electron donating groups on the exocyclic position of pentafulvenes strongly stabilizes the five-membered ring leading to
a substantial increase in aromatic character (Figure 4.2). This is evidently due to the electron accepting power of the five-membered ring to satisfy the Huckel $4 n+2$ rule.

EDG = Electron donating groups

EWG = Electron withdrawing groups

Figure 4.2. Order of aromaticity of pentafulvenes

4.1.1. Reactivity of pentafulvenes

Fulvenes display a broad range of reactions with nucleophiles, electrophiles and various cycloaddition partners. ${ }^{6}$ The terminal exocyclic carbon of pentafulvenes is electrophilic and can be attacked by suitable nucleophiles. On the other hand, fulvenes with N - or O - functions at the exocyclic carbon show a marked tendency for electrophilic and nucleophilic substitution reactions like the isomeric anilines or phenols. ${ }^{7}$ However, the synthetic potential of pentafulvenes was mainly exploited in periselective cycloaddition reactions.

4.1.1.1. Cycloaddition reactions in pentafulvenes

In cycloaddition reactions, pentafulvenes can act as $2 \pi, 4 \pi$ or 6π component, depending on the number of electrons furnished by the competing partner. ${ }^{4}$ For example $[2+2],[4+2]$, $[2+4],[6+4]$ and $[6+2]$ cycloadditions of pentafulvenes provided efficient approaches towards polycyclic systems and natural products. The periselectivity of these reactions is controlled by the substituents on the fulvene and the substrates engaged in the reaction. ${ }^{8}$ Cycloadditions of fulvenes offer a versatile and powerful approach to synthesize various natural products and biologically active molecules. ${ }^{3,9}$ Some of the key examples of cycloaddition reactions of pentafulvene are discussed in the following section.

Pentafulvenes can function as highly reactive dienes with various dienophiles. Pentafulvenes undergo smooth Diels-Alder reaction with dienophiles like maleimide, maleic anhydride, p-quinone and dialkyl azodicarboxylates to afford the corresponding bicyclic adducts in good yields. A typical Diels-Alder cycloaddition of pentafulvene with quinone is presented in Scheme 4.1. ${ }^{10}$

Scheme 4.1

In 2012, Biju et al. reported a high-yielding, versatile and practical Diels-Alder reaction of pentafulvenes with arynes under mild reaction conditions. The arynes generated by the fluoride-induced 1,2-elimination of 2-(trimethylsilyl)aryl triflates underwent efficient cycloaddition with 6 -substituted and 6,6-disubstituted pentafulvenes led to the formation of benzonorbornadiene derivatives 5,6 (Scheme 4.2). ${ }^{11}$

Scheme 4.2

Hong and co-workers developed intramolecular Diels-Alder (IMDA) cycloaddition in simple acyclic fulvenes towards a variety of polycyclic ring skeletons such as kigelinol, neoamphilactane, kempane etc. An example for the synthesis of kigelinol skeleton 9 from the fulvene $\mathbf{7}$ is depicted in Scheme 4.3. ${ }^{4}$

Scheme 4.3

The reactivity of fulvenes mainly depends on the polarity of the exocyclic double bond. Fulvenes having electron rich substituents at the exocyclic position show different behavior towards dienophiles. 6-(N,N-dimethylamino)fulvene $\mathbf{1 0}$ acted like a 6π candidate in
cycloaddition reaction with maleic anhydride $\mathbf{1 1}$ and furnished the [6+2] cycloadduct $\mathbf{1 2}$ in 70% yield (Scheme 4.4). ${ }^{10}$

Scheme 4.4

The reactions of pentafulvenes with various dipolar systems are also exploited for the construction of many biologically relevant polycycles. Diazomethane, a 1,3-dipole with wellestablished nucleophilic character adds to 6,6-dimethyl fulvene 1a exclusively in a [6+3] fashion to yield the fused product 15, after tautomerization of the initially formed cycloadduct 14 . ${ }^{12}$

Scheme 4.5

In 2003, Hong et al. reported a [6+3] cycloaddition of azomethine ylides with fulvenes, in which fulvenes served as 6π components. ${ }^{13}$ This reaction is providing a synthetic route for the construction of racemic six-membered piperidine derivatives. Later, Wang and coworkers reported the asymmetric version of this reaction by using $\mathrm{Cu}(\mathrm{I}) / \mathrm{TF}-\mathrm{BiphamPhos}$ catalyst. ${ }^{14}$

Scheme 4.6

Electron deficient dienes normally engage with fulvenes in a [4+2] cycloaddition at one of the endocyclic double bonds, ${ }^{15}$ while electron rich dienes react as 4π components in a
$[6+4]$ process. ${ }^{16}$ An illustration of each of these modes of reaction is given Scheme 4.7. The reaction of dimethylfulvene 1a with electron deficient 2,5-dimethyl-3,4diphenylcyclopentadienone $\mathbf{1 8}$ in refluxing THF afforded [4+2] adduct $\mathbf{1 9}$ whereas the reaction of dimethylfulvene with electron rich 1-diethylaminobutadiene 20 furnished [6+4] adduct 21.

Scheme 4.7

Factors governing reactivity of fulvenes have been elucidated out by employing frontier molecular orbital considerations. The relevant molecular orbitals of fulvene that are generally participating in the reaction are displayed in the figure 4.3.

Figure 4.3. Frontier molecular orbitals of fulvene

The controlling orbitals involved in the reaction of fulvene with an electron deficient diene are the HOMO of fulvene and LUMO diene. The large frontier density at C-2 and C-3, as well as the node through C-1 and C-6, dictate that the fulvene will participate as a 2π partner. On the other hand, LUMO controlled reactions with electron-rich diene partners
should react at C-6 and C-2, affording [6+4] adducts. Furthermore, strongly electron donating substituents located at the C-6 position of fulvene elevate the next highest occupied molecular orbital (NHOMO) sufficiently to permit the $[6+4]$ mode of cycloaddition to prevail with electron deficient 4π systems. An example of this type of reaction is presented in Scheme 4.8. Electron rich N,N-dimethylaminofulvene $\mathbf{1 0}$ known to react with electron deficient diene partners primarily in the $[6+4]$ mode. ${ }^{17}$

Scheme 4.8

In 2004, Hong and co-workers investigated the reactivity of fulvene with electron deficient azadiene N-sulfonyl-1-aza-1,3-butadiene 25. ${ }^{4}$ This inverse electron demand DielsAlder reaction furnished tetrahydra-[1]-pyridine derivative 26. The [4+2] cycloaddition reaction also verifies the reactivity of fulvene as 2π component with electron deficient azadienes.

Scheme 4.9
Our group also significantly contributed to the cycloaddition chemistry of pentafulvenes. We have reported a straightforward and efficient synthetic strategy for the construction of $5-8$ fused cyclo-octanoids by [6+3] cycloaddition reaction of pentafulvenes with 3-oxidopyrylium betaines. ${ }^{18}$

Scheme 4.10

Utilizing the cycloaddition potential of pentafulvenes, we developed an efficient spiroannulation reaction that allows the expeditious synthesis of spirocyclic compounds. ${ }^{19}$

Scheme 4.11
Later, we extended the cycloaddition profile of pentafulvenes with various 3 -oxidopyridinium betaines. The adopted methodology involved [6+3] and [3+2] cycloaddition reactions of pentafulvenes with 3-oxidopyridinium betaines generated either by the action of a base on the pyridinium salt or thermally from pyridinium betaine dimer. A careful manipulation of the reaction conditions paved the way for the efficient synthesis of bicyclo[6.3.0]undecane $\mathbf{3 9}$ as the kinetic adduct and bicyclo[5.3.0]undecane $\mathbf{4 1}$ as the thermodynamic adduct. ${ }^{20}$

Scheme 4.12
Further, synthesis of alkylidene cyclopentenes from [4+2] cycloadduct of pentafulvenes was established by Palladium/Lewis acid catalyzed ring-opening of fulvene derived azabicyclic olefins with hard nucleophiles like organostannanes, silanes, boronic acids and allylindium reagents. These reactions provide an efficient method for the synthesis of trans-3,4-disubstituted alkylidene cyclopentene $\mathbf{4 4}$ in good yields (Scheme 4.13). ${ }^{21}$

Scheme 4.13

Synthesis of spiro-pentacyclic motifs with an indoline and pyrazolidine fused to cyclopentene was accomplished by the Palladium/Lewis acid mediated domino reaction of pentafulvene derived diazabicyclic olefins with various ortho-functionalized aryl iodides such as 2-iodoanilines, 2-iodophenols and 2-iodobenzene thiols. ${ }^{22}$

Scheme 4.14

Very recently, we reported a Lewis acid catalyzed ring opening of pentafulvene derived diazabicyclic olefins using indoles, and the reaction yielded C-3 alkylidene cyclopentene substituted indole and bisindole derivatives. ${ }^{23}$

Scheme 4.15

4.1.2. Povarov reaction: A brief introduction

In the early 1960s, during the investigation of the reactivity of electron rich olefins towards different substrates, Povarov and co-workers discovered that alkyl vinyl ethers and thioethers reacted with N -arylimines activated by coordination with boron trifluoride to give 1,2,3,4-tetrahydroquinolines (THQs). ${ }^{24}$ Povarov classified the reaction as a [4+2] hetero-Diels-Alder cycloaddition reaction. The requirement of a Lewis acid for coordinating the 2 -azadiene and enhancing its electron-deficient character was rationalized by considering a $[4+2]$ cycloaddition between an electron deficient hetero-diene and an electron rich dienophile, with a reversal of the typical pattern followed by Diels-Alder reactions. In recognition of the discovery and the substantial contributions to its development reported later in the 1960s by Povarov, ${ }^{25}$ cycloadditions of N -aryl imines with electron-rich olefins, and variants thereof, are now called Povarov reactions (Scheme 4.16).

Scheme 4.16. The Povarov cycloaddition reaction (EDG = electron donating group)
The three-component ABC combination, typical of other multicomponent reactions involving imines generated in situ, is the most popular version of the multicomponent Povarov reaction (Scheme 4.17). Importantly, this three component strategy can be employed to overcome the low stability of N -aryl imines derived from enolizable aliphatic aldehydes, by avoiding their isolation.

Scheme 4.17. Multicomponent Povarov reaction

Povarov reaction is utilized for the synthesis of natural products such as martinelline and martinellic acid. ${ }^{26}$ Moreover, the reaction has been a very useful tool, especially in its multicomponent variant, for the preparation of biologically active agents, such as the selective antagonist G protein-coupled receptor GPR30 which is formed as a result of threecomponent Povarov reaction between 2-bromopiperonal, aniline and cyclopentadiene. ${ }^{27}$

Selective GPR30 antagonist
$\mathrm{R}=\mathrm{H}$, Martinellic acid
Figure 4.4. Natural product and biologically active THQs synthesized by Povarov cycloaddition reaction.

Povarov reaction using cyclopentadiene as a 2π component is well documented in the literature. ${ }^{28}$ Recently, Feng and co-workers reported an asymmetric three-component Inverse Electron Demand Diels-Alder Reaction (IEDDA) with cyclopentadiene $\mathbf{3 2}$ as the dienophile. ${ }^{29}$ The asymmetric Povarov reaction is catalyzed by chiral $\mathrm{N}, \mathrm{N}^{\prime}$-dioxide-Sc(OTf) ${ }_{3}$ complex 59 and furnished the ring fused tetrahydroquinolines 60 in good to high yields with excellent diastereo- and enantioselectivities.

Scheme 4.18

4.2. Present Work

As already discussed in the previous section, our group has made significant involvement in the cycloaddition chemistry of pentafulvenes. As part of our research program in the field of Lewis acid catalysis in fulvenes, we envisioned the Povarov type hetero DielsAlder reaction using fulvene as the dienophile. We have done a thorough literature survey and noted a report from Stepakov et al. on the two component Povarov reaction of 6,6dimethyl fulvene 1a and aromatic imines (Scheme 4.19). ${ }^{30}$ Even though the reaction is known but the scope of the reaction is limited to only 6,6-dimethyl fulvene and the products afforded in low yield because of side polymerization of fulvenes.

Scheme 4.19

In continuation of our consistent interest in cycloaddition reactions of fulvenes and to expand the scope of the reaction by using electron deficient imines generated from phenylglyoxal and aromatic amines, we undertook a detailed investigation of Povarov reaction in various substituted fulvenes. The results of these studies are discussed in the following sections.

4.3. Results and Discussion

Fulvenes used for our investigations were prepared by the base catalyzed condensation between cyclopentadiene and carbonyl compounds. ${ }^{31}$ For example, synthesis of dimethylfulvene 1a from acetone $\mathbf{6 2}$ and cyclopentadiene $\mathbf{3 2}$ is shown in Scheme 4.20. Using this method we have synthesized various 6 -substituted cyclic fulvenes ($\mathbf{1 b - e}$) by condensing cyclopentadiene and corresponding ketones.

1b, 91\%

1c, 88\%

1d, 79\%

1e, 93\%

Scheme 4.20

Even though, this procedure is widely accepted for the synthesis of fulvenes regarding the generality and high yields; the reaction was unsuccessful with bulky ketones such as diaryl ketones. Ottoson described an improved synthesis of fulvenes through reaction of sodium cyclopentadienide with the appropriate ketones refluxing in THF and they showed that alkyl or aryl substituted fulvenes are formed rapidly in high yields. ${ }^{32}$ Diphenylfulvene $\mathbf{1 f}$ was synthesized by using this procedure.

Scheme 4.21

The starting material imines desired for our studies were prepared according to the literature procedure. ${ }^{33}$ Imines derived from phenylglyoxal synthesized by simple condensation with aryl amines in the presence of magnesium sulfate in dichloromethane at $0^{\circ} \mathrm{C}$.

Scheme 4.22

4.3.1. Lewis acid catalyzed aza Diels-Alder cycloaddition reaction of fulvenes with aryl imines generated from phenylglyoxal

We commenced our investigation by reacting the imine generated from phenylglyoxal and p-anisidine 66a with dimethyl fulvene $1 \mathbf{a}$ in the presence of $10 \mathrm{~mol} \% \mathrm{Yb}(\mathrm{OTf})_{3}$ in acetonitrile at $0{ }^{\circ} \mathrm{C}$ for 8 h . The reaction afforded cis-alkylidene cyclopentene fused tetrahydroquinoline $\mathbf{6 7 a}$ in 55\% yield with diastereomeric ratio 91:9.

Scheme 4.23

The structure of the product was characterized by various spectroscopic analyses. In IR spectrum, the peak at $3363 \mathrm{~cm}^{-1}$ assigned to the -NH stretching and -CO stretching
absorption observed at $1682 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR of 67 a (Figure 4.5) shows two alkene protons at C-1 and C-2 appeared as a doublet at $\delta 6.02$ and a quartet at 5.88 ppm respectively. Two methyl groups attached to the exocyclic double bond found to be resonated as singlets at $\delta 1.82$ and 1.21 ppm . The singlet at $\delta 3.79 \mathrm{ppm}$ was attributed to methoxy protons attached to an aryl group. The proton at C-3 resonated at $\delta 4.03 \mathrm{ppm}$ as a singlet, and C-7 proton was discernible at $\delta 4.95 \mathrm{ppm}$ as a doublet.

Figure 4.5. ${ }^{1} \mathrm{H}$ NMR of compound 67 a
In ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 4.6), characteristic carbonyl peak was visible at $\delta 203.1$ ppm . The olefinic carbons observed at $\delta 139.7$ and 129.9 ppm . The aromatic carbon C-12 bearing the methoxy group resonated at $\delta 152.5 \mathrm{ppm}$. C-7, C-3 and C-4 carbons are found to be resonated at $\delta 55.8,45.2$ and 44.1 ppm respectively. The methoxy carbon was discernible at $\delta 55.7 \mathrm{ppm}$. The peaks observed at $\delta 21.9$ and 20.2 ppm corresponds to the exocyclic methyl carbons. All other signals are in good agreement with the assigned structure.

Figure 4.6. ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{6 7 a}$

Further proof for the structure was obtained from the mass spectrum which showed a peak at $m / z,[\mathrm{M}+1]^{+}: 346.18133$. The relative stereochemistry of the product 67a was unambiguously established by single crystal X-ray analysis (Figure 4.7). ${ }^{34}$

Figure 4.7. ORTEP diagram of compound 67a

After successful reaction in dimethylfulvene, next we performed the reaction with the stable diphenyl fulvene $\mathbf{1 f}$ and imine 66a under similar reaction conditions and the reaction furnished the corresponding tetrahydroquinoline derivative 67b in 75\% yield.

Scheme 4.24

The structure of the product $\mathbf{6 7 b}$ was established by $\mathrm{IR},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and mass spectral analyses. IR spectrum of the compound 67b showed the characteristic carbonyl absorptions at $1667 \mathrm{~cm}^{-1}$ and -NH stretching at $3360 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the protons adjacent to the nitrogen resonated at $\delta 4.63(J=7.0 \mathrm{~Hz}) \mathrm{ppm}$ as a doublet. A sharp singlet observed at $\delta 3.79 \mathrm{ppm}$ assigned to methoxy protons. Two ring junction protons were visible in the region $\delta 4.42-4.21 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR of $\mathbf{6 7 b}$ displayed the benzoyl carbonyl at $\delta 197.6 \mathrm{ppm}$. The peak at $\delta 153.4 \mathrm{ppm}$ corresponds to the aryl carbon attached to the methoxy group. The structure was further supported by the mass spectral analysis which showed a molecular ion peak at $m / z,[\mathrm{M}+1]^{+}=470.21144$.

4.3.2. Optimization studies

Next, we turned our attention to optimizing the reaction condition to find out the best catalyst by choosing diphenyl fulvene $\mathbf{1 f}$ and imine $\mathbf{6 6 a}$ as the model substrates. In this regard, several Brønsted and Lewis acid catalysts were screened and the results are summarized in Table 4.1. Various lanthanide triflates were screened and among which initially used $\mathrm{Yb}(\mathrm{OTf})_{3}$ was found to be the best. $\mathrm{Yb}(\mathrm{OTf})_{3}$ already proved to be an efficient LA catalyst for this type of reaction. Using BF_{3}. $\mathrm{Et}_{2} \mathrm{O}$, Povarov adduct was obtained in 69% yield. Brønsted acid catalysts such as PTSA and TFA were also screened, but the yield was found to be lower as compared to Lewis acids. When the solvent switched from $\mathrm{CH}_{3} \mathrm{CN}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yield was lowered to 58%, and also there is no appreciable change in diastereomeric ratio. In the absence of a catalyst, the reaction did not afford any product.

Table 4.1. Optimization studies

		$\xrightarrow[\text { Solvent, rt }]{\text { Catalyst }}$	
Entry	Catalyst	Solvent	Yielda ${ }^{\text {(}}$ (r) ${ }^{\text {b }}$
1	$\mathrm{Yb}(\mathrm{OTf})_{3}$	$\mathrm{CH}_{3} \mathrm{CN}$	75 (92:8)
2	$\mathrm{Sc}(\mathrm{OTf})_{3}$	$\mathrm{CH}_{3} \mathrm{CN}$	58 (93:7)
3	$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	46 (88:12)
4	$\mathrm{BF}_{3} . \mathrm{OEt}_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	69
5	PTSA	$\mathrm{CH}_{3} \mathrm{CN}$	28
6	TFA	$\mathrm{CH}_{3} \mathrm{CN}$	31 (93:7)
7	$\mathrm{Yb}(\mathrm{OTf})_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	52 (96:4)
8	-	$\mathrm{CH}_{3} \mathrm{CN}$	No Reaction

${ }^{\mathrm{a}}$ Isolated yield ${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture

With this optimized reaction condition in hand, next we examined the scope of the reaction with respect to different imines derived from phenylglyoxal and substituted anilines and various 6,6-disubstituted fulvenes. Pentafulvenes derived from benzophenone, acetone, adamantanone, cyclopentanone and cyclohexanone reacted with imines 66a-c and afforded the corresponding tetrahydroquinoline derivatives in moderate to good yields, and the results of the investigation are summarized in Table 4.2.

Table 4.2. Povarov reaction of fulvenes with phenyl glyoxal derived imines

Entry

Reaction Conditions: fulvene (1.0 equiv.), imine (1.0-1.5 equiv.), $\mathrm{Yb}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{CN}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 8 \mathrm{~h}$

4.3.3. Three component Povarov reaction

Next, we focused on carrying out this reaction in a multicomponent one-pot fashion which was highly desirable over the multi-step procedure with respect to atom-economic transformation of easily available starting materials into complex organic building blocks. To our delight, we obtained comparable results when we set up a three-component reaction of phenylglyoxal monohydrate 65, p-anisidine 57a and diphenyl fulvene $1 f$ under similar optimized conditions (Scheme 4.25).

Scheme 4.25

The scope of the reaction was then explored with different substituted anilines and various pentafulvenes. Evaluation of the reactivity of a series of fulvenes established that the hetero-Diels-Alder reaction with imines which is generated in situ is effective under the optimal catalyst system. Phenylglyoxals bearing different substituents on the phenyl ring furnished the corresponding products in good yields. The structures of all the products were established by employing usual spectral analyses. The results obtained are summarized in Table 4.3.

Table 4.3. Three component Povarov reaction

Reaction Conditions: fulvene (1.0-2.0 equiv.), phenylglyoxal (1.0 equiv.), aryl amine (1.0 equiv.), $\mathrm{CH}_{3} \mathrm{CN}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 8 \mathrm{~h}$

4.3.4. Three component Povarov reaction using ethyl glyoxalate as aldehyde component

After successful attempts with phenylglyoxal, to broaden the scope, we extended the Povarov cycloaddition by using ethyl glyoxalate 68 as aldehyde component. Three component reaction of fulvene $\mathbf{1 c}$, p-anisidine 57a and ethyl glyoxalate $\mathbf{6 8}$ under the optimal reaction conditions provided the product 69a in 35\% yield (dr 92:8).

35\%(dr 92:8)

36% (dr 91:9)

19% (dr 90:10)

28\% (dr 88:12)

Scheme 4.26. Three component Povarov reaction using ethyl glyoxalate as aldehyde component

Various spectroscopic techniques were utilized for the structural characterization of the product 69a. In the IR spectrum, ester carbonyl absorption was observed at $1725 \mathrm{~cm}^{-1}$. In the ${ }^{1}$ H NMR spectrum (Figure 4.8), olefinic protons resonated in the region δ 6.29-6.27 and 6.026.04 ppm . The proton on the carbon attached to the ester group appeared as a doublet at $\delta 3.95 \mathrm{ppm}$. The ring junction protons resonated as a doublet at $\delta 3.99 \mathrm{ppm}$ and a triplet at δ 3.62 ppm . The methoxy protons resonated as a sharp singlet at $\delta 3.73 \mathrm{ppm}$. The methyl protons of the carboethoxy groups resonated as a triplet at $\delta 1.07 \mathrm{ppm}$.

Figure 4.8. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 69 a
${ }^{13}$ C NMR of 69a (Figure 4.9) displayed the characteristic ester carbonyl peak at $\delta 172.5$ ppm . The aromatic carbon attached to the methoxy group found at $\delta 152.7 \mathrm{ppm}$. The peaks observed at $\delta 44.5$ and 42.3 ppm were assigned to the ring junction carbons. The methyl carbon of the ester group resonated at $\delta 14.1 \mathrm{ppm}$. Further proof for the structure was obtained from the mass spectral analysis which showed a peak at $m / z=354.20715,[\mathrm{M}+1]^{+}$.

Figure 4.9. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 9 a}$

In the same fashion, Povarov reaction of ethyl glyoxalate and fulvene derived from cyclohexanone was conducted in the presence of p-toluidine and 4-fluoroaniline and afforded corresponding cycloadducts 69b-c in moderate yields. Similarly, dimethylfulvene 1a also provided the corresponding product $\mathbf{6 9 d}$ in the presence of ethyl glyoxalate and p-toluidine under the optimal reaction conditions (Scheme 4.26).

4.3.5. Mechanistic proposal

Although the Povarov reaction is defined as an Inverse Electron Demand aza-DielsAlder process, there have been doubts regarding the pathway (cycloaddition or stepwise) that the reaction is followed. ${ }^{35,24}$ A more likely explanation is that a common reaction mechanism is operating, involving a step-wise Lewis acid catalyzed process, which only appears to behave similarly to alternative concerted cycloaddition reactions. ${ }^{35}$ Initially Lewis acid coordinates to the imine nitrogen and carbonyl oxygen of benzoyl group. This bidentate chelation of Yb (III) substantially lock the imine in the S-trans configuration and increases the electrophilicity of the imine carbon atom. ${ }^{35}$ Fulvene attacks the imine carbon providing the cationic intermediate B. Further, the Friedel-Crafts type cyclization occurs to give the intermediate \mathbf{C} by the concurrent regeneration of $\mathrm{Yb}(\mathrm{OTf})_{3}$. Subsequent proton transfer from C resulted tetrahydroquinoline derivative 67. Bidentate chelation favors the diastereoselective formation of the cis-product.

Scheme 4.27

4.3.6. Oxidation of Povarov adduct: Access of quinoline derivatives

Our attention next turned to the conversion of the tetrahydroquinoline derivatives to the corresponding quinoline derivatives. DDQ oxidation of the Povarov adduct 67b was performed in chloroform and the reaction provided quinoline derivative 70a in 95\% yield.

Scheme 4.28

Spectral analysis was carried out to assign the structure of 70a. The IR spectrum showed the characteristic carbonyl absorptions at $1667 \mathrm{~cm}^{-1}$. In ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 4.10), the methoxy protons resonated as a singlet at $\delta 3.99 \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 4.11), the carbonyl carbon was detected at $\delta 192.1 \mathrm{ppm}$ and the methoxy carbon resonated at $\delta 55.7 \mathrm{ppm}$. Further supporting evidence for the structure was obtained from the high-resolution mass spectral analysis which showed the molecular ion peak at m / z $466.18106[\mathrm{M}+1]^{+}$. In a similar fashion, quinoline derivatives 70b-d were synthesized in good yields from corresponding tetrahydroquinoline derivatives and is illustrated in Scheme 4.28 .

Figure 4.10. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 70a

Figure 4.11. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 70a

4.4. Conclusion

In summary, we have developed the Lewis acid-catalyzed three-component Povarov reaction of α-oxo aldehydes, anilines and pentafulvenes.We have demonstrated the Povarov reaction in both two component as well as three component fashion and in each cases the reaction afforded tethahydroquinoline derivatives in comparable yields. The synthetic utility
is further highlighted by the synthesis of quinoline fused fulvene derivatives by DDQ oxidation.

4.5. Experimental Section

General information regarding the experiments is given in Section 2.5 of Chapter 2.

4.5.1. General experimental procedure for two component Povarov reaction of imine and pentafulvenes (Method A)

$\mathrm{Yb}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%)$ and imine derived from phenylglyoxal (1.0-1.5 equiv.) were stirred in acetonitrile at $0{ }^{\circ} \mathrm{C}$. To this reaction mixture, fulvene (1.0 equiv.) in acetonitrile was added and stirred at room temperature for 8 h . The solvent was evaporated in vacuo and the residue on silica gel (100-200 mesh) column chromatography yielded tetrahydroquinoline derivatives.

4.5.2. General experimental procedure for three component Povarov reaction of aniline, phenyl glyoxal/ethyl glyoxalate and pentafulvenes (Method B)

To a suspension of $10 \mathrm{~mol} \% \mathrm{Yb}(\mathrm{OTf})_{3}$ and $4 \mathrm{~A}^{\circ}$ molecular sieves in dry acetonitrile was added a solution of phenylglyoxal monohydrate (1.0 equiv.) and aniline (1.0 equiv.) in acetonitrile followed by addition of fulvene (1.0-2.0 equiv.) in acetonitrile solution at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 8 h at room temperature. The reaction was monitored by TLC and quenched with water. The aqueous phase was extracted with dichloromethane (3 x 10 mL). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue on column chromatography (silica gel) using hexane-ethyl acetate mixtures (95:5 hexane-ethyl acetate or 90:10 hexaneethyl acetate) yielded tetrahydroquinolines in good yields.

4.5.3. General experimental procedure for the oxidation of tetrahydroquinoline derivatives to quinoline derivatives

To a solution of tetrahydroquinoline derivative in CHCl_{3}, DDQ (2 equiv.) was added and the mixture was stirred for 4 h at room temperature. An aqueous saturated NaHCO_{3} solution (10 mL) was added, and the resulting mixture was extracted with CHCl_{3} (3 x 10 $\mathrm{mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in
vacuo. The reaction mixture was purified by column chromatography (hexane-ethyl acetate) to afford the desired product.

8-Methoxy-3-(propan-2-ylidene)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4$\mathrm{yl})($ phenyl)methanone (67a)

Following the general experimental procedure (method A), the dimethyl fulvene 1a ($164 \mathrm{mg}, 0.69 \mathrm{mmol}$), imine $\mathbf{6 6 a}(72 \mathrm{mg}, 0.69 \mathrm{mmol})$ and $\mathrm{Yb}(\mathrm{OTf})_{3}(43 \mathrm{mg}, 0.069 \mathrm{mmol})$ in $5 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7 a}$ as a yellow solid in 55% (132 $\mathrm{mg})$ yield with dr 91:9.

Following the general experimental procedure (method B), the dimethyl fulvene 1a ($264 \mathrm{mg}, 2.49 \mathrm{mmol}$), phenylglyoxal monohydrate 65 ($189 \mathrm{mg}, 1.24 \mathrm{mmol}$), p-anisidine (152 $\mathrm{mg}, 1.24 \mathrm{mmol}), \mathrm{Yb}(\mathrm{OTf})_{3}(77 \mathrm{mg}, 0.124 \mathrm{mmol})$ and $4 \mathrm{~A}^{\circ} \mathrm{MS}(200 \mathrm{mg})$ in 5 mL CH 3 CN at room temperature for 8 h gave the product 67 a as a yellow solid in 78% (334 mg) yield with dr 90:10.

$\mathbf{R}_{f}: 0.32$ (20\% Ethyl acetate-hexane).; mp: 180-185 ${ }^{\circ} \mathrm{C}$.; IR (neat) $v_{\text {max }}: 3363,2907,2851,2830,1682,1504,1444,1217 \mathrm{~cm}^{-1} . ;{ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl $_{3}$, TMS): $\delta 7.59$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46 (m, 1 H), $7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~m}, 1 \mathrm{H}), 6.62$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{q}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H})$, $1.82(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 203.1,152.5,139.7$, 138.9, $138.7,138.6,131.9,129.9,127.6,127.5,127.4,125.4,123.8,115.4,113.8,112.9,55.8,55.7$, 45.2, 45.1, 21.9, 20.2.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{2}$ [M+1]: 346.18016; Found: 346.18133.

3-(Diphenylmethylene)-8-methoxy-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4yl)(phenyl)methanone (67b)

Following the general experimental procedure (method A), the diphenyl fulvene $\mathbf{1 f}$ ($100 \mathrm{mg}, 0.43 \mathrm{mmol}$), imine 66a ($125 \mathrm{mg}, 0.52 \mathrm{mmol}$) and $\mathrm{Yb}(\mathrm{OTf})_{3}(27 \mathrm{mg}, 0.043 \mathrm{mmol})$ in $4 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7 b}$ as a reddish brown solid in 75% (153 mg) yield with dr 92:8.

Following the general experimental procedure (method B), the diphenyl fulvene $\mathbf{1 f}$ (100 $\mathrm{mg}, 0.43 \mathrm{mmol}$), phenylglyoxal monohydrate $65(55 \mathrm{mg}, 0.36 \mathrm{mmol})$, p-anisidine (44 mg , $0.36 \mathrm{mmol}), \mathrm{Yb}(\mathrm{OTf})_{3}(22 \mathrm{mg}, 0.036 \mathrm{mmol})$ and $\mathrm{MS} 4 \mathrm{~A}^{0}(100 \mathrm{mg})$ in $4 \mathrm{mLCH} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7 b}$ as a reddish brown solid in $72 \%(122 \mathrm{mg})$ yield with dr 93:7.

$\mathbf{R}_{f}: 0.28$ (20\% Ethyl acetate-hexane).; mp: 212-216 ${ }^{\circ} \mathrm{C}$.; IR (neat) $\nu_{\max }: 3360,2836,1667,1599,1495,1265,1233,1226,1210$, $1206 \mathrm{~cm}^{-1} . ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}, \mathbf{T M S}$): $\delta 7.56-7.51(\mathrm{~m}, 3 \mathrm{H})$, $7.38(\mathrm{t}, \quad J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.91$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.51(\mathrm{dd}, J=5.75,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.42-6.41(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 1 H), 4.63 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) . ;$ ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 197.6,153.4,145.2,142.5,142.4,140.9,137.4,136.2$, 133.8, 132.8, 132.7, 129.7, 128.5(2C), 128.2, 127.8, 127.1, 126.6, 126.3, 115.9, 113.2, 112.4, 55.7, 53.7, 44.9, 42.4.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+1]^{+}: 470.21146$; Found: 470.21144.

3-(Diphenylmethylene)-8-methyl-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4yl)(phenyl)methanone (67c)

Following the general experimental procedure (method A), the diphenyl fulvene $\mathbf{1 f}$ (88 $\mathrm{mg}, 0.38 \mathrm{mmol}$), imine $\mathbf{6 6 b}(129 \mathrm{mg}, 0.58 \mathrm{mmol})$ and $\mathrm{Yb}(\mathrm{OTf})_{3}(27 \mathrm{mg}, 0.038 \mathrm{mmol})$ in 4 mL CH 33 CN at room temperature for 8 h gave the product 67 c as a reddish brown solid in $66 \%(114 \mathrm{mg})$ yield with dr 93:7.

Following the general experimental procedure (method B), diphenyl fulvene $\mathbf{1 f}$ (100 $\mathrm{mg}, 0.43 \mathrm{mmol}$), phenylglyoxal monohydrate $65(65 \mathrm{mg}, 0.43 \mathrm{mmol})$, p-toluidine (46 mg , $0.43 \mathrm{mmol}), \mathrm{Yb}(\mathrm{OTf})_{3}(26 \mathrm{mg}, 0.043 \mathrm{mmol})$ and $4 \mathrm{~A}^{0} \mathrm{MS}(100 \mathrm{mg})$ in $5 \mathrm{~mL} \mathrm{CH} 3{ }_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7} \mathbf{c}$ in $54 \%(106 \mathrm{mg})$ yield with dr 91:9.

$\mathbf{R}_{f}: 0.26$ (20\% Ethyl acetate-hexane).; mp: $198-202{ }^{\circ} \mathrm{C}$.; IR (neat) $\mathbf{v}_{\text {max }}$: 3368, 3054, 3024, 2861, 1682, 1589, 1507, 1444, 1306, 1263, 1215, 812, 756, $698 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.49-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.35-$ 7.32 (m, 2 H), 7.27-7.26 (m, 3 H), 7.16-7.14 (m, 2 H), 7.10-7.06 (m, 4 H),
$6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.46-6.45(\mathrm{~m}, 1 \mathrm{H}), 6.33-6.29(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 197.5,145.3,142.6,142.5,141.4,140.1,137.5,133.7,132.6,132.5$, 129.7(2C), 128.6, 128.5, 128.4, 128.2, 128.1, 127.7, 127.3, 127.0, 126.6, 124.7, 115.0, 53.5, 44.6, 42.6, 20.8.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{NO}[\mathrm{M}+1]^{+}$: 454.21654; Found: 454.21686.

3-(Diphenylmethylene)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4yl)(phenyl)methanone (67d)

Following the general experimental procedure (method A), the diphenyl fulvene $\mathbf{1 f}$ ($100 \mathrm{mg}, 0.43 \mathrm{mmol}$), imine $\mathbf{6 6 c}(135 \mathrm{mg}, 0.65 \mathrm{mmol})$ and $\mathrm{Yb}(\mathrm{OTf})_{3}(27 \mathrm{mg}, 0.043 \mathrm{mmol})$ in $3 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7 d}$ as a reddish brown solid in $46 \% ~(88 \mathrm{mg}$) yield with dr 91:9.

$\mathbf{R}_{f}: 0.27$ (20\% Ethyl acetate-hexane).; mp: 204-208 ${ }^{\circ} \mathrm{C}$.; IR (neat) $\mathrm{U}_{\text {max }}$: 3362, 2872, 1684, 1598, 1502, 1434, 1301, 1269, $1217 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($500 \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.50-7.47 (m, 1 H), 7.35 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30-7.27 (m, 3 H), 7.25-7.24 (m, 2 H), 7.17-7.16 (m, 2 H), 7.10-7.09 (m, 2 H), 6.97-6.94 (m, 1 H), 6.79 (t, $J=7.5 \mathrm{~Hz}, 1$ H), 6.65-6.64 (m, 2 H), 6.45-6.41 (m, 2 H), 6.31-6.29 (m, 1 H), 4.61(d, J $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) . ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z}$, $\mathbf{C D C l}_{3}$): 197.8, 145.0, 142.7, 142.5, 142.4, 141.6, 137.6, 133.9, 132.6, 132.3, 129.7, 129.6, 128.5, 128.4, 128.3, 127.7, 127.5, 127.1, 126.7, 126.6, 124.5, 119.5, 114.9, 53.4, 44.6, 42.6.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}+1]^{+}: 440.20089$; Found: 440.20087.

8-Methyl-3-(propan-2-ylidene)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4yl)(phenyl)methanone (67e)

Following the general experimental procedure (method A), the dimethyl fulvene $\mathbf{1 a}$ (84 $\mathrm{mg}, 0.79 \mathrm{mmol}$), imine 66b ($266 \mathrm{mg}, 1.19 \mathrm{mmol}$) and $\mathrm{Yb}(\mathrm{OTf})_{3}(49 \mathrm{mg}, 0.079 \mathrm{mmol})$ in 4 $\mathrm{mLCH} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7 e}$ as a yellow solid in 43% (114 $\mathrm{mg})$ yield with dr 92:8.

Following the general experimental procedure (method B), the dimethyl fulvene 1a ($153 \mathrm{mg}, 1.44 \mathrm{mmol}$), phenylglyoxal monohydrate $\mathbf{6 5}(183 \mathrm{mg}, 1.20 \mathrm{mmol}$), p-toluidine (128
$\mathrm{mg}, 1.20 \mathrm{mmol}), \mathrm{Yb}(\mathrm{OTf})_{3}(74 \mathrm{mg}, 0.12 \mathrm{mmol})$ and $\mathrm{MS} 4 \mathrm{~A}^{0}(100 \mathrm{mg})$ in $4 \mathrm{mLCH} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7 e}$ in $52 \%(205 \mathrm{mg}$) yield with dr 89:11.

$\mathbf{R}_{f}: 0.21$ (20% Ethyl acetate-hexane).; mp: 202-204 ${ }^{\circ} \mathrm{C} . ;$ IR (neat) $\boldsymbol{u}_{\text {max }}$: 3362, 2981, 2930, 2851, 1680, 1477, 1442, $1220 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.55$ (d, $\left.J=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.42(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.97$ (s, 1 H), $6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.98 (m, 1 H), 5.81 (m, 1 H), 4.91 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (s, 1 H), 3.74 (t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.27 (s, 3 H), 1.79 (s, 3 H), 1.16 ($\mathrm{s}, 3 \mathrm{H}$).; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 202.6,142.2,139.8,139.3,139.1,131.8,129.7,128.9,127.6,127.5$, 127.4, 124.9, 122.5, 114.6, 55.7, 44.9, 44.3, 21.9, 20.8, 20.2.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 330.18524$; Found: 330.18555 .

Compound 67f

Following the general experimental procedure (method A), pentafulvene derived from adamantanone $\mathbf{1 e}(100 \mathrm{mg}, 0.50 \mathrm{mmol})$, imine $\mathbf{6 6 a}(145 \mathrm{mg}, 0.61 \mathrm{mmol})$ and $\mathrm{Yb}(\mathrm{OTf})_{3}$ (31 $\mathrm{mg}, 0.051 \mathrm{mmol}$) in 4 mL CH 3 CN at room temperature for 8 h gave the product $\mathbf{6 7 f}$ as a yellow solid in 72% (159 mg) yield with dr 97:3.

Following the general experimental procedure (method B), pentafulvene derived from adamantanone $\mathbf{1 e}(100 \mathrm{mg}, 0.50 \mathrm{mmol})$, phenylglyoxal monohydrate $\mathbf{6 5}(77 \mathrm{mg}, 0.50 \mathrm{mmol})$, p-anisidine ($62 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\mathrm{Yb}(\mathrm{OTf})_{3}(31 \mathrm{mg}, 0.051 \mathrm{mmol})$ and $\mathrm{MS} 4 \mathrm{~A}^{0}(100 \mathrm{mg})$ in 4 $\mathrm{mL} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7 f}$ in $57 \%(125 \mathrm{mg})$ yield with dr 95:5.

$\mathbf{R}_{f}: 0.41$ (20% Ethyl acetate-hexane).; mp: $79-84^{\circ} \mathrm{C}$.; IR (neat) $\boldsymbol{v}_{\text {max }}$: 3361, 2906, 2847, 1684, 1598, 1503, 1446, 1352, 1216, 1158, 1038, 878, $691 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) : $\delta 7.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.63 (dd, $J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.17(\mathrm{~m}, 1$ H), $6.04-6.03(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.81-3.79 (m, 4 H), 2.76 (s, 1 H), 2.58 ($\mathrm{s}, 1 \mathrm{H}$), 1.92-1.86 (m, 2 H), 1.77 $(\mathrm{s}, 6 \mathrm{H}), 1.68(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 200.6,152.9,140.9,138.9,137.8,137.3,132.2,131.9,129.5,128.2$,
$128.1,125.8,115.6,113.7,112.4,56.8,55.6,45.4,43.2,40.1,39.7,37.7,37.5,37.1,35.2$, 34.6, 28.4, 27.9.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{NO}_{2}[\mathrm{M}+1]^{+}: 438.24330$; Found: 438.24316 .

Compound 67g

Following the general experimental procedure (method A), pentafulvene derived from adamantanone $\mathbf{1 e}(75 \mathrm{mg}, 0.38 \mathrm{mmol})$, imine $\mathbf{6 6 b}(110 \mathrm{mg}, 0.49 \mathrm{mmol})$ and $\mathrm{Yb}(\mathrm{OTf})_{3}(24$ $\mathrm{mg}, 0.038 \mathrm{mmol}$) in $3 \mathrm{mLCH} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7 g}$ as a yellow solid in $64 \%(102 \mathrm{mg})$ yield with dr 94:6.

Following the general experimental procedure (method B), pentafulvene derived from adamantanone $\mathbf{1 e}(100 \mathrm{mg}, 0.50 \mathrm{mmol})$, phenylglyoxal monohydrate $\mathbf{6 5}(77 \mathrm{mg}, 0.50 \mathrm{mmol})$, p-toluidine ($54 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{Yb}(\mathrm{OTf})_{3}(31 \mathrm{mg}, 0.051 \mathrm{mmol})$ and $\mathrm{MS} 4 \mathrm{~A}^{0}(100 \mathrm{mg})$ in 4 $\mathrm{mL} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7 g}$ in $53 \%(111 \mathrm{mg})$ yield with dr 96:4.

$\mathbf{R}_{f}: 0.53$ (20% Ethyl acetate-hexane).; mp: $66-70{ }^{\circ} \mathrm{C}$.; IR (neat) $\mathbf{v}_{\text {max }}$: 3360, 2908, 2849, 1710, 1687, 1611, 1507, 1447, 1353, 1217, 810, 713, $690 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.67(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.09(\mathrm{~m}, 1 \mathrm{H}), 6.00-5.99(\mathrm{~m}, 1 \mathrm{H})$, $4.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1$ H), $2.74(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.74$ (m, 6 H), 1.66-1.60 (m, 2 H), 1.56-1.54 (m, 1 H), 1.07 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): δ 200.7, 141.6, 140.7, 139.1, 137.8, 132.1, 129.3, 128.7, 128.2, 128.1, 127.9, 127.3, 124.3, 114.8, 56.6, 45.1, 43.4, 40.1, 39.7, 37.7, 37.5, 37.2, 35.2, 34.6, 28.4, 27.9, 20.8.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{NO}[\mathrm{M}+1]^{+}: 422.24784$; Found: 422.24792 .

Compound 67h

Following the general experimental procedure (method A), pentafulvene derived from adamantanone $\mathbf{1 e}(100 \mathrm{mg}, 0.50 \mathrm{mmol})$, imine $\mathbf{6 6 c}(157 \mathrm{mg}, 0.76 \mathrm{mmol})$ and $\mathrm{Yb}(\mathrm{OTf})_{3}(31$ $\mathrm{mg}, 0.05 \mathrm{mmol}$) in 4 mL CH 3 CN at room temperature for 8 h gave the product 67 h as a yellow solid in $26 \%(54 \mathrm{mg})$ yield with dr 91:9.

Following the general experimental procedure (method B), pentafulvene derived from adamantanone $\mathbf{1 e}(100 \mathrm{mg}, 0.50 \mathrm{mmol})$, phenylglyoxal monohydrate $\mathbf{6 5}(77 \mathrm{mg}, 0.50 \mathrm{mmol})$, aniline ($47 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{Yb}(\mathrm{OTf})_{3}(31 \mathrm{mg}, 0.051 \mathrm{mmol})$ and $\mathrm{MS} 4 \mathrm{~A}^{0}(100 \mathrm{mg})$ in 4 mL $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7 h}$ in $42 \%(85 \mathrm{mg})$ yield with dr 93:7.

$\mathbf{R}_{f}: 0.50$ (20% Ethyl acetate-hexane).; mp: $205-210{ }^{\circ} \mathrm{C}$.; IR (neat) $\boldsymbol{v}_{\text {max }}$: 3353, 2907, 2848, 1715, 1682, 1494, 1445, 1266, 1222, 1173, 1102, 752 $\mathrm{cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10-$ $6.08(\mathrm{~m}, 1 \mathrm{H}), 5.99-5.98(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 1.89-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.77-$ $1.71(\mathrm{~m}, 6 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 201.1,144.1,140.9,139.1,137.9,132.1,131.8,130.2,129.2,128.5$, 128.2, 126.7, 119.5, 119.1, 114.8, 56.5, 45.1, 43.4, 40.2, 39.7, 37.6, 37.4, 37.2, 35.2, 34.6, 28.4, 27.9.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NO}[\mathrm{M}+1]^{+}: 408.23219$; Found: 408.23267.

3-Cyclohexylidene-8-methoxy-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4yl)(phenyl)methanone (67i)

Following the general experimental procedure (method A), pentafulvene derived from cyclohexanone 1c ($74 \mathrm{mg}, 0.51 \mathrm{mmol}$), imine 66a ($145 \mathrm{mg}, 0.61 \mathrm{mmol}$) and $\mathrm{Yb}(\mathrm{OTf})_{3}$ (31 $\mathrm{mg}, 0.051 \mathrm{mmol}$) in $4 \mathrm{mLCH} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product 67 i as a yellow solid in 64\% (124 mg) yield with dr 90:10.

Following the general experimental procedure (method B), pentafulvene derived from cyclohexanone $\mathbf{1 c}$ ($102 \mathrm{mg}, 0.69 \mathrm{mmol}$), phenylglyoxal monohydrate $\mathbf{6 5}(88 \mathrm{mg}, 0.58 \mathrm{mmol}$), p-anisidine ($72 \mathrm{mg}, 0.58 \mathrm{mmol}$), $\mathrm{Yb}(\mathrm{OTf})_{3}(36 \mathrm{mg}, 0.058 \mathrm{mmol})$ and $\mathrm{MS} 4 \mathrm{~A}^{0}(100 \mathrm{mg})$ in 4 $\mathrm{mL} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7 i}$ in $56 \%(125 \mathrm{mg})$ yield with dr 89:11.

$\mathbf{R}_{f}: 0.46$ (30% Ethyl acetate-hexane).; mp: 194-197 ${ }^{\circ} \mathrm{C}$.; IR (neat) $\boldsymbol{u}_{\text {max }}$: 3363, 2927, 2851, 2828, 1683, 1503, 1469, 1444, 1251, 1215, 1159, 1095, 1038, 915, 809, $693 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l} \mathbf{C l}_{3}$): $7.58(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.01-5.99 (m, 1 H), $5.94-5.93(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.77(\mathrm{~m}, 4 \mathrm{H}), 2.50-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 2 \mathrm{H})$, $1.68-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.21(\mathrm{~m}$, 1 H).; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 202.2, 152.7, 139.5, 138.8, 138.2, 136.1, 133.1, 131.9, 129.4, 127.7, 127.6, 124.2, 115.4, 113.8, 112.7, 56.2, 55.5, 45.0, 43.5, 32.2, 30.8, 27.3, 27.1, 26.5.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+1]^{+}: 386.21146$; Found: 386.21176 .

3-Cyclohexylidene-8-methyl-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4yl)(phenyl)methanone (67j)

Following the general experimental procedure (method A), pentafulvene derived from cyclohexanone 1c ($93 \mathrm{mg}, 0.63 \mathrm{mmol}$), imine 66b ($170 \mathrm{mg}, 0.76 \mathrm{mmol}$) and $\mathrm{Yb}(\mathrm{OTf})_{3}$ (39 $\mathrm{mg}, 0.063 \mathrm{mmol}$) in 4 mL CH 3 CN at room temperature for 8 h gave the product $\mathbf{6 7 j}$ as a yellow solid in $59 \%(138 \mathrm{mg})$ yield with dr 92:8.

Following the general experimental procedure (method B), pentafulvene derived from cyclohexanone 1c ($120 \mathrm{mg}, 0.82 \mathrm{mmol}$), phenylglyoxal monohydrate $\mathbf{6 5}$ ($104 \mathrm{mg}, 0.68$ mmol), p-toluidine ($73 \mathrm{mg}, 0.68 \mathrm{mmol}$), $\mathrm{Yb}(\mathrm{OTf})_{3}(42 \mathrm{mg}, 0.068 \mathrm{mmol})$ and MS $4 \mathrm{~A}^{0}(100$ mg) in $4 \mathrm{mLCH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7} \mathbf{j}$ in $51 \%(128 \mathrm{mg})$ yield with dr 93:7.

$\mathbf{R}_{f}: 0.32$ (30\% Ethyl acetate-hexane).; mp: 185-188 ${ }^{\circ} \mathrm{C} . ;$ IR (neat) $v_{\text {max }}$: 3366, 3054, 2924, 2825, 2827, 1682, 1612, 1594, 1507, 1443, 1298, 1260, 1216, 1070, 808, 772, 730, $692 \mathrm{~cm}^{-1} \cdot{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (5 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}$): 7.56 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.98(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.99$ (m, 1 H), 5.91-5.89 (m, 1 H$), 4.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.78(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.92$ $(\mathrm{m}, 2 \mathrm{H}), 1.69-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 4 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR (125 MHz, $\mathbf{C D C l}_{3}$): 202.3, 141.7, 139.6, 139.2, 136.1, 133.0, 131.8, 129.2, 128.9,
127.8, 127.7, 127.6, 123.0, 114.8, 56,0, 44.7, 43.6, 32.2, 30.7, 27.3, 27.1, 26.5, 20.8.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}[\mathrm{M}+1]^{+}: 370.21654$; Found: 370.21695 .

3-Cyclohexylidene-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4yl)(phenyl)methanone (67k)

Following the general experimental procedure (method A), pentafulvene derived from cyclohexanone $\mathbf{1 c}(69 \mathrm{mg}, 0.47 \mathrm{mmol})$, imine $\mathbf{6 6 c}(98 \mathrm{mg}, 0.47 \mathrm{mmol})$ and $\mathrm{Yb}(\mathrm{OTf})_{3}(29 \mathrm{mg}$, 0.047 mmol) in $4 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product 67 k as a yellow solid in $52 \% ~(86 \mathrm{mg})$ yield with dr 80:20.

Following the general experimental procedure (method B), pentafulvene derived from cyclohexanone 1c ($141 \mathrm{mg}, 0.96 \mathrm{mmol}$), phenyl glyoxal monohydrate 65 (121 mg , 0.80 mmol), aniline ($73 \mathrm{mg}, 0.80 \mathrm{mmol}$) , $\mathrm{Yb}(\mathrm{OTf})_{3}(49 \mathrm{mg}, 0.08 \mathrm{mmol})$ and MS $4 \mathrm{~A}^{0}(100$ mg) in $4 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product 67 k in $21 \%(59 \mathrm{mg})$ yield with dr 90: 10 .

$\mathbf{R}_{f}: 0.35$ (30% Ethyl acetate-hexane).; mp: $168-172^{\circ} \mathrm{C}$.; IR (neat) $\boldsymbol{u}_{\text {max }}$: 3375, 3060, 2925, 2859, 1682, 1573, 1496, 1483, 1477, 1219, 751, 730 cm^{-1}.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 7.56-7.54 (m, 2 H), $7.42(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-5.88(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.67(\mathrm{~m}$, $1 \mathrm{H}), 1.60-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.19(\mathrm{~m}, 3 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathbf{C D C l}_{3}$): 202.4, 144.6, 139.6, 139.4, 136.1, 133.0, 131.9, 129.1, 128.3, 127.7, 126.8, 122.9, 118.6, 114.6, 55.8, 44.7, 43.6, 32.3, 30.7, 27.1, 26.5.; HRMS (ESI): m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}+1]^{+}: 356.20089$; Found: 356.20164.

3-Cyclohexylidene-8-fluoro-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4yl)(phenyl)methanone (671)

Following the general experimental procedure (method B), pentafulvene derived from cyclohexanone 1c ($285 \mathrm{mg}, 1.9 \mathrm{mmol}$), phenyl glyoxal monohydrate $\mathbf{6 5}$ ($197 \mathrm{mg}, 1.29 \mathrm{mmol}$), 4-fluoroaniline ($144 \mathrm{mg}, 1.29 \mathrm{mmol}$), $\mathrm{Yb}(\mathrm{OTf})_{3}(81 \mathrm{mg}, 0.129 \mathrm{mmol})$ and MS $4 \mathrm{~A}^{0}(200 \mathrm{mg})$
in $6 \mathrm{mLCH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7 l}$ as a yellow solid in 31% $(150 \mathrm{mg})$ yield with dr 91:9.

$\mathbf{R}_{f}: 0.29$ (20\% Ethyl acetate-hexane).; mp: $178-172{ }^{\circ} \mathrm{C} . ;$ IR (neat) $\mathrm{u}_{\text {max }}$: 3360, 2924, 2859, 2829, 1681, 1504, 1486, 1246, 1234, 1208, $810 \mathrm{~cm}^{-1}$.; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-$ 6.72 (m, 1 H$), 6.54-6.51(\mathrm{~m}, 1 \mathrm{H}), 5.96-5.90(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.99(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.46(\mathrm{~m}, 1$ H), 2.01-1.93 (m, 2 H), 1.69-1.66 (m, 1 H), 1.61-1.57 (m, 1 H$), 1.43-1.41$ (m, 1 H), 1.36-1.19 (m, 4 H).; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 202.4, 157.2, 155.3, 140.6, $139.5,138.4,135.8,133.5,132.0,129.5,127.7,127.6,124.3,124.2,115.2,115.1,114.7$, 114.5, 113.6, 113.4, 55.8, 44.8, 43.3, 32.3, 30.8, 27.3, 27.1, 26.5.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{FNO}[\mathrm{M}+1]^{+}: 374.19147$; Found: 374.19147.

Compound 67m

Following the general experimental procedure (method B), pentafulvene derived from adamantanone 1e ($100 \mathrm{mg}, 0.50 \mathrm{mmol}$), phenylglyoxal monohydrate $\mathbf{6 5}(64 \mathrm{mg}, 0.42 \mathrm{mmol})$, 4-fluoroaniline ($47 \mathrm{mg}, 0.42 \mathrm{mmol}$), $\mathrm{Yb}(\mathrm{OTf})_{3}(26 \mathrm{mg}, 0.042 \mathrm{mmol})$ and MS $4 \mathrm{~A}^{0}(100 \mathrm{mg})$ in $4 \mathrm{mLCH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7 m}$ as a yellow solid in 40% (72 mg) yield with dr 91:9.

$\mathbf{R}_{f}: 0.50$ (20% Ethyl acetate-hexane).; mp: 212-216 ${ }^{\circ} \mathrm{C}$.; IR (neat) $\boldsymbol{u}_{\text {max }}$: 3362, 2913, 2854, 1708, 1685, 1611, 1504, 1449, 1351, $1223 \mathrm{~cm}^{-1} . ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.69(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{dd}, J=9.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~m}, 1$ H), 6.52-6.49 (m, 1 H), 6.16-6.15 (m, 1 H$), 5.99(\mathrm{dd}, J=5.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1$ H), $4.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.77(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 1 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 6 \mathrm{H}), 1.68-$ $1.63(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$.; ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$: $\delta 200.7,157.5,155.6,141.2,140.1,138.9,136.9,132.3,131.6,129.6,128.2,128.1$, $125.8(2 \mathrm{C}), 115.3(2 \mathrm{C}), 115.2,114.6,114.4,113.4,113.2,56.4,45.2,42.9,40.1,39.7,37.6$, 37.4, 37.1, 35.2, 34.6, 28.3, 27.9.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{FNO}[\mathrm{M}+1]^{+}$: 426.22277; Found: 426.22325.

3-Cyclopentylidene-8-methoxy-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4yl)(phenyl)methanone (67n)

Following the general experimental procedure (method B), pentafulvene derived from cyclopentanone 1b ($40 \mathrm{mg}, 0.30 \mathrm{mmol}$), phenyl glyoxal monohydrate $\mathbf{6 5}(31 \mathrm{mg}, 0.20$ mmol), p-anisidine ($24 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{Yb}(\mathrm{OTf})_{3}(13 \mathrm{mg}, 0.020 \mathrm{mmol})$ and $\mathrm{MS} 4 \mathrm{~A}^{0}(100$ mg) in $3 \mathrm{mLCH} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7 n}$ as a viscous liquid in 77% (58 mg), with dr 96:4.

$\mathbf{R}_{f}: 0.61$ (30\% Ethyl acetate-hexane).; IR (neat) $v_{\text {max }}$: 3368, 3064, 2946, 2832, 1682, 1599, 1507, 1503, 1444, 1245, 1223, 1171, $1030 \mathrm{~cm}^{-1} . ;{ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl ${ }_{3}$): $\delta 7.60(\mathrm{~d}, \quad J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, \quad J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.64$ (m, 1 H$), 6.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.78-5.77(\mathrm{~m}$, $1 \mathrm{H}), 4.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.36-2.32 (m,1 H), 2.27-2.22 (m, 1 H), 2.01-1.98 (m, 1 H$), 1.62-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.35(\mathrm{~m}, 1 \mathrm{H})$. $\left.{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $202.2,152.8,139.4,138.2,137.7,136.2,135.2,133.5,131.9,130.9,130.2,128.4,127.8$, 127.5, 115.5, 113.8, 112.8, 55.7, 55.6, 45.6, 45.2, 31.6, 30.7, 26.7, 26.1.; HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+1]^{+}$: 372.19581 ; Found: 372.19635.

3-Cyclopentylidene-8-methyl-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4-

 yl)(phenyl)methanone (67o)Following the general experimental procedure (method B), pentafulvene derived from cyclopentanone 1b ($47 \mathrm{mg}, 0.35 \mathrm{mmol}$), phenyl glyoxal monohydrate $\mathbf{6 5}(36 \mathrm{mg}, 0.24$ mmol), p-toluidine ($25 \mathrm{mg}, 0.24 \mathrm{mmol}$), $\mathrm{Yb}(\mathrm{OTf})_{3}(15 \mathrm{mg}, 0.024 \mathrm{mmol})$ and $\mathrm{MS} 4 \mathrm{~A}^{\circ}(100$ mg) in $3 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product as a viscous liquid $\mathbf{6 7 o}$ in 58% (49 mg) yield with dr 93:7.

$\mathbf{R}_{f}: 0.58$ (30\% Ethyl acetate-hexane).; IR (neat) $v_{\text {max }}: 3362,3054,2928$, 2825, 1684, 1612, 1594, 1443, 1288, 1267, $1216 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (5 0 0 ~ M H z , ~}$ $\mathbf{C D C l}_{3}$): $\delta 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.5$ Hz, 2 H), 6.99 (s, 1 H), 6.85 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.57-6.55 (m, 1 H), 5.96 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.73(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=6.5$
$\mathrm{Hz}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1$ H), 1.78-1.73 (m, 2 H), 1.63-1.56 (m, 2 H), 1.38-1.34 (m, 1 H).; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~}$ $\mathbf{C D C l}_{3}$): $\delta 202.4,142.1,139.6,138.3,137.4,136.1,135.3,132.7,131.8,131.0,130.1,128.9$, 127.7, 127.5, 114.7, 55.4, 45.3, 45.2, 31.6, 30.6, 26.8, 26.2, 20.8.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}+1]^{+}: 356$. 20089; Found: 356.20169.

3-Cycloheptylidene-8-methoxy-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4yl)(phenyl)methanone (67p)

Following the general experimental procedure (method B), pentafulvene derived from cycloheptanone 1d ($159 \mathrm{mg}, 0.99 \mathrm{mmol}$), phenyl glyoxal monohydrate $\mathbf{6 5}(100 \mathrm{mg}, 0.66$ $\mathrm{mmol})$, p-anisidine ($81 \mathrm{mg}, 0.66 \mathrm{mmol}$), $\mathrm{Yb}(\mathrm{OTf})_{3}(41 \mathrm{mg}, 0.066 \mathrm{mmol})$ and MS $4 \mathrm{~A}^{0}(200$ mg) in $5 \mathrm{mLCH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7} \mathbf{p}$ as a yellow viscous liquid in $45 \%(118 \mathrm{mg})$ yield with dr 90:10.

$\mathbf{R}_{f}: 0.56$ (30\% Ethyl acetate-hexane).; IR (neat) $v_{\text {max }}: 3364,2926,2865$, 2812, 1683, 1507, 1479, 1251, 1231, $1215 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 7.52(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.26$ (m, 2 H), $6.74(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.98-5.97(\mathrm{~m}, 1 \mathrm{H}), 5.86-5.84(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.96(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.56$
$(\mathrm{m}, 1 \mathrm{H}), 2.16-1,94(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.39(\mathrm{~m}, 5 \mathrm{H})$, 1.35-1.32 (m, 1 H), 1.31-1.23 (m, 2 H).; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 202.8,152.5$, 139.6, 138.6 (2C), 138.4, 134.9, 131.9, 129.9, 127.7, 127.6, 123.9, 115.4, 113.9, 112.8, 55.6, 55.4, 45.2, 43.9, 33.3, 31.9, 29.8, 29.5, 27.9, 27.2.; HRMS (ESI): m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{2}$ $[\mathrm{M}+1]^{+}: 400.22711$; Found: 400.22769.

3-Cycloheptylidene-8-methyl-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4yl)(phenyl)methanone (67q)

Following the general experimental procedure (method B), pentafulvene derived from cycloheptanone 1d ($251 \mathrm{mg}, 1.57 \mathrm{mmol}$), phenyl glyoxal monohydrate $\mathbf{6 5}(159 \mathrm{mg}, 1.05$ mmol), p-toluidine ($112 \mathrm{mg}, 1.05 \mathrm{mmol}$), $\mathrm{Yb}(\mathrm{OTf})_{3}(65 \mathrm{mg}, 0.105 \mathrm{mmol})$ and $\mathrm{MS} 4 \mathrm{~A}^{0}$ (200 mg) in $5 \mathrm{mLCH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7} \mathbf{q}$ as a yellow solid in $34 \% ~(138 \mathrm{mg})$ yield with dr 92:8.

$\mathbf{R}_{f}: 0.51$ (30% Ethyl acetate-hexane).; mp: 208-212 ${ }^{\circ} \mathrm{C} . ;$ IR (neat) $\mathbf{v}_{\text {max }}$: 3373, 2924, 2860, 1683, 1577, 1494, 1482, 1478, $1221 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 7.55(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.99(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85-5.83(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1$ H), 3.97 ($\mathrm{s}, 1 \mathrm{H}$), $3.72(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$, 2.19-2,14 (m, 1 H), 1.94-1.89 (m, 1 H), 1,73-1.69 (m, 1 H), 1.54-1.51 (m, 3 H), 1.49-1.41 (m, 2 H), 1.36-1.33 (m, 1 H), 1.31-1.25 (m, 2 H).: ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 202.7$, 142.1, 139.7, 139.1, 138.7, 134.8, 131.8, 129.7, 128.9, 127.7, 127.6, 127.5, 122.7, 114.6, 55.3, 44.9, 44.1, 33.3, 31.9, 29.8, 29.6, 27.9, 27.2, 20.8.; HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}[\mathrm{M}+1]^{+}$: 384.23219; Found: 384.23331.

3-(Diphenylmethylene)-8-methoxy-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4-yl)(p-tolyl)methanone (67r)

Following the general experimental procedure (method B), diphenylfulvene $\mathbf{1 f}(97 \mathrm{mg}$, 0.40 mmol), 2-oxo-2-p-tolylacetaldehyde ($50 \mathrm{mg}, 0,34 \mathrm{mmol}$), p-anisidine ($42 \mathrm{mg}, 0.34$ $\mathrm{mmol}), \mathrm{Yb}(\mathrm{OTf})_{3}(21 \mathrm{mg}, 0.034 \mathrm{mmol})$ and $\mathrm{MS} 4 \mathrm{~A}^{0}(100 \mathrm{mg})$ in $4 \mathrm{~mL} \mathrm{CH}{ }_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 7 r}$ as a viscous liquid in $46 \%(75 \mathrm{mg})$ yield with dr 91:9.

$\mathbf{R}_{f}: 0.59$ (30\% Ethyl acetate-hexane).; IR (neat) $v_{\text {max }}: 3368$, 2831, 1668, 1599, 1496, 1261, 1241, 1232, $1209 \mathrm{~cm}^{-1} . ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.40$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27-7.26 (m, 3 H), 7.15-7.09 (m, 7 H), $6.83(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-$ 6.71 (m, 2 H), 6.52 (dd. $J=8.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=6.0$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35-6.31(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 196.9,153.3,145.4,143.2,142.6,142.5,140.9,136.3,134.9,133.6,132.8$, $129.8,129.1,128.5,128.4,127.7,126.9,126.6,126.1,115.8,113.1,112.3,55.5,53.7,44.9$, 42.4.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 484.22765$; Found: 484.22784.
(4-Bromophenyl)-3-(diphenylmethylene)-8-methoxy-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4-yl)methanone (67s)

Following the general experimental procedure (method B), diphenylfulvene $\mathbf{1 f}$ (100 $\mathrm{mg}, 0.43 \mathrm{mmol}$), 2-(4-bromophenyl)-2-oxoacetaldehyde ($77 \mathrm{mg}, 0.36 \mathrm{mmol}$), p-anisidine (44 $\mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{Yb}(\mathrm{OTf})_{3}(22 \mathrm{mg}, 0.036 \mathrm{mmol})$ and $\mathrm{MS} 4 \mathrm{~A}^{\circ}(100 \mathrm{mg})$ in $4 \mathrm{mLCH} \mathrm{CN}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product 67 s as a yellow solid in $58 \%(114 \mathrm{mg})$ yield with dr 96:4.

$\mathbf{R}_{f}: 0.41$ (20\% Ethyl acetate-hexane).; mp: 86-90 ${ }^{\circ} \mathrm{C} . ;$ IR (neat) $u_{\text {max }}: 3356,3064,2836,1671,1583,1504,1447,1424$, 1272, 1166, 836, $760 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): δ 7.48 (d, $\quad J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37-7.35 (m, 2 H), 7.29-7.28 (m, 3 H), 7.18-7.13 (m, 5 H), 6.86 (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.76$6.74(\mathrm{~m}, 2 \mathrm{H}), 6.58-6.55(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=6.0,2.5 \mathrm{~Hz}, 1$ H), 6.37-6.35 (m, 2 H), 4.52 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.17$ (m, 1 H), 3.75 (s, 3 H).; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 196.4,153.5,145.1,142.4,140.7$, 135.9, 133.9, 132.9, 131.7, 129.7 (2C), 129.1, 128.6, 128.2, 127.9, 127.8, 127.2, 126.7, 126.3, 115.9, 113.1, 112.4, 55.6, 53.9, 44.9, 42.5.; HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{BrNO}_{2} \mathrm{M}^{+}$: 547.11469; Found: 547.09266.

3-(Diphenylmethylene)-8-hydroxy-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4yl)(phenyl)methanone (67t)

Following the general experimental procedure (method B), the diphenyl fulvene $\mathbf{1 f}$ (100 $\mathrm{mg}, 0.43 \mathrm{mmol}$), phenyl glyoxal monohydrate $\mathbf{6 5}(65 \mathrm{mg}, 0.43 \mathrm{mmol})$, 4-hydroxy aniline (47 $\mathrm{mg}, 0.43 \mathrm{mmol}), \mathrm{Yb}(\mathrm{OTf})_{3}(26 \mathrm{mg}, 0.043 \mathrm{mmol})$ and $4 \mathrm{~A}^{0} \mathrm{MS}(100 \mathrm{mg})$ in $5 \mathrm{mLCH} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product 67 t as a viscous liquid in $47 \%(92 \mathrm{mg})$ yield with dr 90: 10.

$\mathbf{R}_{\mathbf{f}}: 0.38$ (30\% Ethyl acetate-hexane).; IR (neat) $\nu_{\text {max }}: 3356,3056,1667$, 1593, 1503, 1491, 1443, 1214, $1209 \mathrm{~cm}^{-1} \cdot{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 7.48-7.46 (m, 2 H), 7.31 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.26-7.16 (m, 3 H), 7.13-7.09 (m, 5 H), 6.75-6.71 (m, 3 H), 6.39-6.36 (m, 2 H), 6.34-6.32 (m, 1 H), 6.23 $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$,
4.11-4.09 (m, 1 H).; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 197.7, 149.5, 145.2, 142.5(2C), 140.8, $137.2,135.5,133.7,132.8,132.7,129.0,128.5,128.4,128.2,127.8,127.0,126.6,126.5$, 125.3, 116.1, 114.5, 113.9, 53.7, 44.7, 42.3.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{NO}_{2}$ $[\mathrm{M}+1]^{+}: 456.19635$; Found: 456.21693 .

Ethyl 3-cyclohexylidene-8-methoxy-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-4carboxylate (69a)

Following the general experimental procedure (method B), pentafulvene derived from cyclohexanone 1c ($150 \mathrm{mg}, 1.03 \mathrm{mmol}$), ethyl glyoxalate $68(139 \mathrm{mg}, 1.37 \mathrm{mmol})$, p anisidine ($84 \mathrm{mg}, 0.68 \mathrm{mmol}$), $\mathrm{Yb}(\mathrm{OTf})_{3}(42 \mathrm{mg}, 0.068 \mathrm{mmol})$ and $\mathrm{MS} 4 \mathrm{~A}^{0}(100 \mathrm{mg})$ in 4 $\mathrm{mL} \mathrm{CH} \mathrm{H}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product 69a as a yellow solid in 35\% (84 $\mathrm{mg})$ yield with dr 92:8.

$\mathbf{R}_{f}: 0.55\left(30 \%\right.$ Ethyl acetate-hexane).; mp: $108-112{ }^{\circ} \mathrm{C}$.; IR (neat) $\mathbf{v}_{\text {max }}$: 3374, 2932, 2857, 1725, 1509, 1449, 1382, 1258, 1189, $814 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $6.74(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59$ (dd, $J=8.5,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.29-6.27(\mathrm{~m}, 1 \mathrm{H}), 6.04-6.02(\mathrm{~m}, 1$ H), 3.99 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.95 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.89-3.85$ (m, 2 $\mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.59$ $(\mathrm{m}, 6 \mathrm{H}), 1.07(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 172.5, 152.7, 138.2, $137.4,135.7,132.7,129.1,124.5,115.5,113.7,112.6,59.9,55.5,54.9,44.5,42.3,32.1,31.7$, 27.7, 27.6, 26.8, 14.1.; HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{3}[\mathrm{M}+1]^{+}: 354.20637$; Found: 354.20715.

Ethyl 3-cyclohexylidene-8-methyl-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-4carboxylate (69b)

Following the general experimental procedure (method B), pentafulvene derived from cyclohexanone 1c ($145 \mathrm{mg}, 0.99 \mathrm{mmol}$), ethyl glyoxalate 68 ($134 \mathrm{mg}, 1.32 \mathrm{mmol}$), p toluidine ($70 \mathrm{mg}, 0.66 \mathrm{mmol}$), $\mathrm{Yb}(\mathrm{OTf})_{3}(41 \mathrm{mg}, 0.066 \mathrm{mmol})$ and $\mathrm{MS} 4 \mathrm{~A}^{0}(100 \mathrm{mg})$ in 4 mL $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 9 b}$ as a yellow solid in 36% (80 mg) yield with dr 91:9.

$\mathbf{R}_{f}: 0.53$ (30% Ethyl acetate-hexane).; mp: $94-98{ }^{\circ} \mathrm{C}$.; IR (neat) $\mathrm{u}_{\max }$: $3379,2933,2859,1724,1621,1504,1451,1375,1249,1185,817 \mathrm{~cm}^{-1}$.; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $7.02(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32-6.30(\mathrm{~m}, 1 \mathrm{H}), 6.08-6.07(\mathrm{~m}, 1 \mathrm{H}), 4.03-$ 3.99 (m, 2 H), 3.95-3.90 (m, 2 H), 3.66 (t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37-2.33 (m, $2 \mathrm{H}), 2.31-2.27(\mathrm{~m}, 5 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.11(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 172.6, 141.2, 138.7, 135.8, 132.6, 128.9, 128.8, 127.6, 127.3, 123.3, 114.7, 60.0, 54.7, 44.2, 42.4, 32.1, 31.7, 27.7, 27.6, 26.8, 20.7, 14.1.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+1]^{+}: 338.21146$; Found: 338.21158.

Ethyl 3-cyclohexylidene-8-fluoro-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-4carboxylate (69c)

Following the general experimental procedure (method B), pentafulvene derived from cyclohexanone 1c ($155 \mathrm{mg}, 1.06 \mathrm{mmol}$), ethyl glyoxalate $\mathbf{6 8}(145 \mathrm{mg}, 1.42 \mathrm{mmol})$, 4 fluoroaniline ($78 \mathrm{mg}, 0.71 \mathrm{mmol}$), $\mathrm{Yb}(\mathrm{OTf})_{3}(49 \mathrm{mg}, 0.071 \mathrm{mmol})$ and $\mathrm{MS} 4 \mathrm{~A}^{\circ}(100 \mathrm{mg})$ in 4 mL CH 33 CN at room temperature for 8 h gave the product 69 c as a yellow viscous liquid in $19 \% ~(46 \mathrm{mg}$) yield with dr 90:10.

$\mathbf{R}_{f}: 0.55$ (30\% Ethyl acetate-hexane).; IR (neat) $\cup_{\text {max }}: 3371,2929,2855$, 2832, 1725, 1503, 1475, 1435, 1235, 1181, 1033, $809 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): 6.92(\mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.56-$ $6.53(\mathrm{~m}, 1 \mathrm{H}), 6.33-6.32(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.99$ (m, 2 H), 3.93-3.89 (m, 2 H), $3.65(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.26(\mathrm{~m}, 4 \mathrm{H})$, $1.74-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): 172.3, 157.3, 155.4, 139.7, 137.7, 135.4, 133.2, 129.4, 124.9, 124.8, 115.3, 115.2, 114.6, 114.5, 113.4, 113.2, 60.1, 54.8, 44.4, 42.1, 32.1, 31.7, 27.7, 27.6, 26.8.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 342.18638$; Found: 342.18738.

Ethyl 8-methyl-3-(propan-2-ylidene)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-4carboxylate (69d)

Following the general experimental procedure (method B), dimethyl fulvene 1a (125 $\mathrm{mg}, 1.17 \mathrm{mmol}$), ethyl glyoxalate $\mathbf{6 8}$ ($160 \mathrm{mg}, 1.57 \mathrm{mmol}$), p-toluidine ($84 \mathrm{mg}, 0.78 \mathrm{mmol}$),
$\mathrm{Yb}(\mathrm{OTf})_{3}(48 \mathrm{mg}, 0.078 \mathrm{mmol})$ and $\mathrm{MS} 4 \mathrm{~A}^{0}(100 \mathrm{mg})$ in $4 \mathrm{mLCH} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 8 h gave the product $\mathbf{6 9 d}$ as a yellow viscous liquid in $28 \%(66 \mathrm{mg})$ yield with dr 88:12.

$\mathbf{R}_{f}: 0.57$ (30\% Ethyl acetate-hexane).; IR (neat) $v_{\text {max }}: 3375,2929,2846$, 1726, 1627, 1500, 1459, 1255, $1179 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (500 MHz , CDCl $_{3}$): $\delta 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$ H), $6.29-6.27(\mathrm{~m}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1$ H), $4.04(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 1 \mathrm{H})$, $3.66(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.09$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 172.6,141.1,138.8,129.5,128.8$, 127.7, 127.4, 124.4, 123.3, 114.7, 60.0, 54.2, 44.4, 43.1, 21.4, 21.0, 20.7, 14.0.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+1]^{+}: 298.18016$; Found: 298.18031 .

(3-(Diphenylmethylene)-8-methoxy-3H-cyclopenta[c]quinolin-4-yl)(phenyl)methanone

 (70a)Following the general experimental procedure, tetrahydroquinoline derivative 67b (50 $\mathrm{mg}, 0.11 \mathrm{mmol}$) and DDQ ($48 \mathrm{mg}, 0.21 \mathrm{mmol}$) in $5 \mathrm{~mL} \mathrm{CHCl}_{3}$ at room temperature for 4 h gave the product 70a as a red solid in $95 \%(47 \mathrm{mg})$ yield.

$\mathbf{R}_{f}: 0.51$ (20% Ethyl acetate-hexane); $\mathbf{m p}: 234-236{ }^{\circ} \mathrm{C} . ;$ IR (neat) $\boldsymbol{v}_{\text {max }}$: 3060, 2931, 2832, 1667, 1620, 1578, 1559, 1498, 1456, 1428, 1280, 1222, 1050, 833, $730 \mathrm{~cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.97(\mathrm{~d}, J=9.5 \mathrm{~Hz}$, 1 H), 7.81-7.79 (m, 2 H), 7.47-7.41 (m, 2 H), 7.39-7.35 (m, 4 H), 7.34-7.31 (m, 1 H), $7.29-7.24(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.84(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathbf{C D C l}_{3}$): δ 192.1, 158.5, 155.2, 149.6, 149.1, 142.5, 142.2, 141.5, 138.5, $137.0,134.6,132.8,132.5,131.7,131.6,129.5,128.7$, 128.5, 127.8, 127.1, 125.6, 124.4, 124.2, 121.8, 101.5, 55.7.; HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+1]^{+}: 466.18016$; Found: 466.18106.

(3-(Diphenylmethylene)-8-methyl-3H-cyclopenta[c]quinolin-4-yl)(phenyl)methanone (70b)

Following the general experimental procedure, tetrahydroquinoline derivative 67c (70 $\mathrm{mg}, 0.15 \mathrm{mmol}$) and DDQ ($70 \mathrm{mg}, 0.31 \mathrm{mmol}$) in $5 \mathrm{~mL} \mathrm{CHCl}_{3}$ at room temperature for 4 h gave the product 70b as a red coloured liquid in $92 \%(64 \mathrm{mg}$) yield.

$\mathbf{R}_{f}: 0.49$ (20\% Ethyl acetate-hexane).; IR (neat) $\cup_{\text {max }}$: 3027, 2920, 2861, 1668, 1558, 1497, 1446, 1390, 1315, 1243, 1180, 1054, 1002, $901 \mathrm{~cm}^{-1} \cdot{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.94$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.88 (s, 1 H), 7.817.79 (m, 2 H), 7.48 (dd, $J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.82(\mathrm{~m}$, $\left.3 \mathrm{H}), 6.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z , ~ C D C l} \mathbf{H}_{3}\right):$ $\delta 191.7,154.9,150.9,149.7,144.1,142.6,142.3,138.6,137.2,136.9,134.6,132.8,132.6$, 132.5, 131.7, 131.4, 129.9, 129.4, 128.7, 128.4, 127.8, 126.9, 125.3, 124.4, 123.2, 122.5, 21.9.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+1]^{+}: 450.18524$; Found: 450.18466 .

Compound 70c

Following the general experimental procedure, tetrahydroquinoline derivative $\mathbf{6 7 f}$ (150 $\mathrm{mg}, 0.34 \mathrm{mmol})$ and $\mathrm{DDQ}(156 \mathrm{mg}, 0.69 \mathrm{mmol})$ in $5 \mathrm{~mL} \mathrm{CHCl}_{3}$ at room temperature for 4 h gave the product 70c as a yellow solid in $56 \%(84 \mathrm{mg})$ yield.

$\mathbf{R}_{f}: 0.34$ (20\% Ethyl acetate-hexane).; mp: 184-188 ${ }^{\circ} \mathrm{C}$.; IR (neat) $\boldsymbol{u}_{\text {max }}$: 2911, 2852, 1670, 1606, 1562, 1497, 1427, 1324, 1220, 1163, 1053, 1025, 969, 911, 784, $729 \mathrm{~cm}^{-1}$.; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta 8.24-$ 8.23 (m, 2 H), $7.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.27$ (m, 2 H), 7.25-7.22 (m, 2 H), 3.96 ($\mathrm{s}, 3 \mathrm{H}$), 3.41 ($\mathrm{s}, 1 \mathrm{H}$), 3.07 (s, 1 H), 2.06-2.03 (m, 2 H), 1.99-1.95 (m, 4 H), 1.85-1.81 (m, 3 H), $1.74-1.72$ (m, 1 H), 1.51 (dd, $J=12.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 192.6,167.4,158.3,149.9,148.8,140.9,136.1$, 133.1, 131.3(2C), 130.9, 130.6, 128.3, 124.3, 124.1, 122.3, 121.5, 101.3, 55.4, 40.3, 39.3, 38.2, 38.1, 36.5, 27.8.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NO}_{2},[\mathrm{M}+1]^{+}: 434.21146$; Found: 434.20996.

Compound 70d

Following the general experimental procedure, tetrahydroquinoline derivative $\mathbf{6 7 m}$ (70 $\mathrm{mg}, 0.16 \mathrm{mmol}$) and $\mathrm{DDQ}(75 \mathrm{mg}, 0.33 \mathrm{mmol})$ in $5 \mathrm{~mL} \mathrm{CHCl}_{3}$ at room temperature for 4 h gave the product 70d as a yellow viscous liquid in 53% (37 mg) yield.

$\mathbf{R}_{f}: 0.47$ (20\% Ethyl acetate-hexane).; IR (neat) $v_{\text {max }}$: 2986, 2837, 1668, 1601, 1508, 1424, 1327, 1219, 1186, 1055, 1085, 931 $\mathrm{cm}^{-1} . ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 8.23(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 8.09-8.06 (m, 1 H), 7.71 (dd, J $=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42$ (m, 1 H$), 7.30(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 1 \mathrm{H})$, 3.08 (s, 1 H), 2.09-2.06 (m, 2 H), 1.99-1.96 (m, 4 H), 1.87-1.79 (m, 3 H), $1.74(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 1 \mathrm{H}), 1.54-1.51(\mathrm{~m}, 1 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 192.6,169.6,161.9,159.9,151.5,149.7,149.6,141.9,135.7,133.5$, 132.3, 132.2, 131.3, 130.9(2C), 128.4, 124.2, 123.9, 123.8, 122.1, 119.1, 118.9, 107.1, 106.9, 40.4, 39.6, 38.4, 38.2, 36.4, 27.8.; HRMS (ESI): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{FNO}_{2},[\mathrm{M}+1]^{+}$: 422.19147; Found: 422.19220.

Crystal Data: Compound 67a

CCDC 1451008

Chemical formula moiety	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{2}$
Chemical formula sum	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{2}$
Chemical formula weight	345.42
Symmetry cell setting	monoclinic
Symmetry space group name	$\mathrm{P} 21 / \mathrm{c}$
Cell length a	$12.604(4)$
Cell length b	$10.100(5)$

Cell length c	$14.236(5)$
Cell angle alpha	90.00
Cell angle beta	$94.478(9)$
Cell angle gamma	90.00
Cell volume	$1806.7(16)$
Cell formula units Z	4
Cell measurement temperature	150 K
Cell measurement reflns used	2654
Cell measurement theta min	3.0
Cell measurement theta max	27.5
Exptl crystal description	Block
Exptl crystal size max	0.20
Exptl crystal size mid	0.20
Exptl crystal size min	0.10
Exptl crystal density diffrn	1.270
Exptl crystal_density_method	'not measured'
Exptl crystal colour	colourless
Exptl crystal F 000	736
Exptl absorpt coefficient mu	0.080
Exptl absorpt correction-type	Empirical
Exptl absorpt correction T min	0.984
Exptl absorpt correction T max	0.992
Diffrn ambient temperature	150 K
Diffrn radiation wavelength	0.71073

4.6. References

1. Bergmann, E. D. Chem. Rev. 1968, 68, 41-84.
2. Hong, B.-C.; Wu, J.-L.; Gupta, A. K.; Hallur, M. S.; Liao, J.-H. Org. Lett. 2004, 6, 34533456.
3. Ebner, C.; Carreira, E. M. Angew. Chem. Int. Ed. 2015, 54, 11227-11230.
4. Hong, B.-C.; Chen, F.-L.; Chen, S.-H.; Liao, J.-H.; Lee, G.-H. Org. Lett. 2005, 7, 557560.
5. Krygowski, T. M.; Cyrański, M. K. Chem. Rev. 2001, 101, 1385-1420.
6. Friedrichsen, W.; Oeser, H. G. Tetrahedron Lett. 1974, 15, 4373-4376.
7. Hafner, K. Pure Appl. Chem. 1971, 28, 153-180.
8. Houk, K. N.; George, J. K.; Duke Jr, R. E. Tetrahedron 1974, 30, 523-533.
9. Gleiter, R.; Borzyk, O. Angew. Chem. Int. Ed. 1995, 34, 1001-1003.
10. Hong, B.-C.; Shr, Y.-J.; Liao, J.-H. Org. Lett. 2002, 4, 663-666.
11. Bhojgude, S. S.; Kaicharla, T.; Bhunia, A.; Biju, A. T. Org. Lett. 2012, 14, 4098-4101.
12. Houk, K. N.; Luskus, L. J. Tetrahedron Lett. 1970, 4029-4031.
13. Hong, B.-C.; Gupta, A. K.; Wu, M.-F.; Liao, J.-H.; Lee, G.-H. Org. Lett. 2003, 5, 16891692.
14. He, Z.-L.; Teng, H.-L.; Wang, C.-J. Angew. Chem. Int. Ed. 2013, 52, 2934-2938.
15. Houk, K. N.; Luskus, L. J. J. Org. Chem.1973, 38, 3836-3843.
16. Dunn, L. C.; Chang, Y.-M.; Houk, K. N. J. Am. Chem. Soc. 1976, 98, 7095-7096.
17. Reiter, S. E.; Dunn, L. C.; Houk, K. N. J. Am. Chem. Soc. 1977, 99, 4199-4201.
18. (a) Radhakrishnan, K. V.; Syam Krishnan, K.; Bhadbhade, M. M.; Bhosekar, G. V. Tetrahedron Lett. 2005, 46, 4785-4788. (b) Krishnan, K. S.; Sajisha, V. S.; Anas, S.; Suresh, C. H.; Bhadbhade, M. M.; Bhosekar, G. V.; Radhakrishnan, K. V. Tetrahedron 2006, 62, 5952-5961.
19. Krishnan, K. S.; Kuthanappillil, J. M.; John, J.; Suresh, C. H.; Suresh, E.; Radhakrishnan, K. V. Synthesis 2008, 2134-2140.
20. Kuthanapillil, J. M.; Thulasi, S.; Rajan, R.; Krishnan, K. S.; Suresh, E.; Radhakrishnan, K. V. Tetrahedron 2011, 67, 1272-1280.
21. Anas, S.; Sajisha, V. S.; John, J.; Joseph, N.; George, S. C.; Radhakrishnan, K. V. Tetrahedron 2008, 64, 9689-9697.
22. (a) Chand, S. S.; Jijy, E.; Prakash, P.; Szymoniak, J.; Preethanuj, P.; Dhanya, B. P.; Radhakrishnan, K. V. Org. Lett. 2013, 15, 3338-3341. (b) Chand, S. S.; Saranya, S.;

Preethanuj, P.; Dhanya, B. P.; Jijy, E.; Prakash, P.; Sasidhar, B. S.; Szymoniak, J.; Santhini, P. V.; Radhakrishnan, K. V. Org. Biomol. Chem. 2014, 12, 3045-3061.
23. Sarath Chand, S.; Sasidhar, B. S.; Prakash, P.; Sasikumar, P.; Preethanuj, P.; Jaroschik, F.; Harakat, D.; Vasse, J.-L.; Radhakrishnan, K. V. RSC Adv. 2015, 5, 38075-38084.
24. (a) Fochi, M.; Caruana, L.; Bernardi, L. Synthesis 2014, 46, 135-157. (b) Kouznetsov, V. V. Tetrahedron 2009, 65, 2721-2750.
25. Povarov, L. S. Russ. Chem. Rev. 1967, 36, 656.
26. Powell, D. A.; Batey, R. A. Org. Lett. 2002, 4, 2913-2916.
27. Dennis, M. K.; Burai, R.; Ramesh, C.; Petrie, W. K.; Alcon, S. N.; Nayak, T. K.; Bologa, C. G.; Leitao, A.; Brailoiu, E.; Deliu, E.; Dun, N. J.; Sklar, L. A.; Hathaway, H. J.; Arterburn, J. B.; Oprea, T. I.; Prossnitz, E. R. Nat. Chem. Biol. 2009, 5, 421-427.
28. Ishitani, H.; Kobayashi, S. Tetrahedron Lett. 1996, 37, 7357-7360.
29. Xie, M.; Chen, X.; Zhu, Y.; Gao, B.; Lin, L.; Liu, X.; Feng, X. Angew. Chem. Int. Ed. 2010, 49, 3799-3802.
30. Stepakov, A. V.; Boitsov, V. M.; Larina, A. G.; Molchanov, A. P. Russ. J. Org. Chem. 2014, 50, 389-393.
31. Stone, K. J.; Little, R. D. J. Org. Chem.1984, 49, 1849-1853.
32. Chajara, K.; Ottosson, H. Tetrahedron Lett. 2004, 45, 6741-6744.
33. Wang, X.; Zhang, Y.; Tan, H.; Wang, Y.; Han, P.; Wang, D. Z. J. Org. Chem. 2010, 75, 2403-2406.
34. CCDC 1451008
35. Hermitage, S.; Howard, J. A. K.; Jay, D.; Pritchard, R. G.; Probert, M. R.; Whiting, A. Org. Biomol. Chem. 2004, 2, 2451-2460.

SUMMARY

The thesis entitled "Study on the Reactivity of Bis- π-allyl and Related Palladium Intermediates with Functionalized 1,3-Dienes and Carbonyl Compounds \& Lewis Acid Catalyzed Povarov Reaction Using Pentafulvenes as Dienophiles" presents the results of our investigations on the reactivity of bis- π-allyl palladium and related complexes with functionalized conjugated dienes and carbonyl compounds and synthesis of tetrahydroquinoline derivatives by Lewis acid catalyzed Povarov reaction of pentafulvenes and aryl imines.

The first chapter deals with a brief overview on the reactivity of π-allyl palladium complex (Tsuji-Trost reaction) and amphiphilic bis- π-allyl and related palladium complexes with various substrates.

The second chapter describes the reaction of bis- π-allyl palladium and related complexes with functionalized dienes. Amphiphilic π-allyl palladium complexes reacted with conjugated dienes and provided regioselective 1,4-intercepted products.

The third chapter outlines the results of our investigations on the palladium-catalyzed interceptive decarboxylative 1,4 -addition of allyl carbonates with squarates. Decarboxylative allylation reaction of allyl carbonates is further extended to functionalize C-3 carbonyl group of N -substituted isatins and furnished oxindole derivatives by 1,2 -interceptive addition. Compounds containing electrophilic carbonyl group such as acenaphthenequinone and
diethylketomalonate also underwent decarboxylative 1,2 -addition by reacting with allyl carbonates in the presence of palladium catalyst.

The detailed investigation of the inverse-electron-demand aza-Diels-Alder reaction of aryl imines generated from phenylglyoxal and anilines with pentafulvenes constitutes the subject matter of the fourth chapter of the thesis. Lewis acid catalyzed Povarov reaction of pentafulvenes was conducted in both two component as well as in three component fashion and the reaction afforded tethahydroquinoline derivatives in moderate to good yields. Synthetic utility of this reaction is further highlighted by constructing quinoline fused fulvene derivatives by DDQ oxidation.

Three Component Reaction

In conclusion, we have conducted a detailed investigation on the reactivity of bis- π allyl palladium and related complexes with functionalized 1,3-butadienes and studied the palladium catalyzed interceptive decarboxylative addition of allyl carbonates with squaric acid esters and N -substituted isatins. Lewis acid catalyzed Povarov reaction of pentafulvenes was carried out with aryl imines generated from phenylglyoxal and anilines and the reaction furnished ring fused tetrahydroquinoline derivatives.

List of publications

1. Bis-functionalization of 1,3-Dienes via 1,4-Conjugate Addition of Amphiphilic Bis- π allyl and Related Palladium Intermediates. T. V. Baiju; Ajesh Vijayan; Nayana Joseph; Preethanuj Preethalayam; K. V. Radhakrishnan; E. Suresh; Yoshinori Yamamoto Synlett. 2014, 25, 359-364.
2. Palladium Catalyzed Interceptive Decarboxylative Addition of Allyl Carbonates with Carbonyl group. T. V. Baiju; Nayana Joseph; Jainu Ajit; Praveen Prakash; K. V. Radhakrishnan; Yoshinori Yamamoto Synlett. 2014, 25, 1246-1252.
3. Palladium Catalyzed Ring Opening of Cyclopropane Appended Spirotricyclic Olefins with Soft Nucleophiles and Organoboronic Acids: Facile Synthesis of Functionalized Spiro[2.4]heptenes. E. Jijy; Praveen Prakash; T. V. Baiju; M. Shimi; Y. Yamamoto; E. Suresh; K. V. Radhakrishnan Synthesis 2014, 46, 2629-2643.
4. Transition Metal Free Intramolecular Approach for the Synthesis of Cyclopenta[b]chromene Derivatives from Phenol Substituted Fulvene Derived Azabicyclic Olefins. Ajesh Vijayan; T. V. Baiju; Sunil Varughese; K. V. Radhakrishnan Tetrahedron Lett. 2016, 57, 2965-2968.
5. Rhodium Catalyzed Oxidative Coupling of Salicylaldehydes with Heterobicyclic Olefins towards the Synthesis of Fused Chromanones. Ajesh Vijayan; T. V. Baiju; E. Jijy; Praveen Prakash; M. Shimi; Petri M. Pihko; Nayana Joseph; K. V. Radhakrishnan Tetrahedron 2016, 72, 4007-4015.
6. Lewis acid Catalyzed Povarov Reaction Using Pentafulvenes and Spiro-cyclopentadienes as Dienophiles. T. V. Baiju; S. Saranya; K. V. Radhakrishnan [To be submitted to Synthesis]

Papers presented at conferences

1. Palladium Catalyzed Interceptive Decarboxylative Addition of Allyl carbonates to Squarates and Isatins, Baiju T. V. and K. V. Radhakrishnan, a poster presented at National Symposium on Transcending Frontiers in Organic Chemistry (TFOC), held at CSIR-National Institute for Interdisciplinary Science \& Technology, Thiruvananthapuram, October 2014
2. Palladium Catalyzed Interceptive Decarboxylative Addition of Allyl carbonates with Carbonyl group, Baiju T. V. and K. V. Radhakrishnan, a poster presented at CRSI National Symposium in Chemistry, held at CSIR-North East Institute of Science \& Technology, Jorhat, July 2014
3. Synthesis of Alkylidene Cyclopentenes by Palladium Catalyzed Desymmetrization of Pentafulvene Derived Bicyclic Hydrazine with Soft Nucleophiles, Baiju T. V., Rani Rajan and K. V. Radhakrishnan, a poster presented at International Conference on Drug Development for Orphan/Neglected Diseases, held at CSIR-Central Drug Research Institute, Lucknow, February 2013.
4. Palladium Catalyzed 1,8-Conjugate Addition to Heptafulvene via Bis- π-allyl Palladium Complexes, Baiju T. V., Sholly Clair George., Jijy, E., Praveen Prakash and K. V. Radhakrishnan, a poster presented at International Conference on Heterocyclic Chemistry, held at University of Rajasthan, Jaipur, December, 2011.
