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PREFACE

Organic electronics is a rapidly growing field that involves the use of carbon-based
semiconducting materials to develop flexible, lightweight and cost-effective electronic devices
enabling innovations in areas such as displays, lighting, photovoltaics, bioelectronics, etc.
Among the various advancements in organic electronics, organic light emitting diodes
(OLEDSs) have emerged as key players, for high quality displays in consumer electronics and
as potential candidates for efficient lighting solutions. However, despite their remarkable
progress, OLEDs still face critical challenges including high production costs and limited
lifespan, which have hindered their broader commercial adoption. This thesis explores recent
progress in exciplex based OLEDs, focuses on novel and simplified device architectures for
white emission and explores the idea of multifunctionality in devices.

In Chapter 1, an introduction to organic electronics, OLEDs and the concept of exciplex
emission are presented. Recent advancements in exciplex-based OLEDs are discussed in detail,
highlighting their potential for simple device architectures eliminating the need for a separate
emissive layer. Exciplex formed at the interface of transport layers, can act as emitter as well
as host for phosphorescent, fluorescent or thermally activated delayed fluorescence (TADF)
dopants. By strategically combining the exciplex emission with the emission of dopants, white
emission can be acheived without complex device architectures. The existing literature on
exciplex based OLEDs; both as emitters and hosts has been thoroughly reviewed to identify
commercially available transport materials that are yet to be explored for forming novel
exciplex pairs. This opens up new opportunities for developing efficient and cost-effective

OLED architectures by utilizing the hitherto unexplored combinations of transport materials.

In chapter 2, the issues with the blue emitters and complex device structures of white OLEDs

(WOLEDSs) are addressed to some extent. A blue exciplex emission at the interface of NPB

xii



(N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine) and TAZ (3-(biphenyl-4-yl)-5-(4-tert-
butylphenyl)-4H-1,2,4-triazole) was obtained. The NPB/TAZ exciplex was utilized as emitter
and as well as a host with a yellow phosphorescent dopant, iridium (111) bis(4-phenylthieno[3,2-
c]pyridinato-N,C2")acetylacetonate (PO-01). The device design consists of an emissive layer
containing both blue and yellow emitting units. By strategically incorporating tetracene as a
spacer layer in between the blue and yellow emitting units, we achieved a white emission with
CIE coordinates (0.36, 0.39) and a correlated color temperature (CCT) of 4643 K. This
approach simplifies the device architecture by utilizing a spacer layer instead of a charge

generation layer (CGL), thereby reducing complexity while enhancing white emission.

In chapter 3, Solution-processing method was employed, aiming to reduce process complexity
and to minimize material usage. The concept of multifunctionality in exciplex based OLEDs is
also explored. The combination of NPB and OXD-7 (1,3-bis[2-(4-tert-butylphenyl)-1,3,4-
oxadiazo-5-yl]benzene) was utilized for the blue exciplex emission, which could function as
an emitter as well as a host with a yellow phosphoroscent dopant, PO-01. A maximum
brightness of 36,000 cd/m? was achieved for the yellow OLED with an external quantum
efficieny (EQE) of 11%. The dual functionality of an NPB:OXD-7 exciplex was also
investigated, which acts both as an OLED and a UV photodetector. This multifunctionality is
attributed to the strong UV absorption and high surface potential of OXD-7. The surface
potential in organic semiconductor thin films originates from the spontaneous orientation
polarization (SOP), which facilitates exciplex dissociation and subsequent generation of
photocurrent. By judiciously varying the raio of NPB:OXD mixture, either the light emission
or the light detection can be made prominent. A multifunctional device, acting as a self-
powered UV detector, exhibited a detectivity of 4 x 10t Jones, responsivity of 17 mA/W and

an ON-OFF ratio of 3 x 103 with a reasonable OLED performance.

xiii



In chapter 4, Single emissive layer WOLEDs are presented by integrating exciplex and
excitonic emissions within an emissive layer. The study investigates two blue-emitting hole
transport materials (HTMs), TPD (N,N’-Bis(3-methylphenyl)-N,N’-diphenylbenzidine) and
TFB (Poly(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine), together with the
electron transport material (ETM), PO-T2T (2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-
triazine). WOLED with a simplified device architecture is demonstrated that combines yellow
emission from the TPD:PO-T2T exciplex with blue emission at the TPD/TPBi interface
exciplex combined with the emission of TPD. WOLED achieved a high color rendering index
of 78 and a maximum brightness of 3358 cd/m2. Additionally, it was observed that the
incorporation of TFB into the emissive layer resulted in a voltage-dependent emission shift
from blue to cool white, showcasing the potential for tunable white light emission within a

single emissive layer.
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Chapter 1

Introduction to organic electronics, organic light emitting
diodes (OLEDs) and exciplex OLEDs

1.1 Abstract

Organic electronic devices utilizing carbon-based materials are an alternative to traditional

electronics, especially in flexible displays and solar energy applications. Organic light
emitting diode (OLED) is the key application using organic semiconductors. This chapter
explores recent advancements in exciplex based OLEDs, emphasizing their potential in cost-
effective fabrication by eliminating the need for separate emissive layers. Exciplex emissions,
which occur at the molecular interface of a hole transport material (HTM) and electron
transport material (ETM), can act as a host for phosphorescent, fluorescent, and thermally
activated delayed fluorescence (TADF) dopants, contributing to efficient white OLED
(WOLED) designs avoiding complex tandem structures. The strategic selection of exciplex
combination is crucial for achieving complementary color emissions and advancing the
development of non-tandem white OLEDs. Exciplexes find application not only in OLEDs but
also in organic photovoltaic cells as well as photodetectors and it is possible to develop

multifunctional devices using exciplexes.



2 Chapter 1

1.2 Introduction

OLEDs have become an inevitable component in the smart electronic world, especially
information displays in various electronic gadgets as well as in solid state lighting. The
evolution of display technology has progressed from traditional LEDs to advanced OLEDs,
marking a significant shift in the capabilities and performance of modern displays. The first
LED television was developed in 1977 by James P. Mitchell. Over time, LED technology
evolved and was integrated with liquid crystal display (LCD) TVs to provide backlighting for
the LCD screen pixels. LEDs produce light through electroluminescence, a process where a
semiconductor material emits light when an electric current passes through it. White edge
LEDs, LED Arrays, and dynamic LEDs are primarily used LED technologies used by TV
manufacturers. LEDs in lighting surpass incandescent, halogen, and other conventional
lighting technologies. In recent years, hybrid LEDs combining quantum dots (QDs) and
organic emitters, called quantum dot OLEDs (QD-OLEDs)? have been the focus of extensive
research due to their promising applications in lighting and display technologies. QD-OLEDs
offer several advantages, including high efficiency, stable emission, high brightness, and
exceptional color rendering capabilities. Various QD types include cadmium-based QDs?,
indium phosphide-based QDs*, perovskite QDs®, etc. However, the toxicity of heavy metals
like cadmium (Cd), lead (Pb), etc. and intrinsic instability of the QDs and perovskites have
significantly impeded the commercial applications of hybrid LEDs® 7. OLEDs, which rely
exclusively on organic materials are self-illuminating with several key benefits over LEDs.
OLED technology enables the creation of flexible, foldable, thinner, and lighter displays

compared to LEDs. OLEDs provide a much wider viewing angle, a wider range of colors and
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are more energy-efficient, making them a better choice for both performance and
sustainability. This chapter discusses various aspects of OLEDs, including their structure,
working principle, emission mechanisms etc. and give a comprehensive understanding on

employing exciplex emission in OLEDs and its significance in modern OLED technology.

1.3 Organic electronics - an overview

Organic electronics is a rapidly evolving field that integrates materials science, polymer
chemistry and electronics. Unlike inorganic electronics, organic electronics utilizes carbon-
based materials such as polymers and small molecules. Like their inorganic counter parts,
organic semiconductors also possess semiconductor properties such as a bandgap, mobility,
and a negative temperature coefficient of resistance. Organic electronic devices offer several
unique advantages including flexibility, low-cost manufacturing and compatibility with large
area and low-temperature processing techniques, making it a promising alternative to inorganic
electronics. Their inherent flexibility enables the development of flexible devices, making
them ideal for applications such as flexible displays and wearable gadgets. Organic electronic
devices are characterized by their ability to be processed using solution-based techniques like
inkjet printing, spin coating and spray deposition. These methods significantly reduce
production costs and enable large area and roll-to-roll fabrication facilitating high-volume
manufacturing. Applications of organic electronics are diverse and include OLEDs for displays
and lighting, OPV devices for solar energy harvesting and organic field-effect transistors
(OFETS) for logic and memory applications. Organic sensors, neuromorphic devices and
robotics represent other emerging areas of interest. In summary, organic semiconductor

materials are central to the field of organic electronics offering flexibility, low-cost
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manufacturing, and tunable properties compatible with diverse substrates. This makes them a
versatile platform for developing next-generation electronic devices with wide variety of
applications across consumer electronics, healthcare and beyond. In the world of smart
gadgets, organic electronics hold significant promise for contributing to technology and
sustainability addressing various societal challenges and expanding the potential of electronic

devices.

1.4 An introduction to organic light emitting diodes (OLEDs)

The use of electronic gadgets has significantly increased in the post-pandemic world. Smart
phones, smart TVs, smart watches etc. have become inevitable consumer electronics
components of day-to-day life. OLED displays have become integral to nearly all smart
gadgets worldwide due to their superior image quality, vibrant colors, and flexibility.
Additionally, OLED technology enables thinner and lighter designs and consumes less power
making it ideal for portable devices. The evolution of OLEDs has started with the invention of
first OLED by Tang and Vanslyke in 19878, They used an aromatic diamine as the hole
transporting or electron blocking layer and tris(8-hydroxyquinoline) aluminum (Algs) as the
electron transporting and emitting layer. They could obtain an external quantum efficiency
(EQE) of 1% and brightness of over 1000 cd/m?. The Figure 1.1(a) shows the photographs of
the OLED inventors and the device architecture of the first OLED. This is considered as a
mile-stone in the history of organic electronics. Thereafter, it started bringing tremendous
contributions in the display and lighting technology. The first polymer OLED was developed
by Burroughes et al. in 1990. By 1997, Kido et al. demonstrated the first active-matrix OLED

(AMOLED), paving the way for advanced display technology. In 1998, Baldo et al. introduced
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phosphorescent OLEDs, further enhancing the efficiency and performance of OLEDs. World's
first OLED display was incorporated in a car audio screen and commercialization of OLED
technology took a major leap in 2007 with Sony's release of the first OLED TV; photographs

of the display and TV are shown in Figure 1.1 (b).

world’s first OLED display in a car audio
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Figure 1.1. (a) The photographs of the OLED inventors Ching Tang and Steven Van Slyke

and the device architecture of the first OLED (adapted from ref.8). (b) photograph of the first
OLED display in a car audio screen and world’s first OLED TV (adapted from ref.9).

The evolution continued with the development of TADF OLEDs by Adachi et al. in 2012,
which improved the practical applications of OLEDs®. Over time, OLED technology has
become widespread in consumer electronics, demonstrating its versatility and superior
performance compared to traditional display technologies. Attractive properties of OLEDs
include self-emitting property, high contrast, high color gamut, light weight, low-power

consumption etc. and it can create potentially large area, flexible as well as transparent devices.
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However, cost challenge in OLEDs is still a major bottleneck for this fast-growing technology.
Inorder to achieve cost-effectiveness, we need to simplify the processing techniques for

manufacturing of OLEDs and novel and simplified device architectures are to be employed.

1.4.1 OLEDs : Structure, working principle and parameters

A typical OLED consists of an emissive layer sandwiched between transport as well as
injection layers on both sides followed by anode and cathode as shown in Figure 1.2 (a). The
injection layers lower the energy barrier for hole/electron injection from anode/cathode to the
transport layers. Lithium fluoride (LiF) and cesium carbonate (Cs2CO3) are the commonly used
electron injection layers (EILs) and PEDOT: PSS (poly (3,4-ethylenedioxythiophene:
polystyrene sulfonate) and molybdenum trioxide (MoO3) are used as hole injection layers
(HILs). The selection of suitable transporting layers is based on matching energy levels to
lower the energy barriers. The hole transport layer (HTL) transport holes as well as blocks
electrons from the emissive layer and electron transport layer (ETL) transport electrons and
block holes from the emissive layer towards anode. The transport layers ensure overall charge
balance, efficiency, and stability of the devices. Commonly used HTLs are N,N’-Di(1-
naphthyl)-N,N'-diphenyl-(1,1’-biphenyl)-4,4’-diamine  (NPB), N,N'-Bis(3-methylphenyl)-
N,N'-diphenylbenzidine (TPD), 4,4'4"-Tris[phenyl(m-tolyl)amino]triphenylamine (m-
MTDATA), tris(4-carbazoyl-9-ylphenyl)amine (TCTA) , poly(9-vinylcarbazole) (PVK),
poly(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine) (TFB), poly(9,9-
dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine) (F8BT)¥ and ETLs are 1,3,5-
Tris(1-phenyl-1H-benzimidazol-2-yl)benzene  (TPBi), 4,7-Diphenyl-1,10-phenanthroline

(BPhen) , Algs, 1,3-Bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene (OXD-7), bis(8-
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hydroxy-2-methylquinoline)-(4-phenylphenoxy)aluminum (BAIq), 1,3,5-Tri(m-pyridin-3-
ylphenyl)benzene (TmPyPB), (2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine) (PO-
T2T) etc'?*. The holes are injected from anode and electrons are injected from cathode. These
carriers get transported through the transport layers to reach the emissive layer. At the emissive
layer, the exciton recombination and radiative emission occur. The working of a typical OLED

with its energy level schematic is illustrated in Figure 1.2 (b).

(a)

Cathode (Metal )

Flectron tnjection layer
lectron transport layer
Cathode
Emissive layer
Anode
Hole transport layer EML
Hole injection layer
Anode (Transparent)

Figure 1.2. (a) Device architecture and (b) working principle of a typical OLED.

Luminance is the key parameter of an OLED which is the light emitted per unit area of the
device. The current density (J)- voltage (V)- luminance (L) characteristics show the variation
in current density and luminance with respect to the applied bias. The main efficiency
parameters of an OLED are current efficiency (CE), power efficiency (PE), internal quantum
efficiency (IQE) and EQE. CE is the ratio of luminance to the current density, represents how
effectively electrical energy is converted into light. IQE gives the ratio of number of photons
generated within the OLED to the number of electrons injected into it. While EQE measures
the number of photons emitted from the OLED in the forward direction compared to the
number of electrons injected into the device. EQE of an OLED depends on several factors such

as charge balance factor (y), singlet to triplet ratio of excitons (ns), photoluminescence
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quantum yield of the emitter (neL) and out-coupling efficiency (nout). EQE can be represented
as the product of IQE and out-coupling efficiency. Hence the maximum EQE of a fluorescent
OLED, which uses only singlet excitons, is limited to 5% by considering the emission losses
due to these factors within the device. However, the efficiency in phosphorescent OLEDs can
be substantially higher as it employs triplet excitons also for emission via spin-orbit coupling.
In addition, there are some other parameters defining the emission of the device. Correlated
color temperature (CCT) describes the temperature of a blackbody which emits the same
wavelength as that of the device. The color rendering index (CRI) evaluates how accurately
the emission of the device reveals the colors of objects in comparison to a natural light source.
Color purity, which refers to how pure or monochromatic a color is at a certain level of
brightness. If the spectrum consists of equal intensities of all colors, the result would be grey,
indicating low purity or saturation. Conversely, if the spectrum features a single intense peak
with a narrow Full width at half maximum (FWHM), it represents high purity or saturation.
Efficiency roll-off refers to the decrease in current efficiency with increase in brightness. In
addition to efficiency and color properties, another important parameter for evaluating OLED
performance is its lifetime. Lifetime refers to the time elapsed until the OLED either fails

entirely or its efficiency drops below a predefined level?®,

1.4.2 Characteristics and hurdles of OLED technology

In the fast-paced realm of display technology, OLED displays have emerged as a
groundbreaking innovation, revolutionizing our interaction with digital devices. This advanced
technology, renowned for its superior image quality and energy efficiency is reshaping the user

experience across various sectors from smartphones to televisions and gaming devices.
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Innovations include flexible OLEDs for roll-up TVs, bendable smartphones, transparent
OLEDs for smart windows, augmented reality, etc. OLEDs provide more energy efficient
lighting by redefining light quality and lighting design. OLED lights offer unique design,
flexibility and produce warm, pleasant, and even lighting that mimics the characteristics of
natural light. Some of the commercial products using OLEDs in the display and lighting
industry are shown in Figure 1.3. The OLED industry is indeed facing several challenges
despite its promising technology. OLED products are more expensive compared to traditional
LCDs, due to the complex fabrication procedures, complicated multilayer structures and high

cost emitter materials involved.

Figure 1.3. Commercially available products using OLEDs in the display and lighting
industry.

Future advancements aim to improve energy efficiency, extend display lifespan, enhance color
accuracy and brightness promising a more immersive and sustainable user experience and cost-

effectiveness. Lack of stable blue emitters is another major issue which affects the overall
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display quality'’. Blue emitting materials are less stable with wider band gap and often have
lower energy transfer efficiency compared to red and green emitters'® °. Innovative
approaches in material design and advanced manufacturing techniques are needed to achieve

stable and efficient blue emitting OLED materials suitable for commercial applications.

1.4.3 Emission mechanisms in OLEDs

To obtain satisfying device performances with high efficiencies, OLEDs must have the
potential to fully harvest the singlet and triplet excitons generated in the emissive layer. Based
on the emission mechanisms, different generations of emitters are defined?®. Fluorescent
emitters?t2® are considered as the first generation emitters where only the transition of singlet
excitons to the singlet ground state (S1 to So) is theoretically allowed. The maximum theoretical
EQE is 25% as the singlet to triplet ratio is 1:3 in OLEDs. However, considering all other loss
mechanisms, the EQE is generally limited to 5%. Phosphorescent emitters?42® are the second
generation emitters in which intersystem crossing (ISC) from Sz to T transition occurs. As a
result, triplet state becomes radiative after a transition from Ty to So. Since the triplet excitons
(75%) are also utilized, the theoretical IQE is up to 100%. Third generation of TADF
emitters?’2° have a small energy gap between Si and Ti (AEst), hence thermally activated
reverse inter system crossing (RISC) occurs from T1 to Si. Hence, theoretical IQE up to 100%
is possible in the case of TADF emitters. Hyperfluoroscene®®32 or thermally-assisted
fluorescence is considered as the fourth generation emitters. Here a fluorescent emitter is
combined with a TADF assistant dopant to utilize 100% excitons for high efficiencies. QDs

are regarded as promising alternative emissive materials for next generation hybrid LEDs. QDs
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exhibit quantum confinement effect and the tuning of emission by controlling their size. The
EQE of QD LEDs depends on the quantum yield of the QDs.

In this context, concepts such as excimer® 34 electromer®: % exciplex®” 3 and electroplex®® 4°
hold significant importance as they can be triggered using common transport materials and the
need of a separate emissive layer can be eliminated. Excimer and exciplex represent excited
state emissions achievable through both optical and electrical excitation, whereas electromer
and electroplex is exclusively obtained via electrical excitation. This chapter provides a

detailed discussion on the concept of exciplex emission, recent advancements in exciplex-

based OLEDs, and their role in cost-effective fabrication.

1.5 Exciplex OLEDs : An alternate route towards cost-effectiveness

An exciplex is described as an excited state complex which is formed at the interface of a donor
and an acceptor molecule. Consider a pair of donor and acceptor molecules designated as D
and A. Under photo-excitation, donor will get excited to form a ground state complex with the
acceptor as shown in Figure 1.4. This collision complex is stabilized by charge transfer
interaction (CT interaction), called exciplex*!. This energetic stabilization causes the collision
complex to have a longer lifetime compared to the molecular excited states of the component
molecules. Exciplex has observable spectroscopic and chemical properties which are distinct
from its component molecules.

When we employ the concept of exciplex emission in OLEDSs, an excited state complex is
formed at the molecular interface of hole and electron transport materials. This points towards

the possibilities for simplified device architectures by eliminating separate emissive layer. The
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selection of suitable donor and acceptor materials for an efficient exciplex system is done based
on the moderate highest occupied molecular orbital (HOMO)-HOMO and low unoccupied
molecular orbital (LUMO)-LUMO offset values and at the HTM/ETM interface**4. The
broad and red shifted photoluminescence emission spectrum of the exciplex film compared to

its that of the component molecules is considered as an evidence for exciplex emission*® 46,

0.0, |
@a@a O -0

Collision complex

00— 00"

Exciplex emission

Figure 1.4. lllustration of the mechanism of exciplex emission between a donor molecule

(represented as D) and an acceptor molecule (represented as A).

Exciplex can be used either as an emitter or as a host with phosphorescent, TADF or
fluorescent dopants. The ability for bipolar transport ability of exciplex system can help to use
it as a host with suitable dopants. Highly efficient exciplex OLEDs can be achieved by
effectively transferring its energy to suitable emitters. By utilizing exciplex systems of
complementary colors, white light emission can also be achieved. Several reports on exciplex-
based OLEDs adopting simplified device architectures have been published. This may address
the problem of high cost in OLED display as well as lighting industry. Exciplex-based systems

with small singlet-triplet energy gap or AEst, can offer 100% exciton harvesting ability in these
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systems. Previously, the appearance of exciplex in OLEDs was considered as a major concern
for reduced device performance. In 2005, Y. N. Mohapatra and his team at I1'T Kanpur reported
the spectral broadening in electroluminescent (EL) spectra of the devices due to interfacial
exciplex formation*’. Broad and red shifted EL spectrum was proposed to be due to the
formation of exciplex at the TPD /zinc bis-2-shydroxyphenyld benzothiazole (Zns(BZT)2)
interface. When they apply an electric field, charge carriers had maximum probability to form
the exciplexes at the molecular interfaces, also the dimeric structure of Zns(BZT). gives
multiple sites for the carriers to bind. This work has pointed towards the strategies for the
improvement of device efficiency without losing the wide spectral width of exciplexes. Later
in 2012, Goushi et al. demonstrated a new strategy for radiative exciton production by using
the high RISC efficiency of exciplex state*®. They achieved a promising EQE via RISC to
enhance the radiative exciton production efficiency. This report has shed light on the
possibilities of exciplex emission in OLEDs. Since 2015, a growing number of reports on

exciplex-based OLEDSs have been published.

1.5.1 Exciplex as emitters — literature review

1.5.1.1 Monochrome OLEDs

Revolutionary concepts of exciplex-based approach in efficient OLED architectures have
attracted the interest of many researchers since 2015. There are reports on highly efficient and
simplified monochromatic OLEDs by utilizing exciplex as a host. Exciplex can also be formed
by blending bipolar materials which involves the selection of a suitable donor-acceptor-donor
(D-A-D) type molecule. By utilizing exciplex emitters of complementary colors, simplified

WOLED structures can also be adopted. Full exciplex-based WOLEDs have become an
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alternative for full-tandem WOLEDs, in which the additional task of incorporation of charge
generation layer (CGL) can be avoided. Several donor-acceptor combinations have come up
with promising performance for exciplex emitter-based OLEDs. However, proper selection
criteria for a suitable donor and acceptor combination and high efficiency OLEDs using
exciplex as an emitter are yet to be explored.

In 2007, Su et al. have reported the effect of acceptors on the efficiency of exciplex emission®.
Here they used electron transport materials such as Algs, TPBi, 2,9-Dimethyl-4,7-
diphenyl1,10-phenanthroline (BCP), 2-(4-Biphenyl)-5-(4-tert -butylphenyl)-134-oxadiazole
(PBD), etc., with a commonly used hole transport material m-MTDATA. They found that the
intermolecular contact between the donor and acceptor molecules is preferred for efficient
exciplex formation and minimum barriers at the interfaces are also needed to avoid the
uncontrolled flow of carriers. However, this study has brought a lot of attention in employing
exciplex emission in efficient OLED designs. Later in 2014, Jankus et al. have come up with
the concept of exciplex formation in a D-A-D molecule and also with a commonly used host
4.4'-Cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine](TAPC)*. Liu et al. have
presented three exciplex emitters consisting of one electron acceptor 3-(4,6-Diphenyl-1,3,5-
triazin-2-yl)-9-phenyl-9H-carbazole (DPTPCz) with three different electron donors TAPC,
NPB and TPBi®!. The TAPC device got an EQE of 15.4% with an excellent EL. Santos et al.
have demonstrated that the locally excited triplet states would undergo RISC to form locally
excited (LE) singlet states to give TADF °2. The delayed emission in exciplex is depending on
the CT and LE energy difference rather than the AEst value. In 2017, Pang et al. have
introduced the concept of magneto electroluminescence (MEL) in exciplex OLEDs®. The

AEst in exciplexes can allow the magnetic field to manipulate the singlet-triplet populations,
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and this type of devices are called ‘spin XOLEDs’. An extrinsic MEL can be generated by
connecting this through a magnetic tunnel junction as shown in Figure 1.5 (a). The color
changing was observed with a sweeping magnetic field. Solution-processed exciplex-based
OLEDs were reported by using a solvent-mixing method>*. Here they have achieved better
results by mixing two solvents chlorobenzene and chloroform. The results were comparable to
evaporated devices as well. This has pointed towards the possibilities of solution-processable
exciplex OLEDs. In 2018, Yuan et al. have presented an effective method to enhance the
exciplex formation by co-doping an organic spacer molecule into the exciplex mixture as
shown in Figure 1.5 (b)*®. This work showed the possibilities of novel EML designs for
efficient exciplex formation. The lack of deep blue emitters in the OLED industry can be
addressed by the investigation on exciplex combinations giving deep blue emissions. Hippola
et al. have come up with a deep blue emitting exciplex consisting of NPB/TPBI:
triphenylphosphine oxide (PPhz0O). They have also studied the exciplex formation between
NPB:TPBi and NPB:PPh3O. They observed more delayed exciplex emission in N> compared
to that in air. A delayed component of 2000 ns was observed in the case of NPB:PPh3O. The
deep blue emission with a maximum brightness of 14,000 cd/m? with commission
Internationale de I’Eclairage-1931 (CIE) coordinates of (0.1525, 0.0820) was obtained.
Schleper et al. have introduced the concept of hot exciplexes; with both fast emission and high
color purity®®. Here, the donor and acceptor moieties are coupled with an anthracene bridge. It
results in a large T1 to T2 gap and hence RISC occurs fast from T3 to S; as depicted in Figure
1.5 (¢). The characterization and evolution of excited state is done with quantum chemical
simulations. This report shed light on more possibilities of modified molecular designs for

exciplex emitters in OLED. By considering the lack of high yield exciplex systems, Wei et al.
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have come up with an idea of stacking donor and acceptor moieties in a CT chromophore®’.
Here, they have developed an electron acceptor TXO-P-Si by mixing thioxanthen-9-one 10,10-
dioxide (TXO) and N-phenyl carbazole (PhCz) units based on the DFT calculations. Exciplex
emission was observed in four different donors with a newly designed acceptor. The selected
donors are 1,3-Bis(carbazol-9-yl)benzene (mCP), 4,4'-Bis(carbazol-9-yl)biphenyl (CBP), 3,5-
Bis(3-(9H -carbazol-9-yl)phenyl)pyridine (3,5-DCzPPy) and 3-(Diphenylphosphoryl)-9-(4
(diphenylphosphoryl)phenyl)-9H -carbazole (PPO21), respectively. An EQE of 16.9% was
obtained for the green exciplex emission from TXO-P-Si: 3,5-DCzPPy combination with a low
efficiency roll-off. Later in 2022, a solution-processed exciplex OLED was reported by
Kesavan et al. with a high EQE of 20% solely by pure exciplex as emitter®®. The exciplex
combination consisted of carbazole-based molecule BCC-36 with triazine-based materials PO-
T2T and (2,4,6-tris(2-(1H-pyrazol-1-yl) phenyl)-1,3,5-triazine) 3P-T2T with a high PLQY of
90% and EQEs with various dopants as shown in Figure 1.5 (d). Exciplex-based monochrome
OLED:s are still in its growing stage. The main challenge is to enhance its quantum yield via
proper selection of materials and novel device design strategies and techniques. Weber et al.
explored the multifunctionality in exciplex emitter OLEDs. The development of
multifunctional blue OLEDs using TADF-exciplex materials was presented, where the devices
exhibit sensitivity to external stimuli and maximum EQE of 11.6% was achieved. The devices
show responses to low external magnetic fields up to 100 mT with magneto-conductance
efficiency reaching up to 2.5% and magneto-electroluminescence effects up to 4.1% were
detected. The insights gained a fundamental understanding of the exciplex combinations for

fully solution-processed OLEDs and a significant advancement towards multifunctional
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OLED technology. Table 1.1 shows the summary of major reports on monochrome OLEDs

where exciplex is used as an emitter.
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Figure 1.5. (a) The MEL vs. magnetic field plot in spin-XOLEDs (adapted from ref. 53) (b)

illustration of an organic spacer co-doped in to the exciplex matrix and energy level diagram

of the OLED (adapted from ref. 55) (c) demonstration of the mechanism of TADF via exciplex

and the concept of hot exciplex (adapted from ref. 56) (d) representation of the exciplex
emission and the EQEs achieved with different dopants with exciplex (BCC-36:PO-T2T) as
host (adapted from ref. 58).

1.5.1.2 White OLEDs

White emission in OLEDs is achieved by using tandem structures which involves stacking

multiple (red, green, blue) emitting units in series within a single device to achieve white light.

The individual emission of component molecules can be combined with the exciplex emissions

to achieve white light.
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Table 1.1. Summary of major reports on monochrome OLEDs where exciplex is used as an

emitter without any dopant materials.
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3MeFuPAlI (5-(8-(5-methylfuran-2-yl)-10-phenylanthracen-1-yl)isophthalonitrile), *BeFuPAl (benzofuran), 5(2-(4-

(*N,N,N,N-Tetrakis (4-methoxyphenyl)benzidine, 29-[2,8]-9-carbazole-[dibenzothiophene-S,S-dioxide]-carbazole,
(triphenylsilyl)phenyl)-9H-thioxanthen-9-one 10,10-dioxide).
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In 2003, M. Mazzeo et al. have fabricated a single layered WOLED by utilizing exciplex
emission at the molecular interface between two blue emitting compounds: TPD and 2,5-
bis(trimethylsilyl)-thiophene-1,1-dioxide (STO) *°. The blue emitting donor molecule and the
green-red emitting exciplex emission together give white light. Zhu and his team have reported
a WOLED from four different exciplex combinations®®. They observed exciplex emissions at
the following molecular interfaces; TPD/Bphen (blue), m-MTDATA/Bphen (green),
TPD/AI(DBM); (orange) and m-MTDATA/AI(DBM)3 (red). The WOLED achieved CIE
coordinates of (0.33, 0.35) and CCT of 3376 K. An all-exciplex tandem WOLED has been
reported, combining blue and yellow emissions from two different exciplex layers; mCP:PO-
T2T and 4,4'-(9H-fluoren-9-ylidene)bis[N,N-bis(4-methylphenyl)-benzenamine (DTAF):PO-
T2T, respectively®:. They used Lig(1nm)/Al (1nm)/ MoOs(5 nm) as the CGL. In 2015, Zhao
et al. have presented a tandem WOLED structure by combining orange and blue exciplex
emitting units®?. TCTA:Bphen and TAPC:3P-T2T were used as blue and orange exciplex
combinations respectively; connected through a CGL composed of 2,4,6-tris(3-(1H-pyrazol-
1-yl)phenyl)-1,3,5-triazine (3P-T2T): Cs2CO3, Al and MoOs. The tandem device gives twofold
current efficiency and EQE compared to the single colour OLEDs at the same current. In the
year 2016, Angioni et al. presented a single emitting layer WOLED by using a newly
synthesized triaryl molecule-based on a benzene-benzothiadiazole-benzene core®®. The EL
spectra comprise of different emission bands; the electromer formed in the novel molecule is
responsible for the band at 520 nm and the peak at 580 nm was due to the exciplex formed at
the interface between TPD and the novel molecule and a shoulder peak at 635 nm is due to the
electroplex. The proposed WOLED could provide an EQE of 2.39% and PE of 2.6 Im/W. In

2019, Xiaozhen Wei and co-workers have come up with a new strategy for structuring



20 Chapter 1

WOLEDs by combining complementary emissions ®. Commercially available electron
transport materials TPBi and PO-T2T combined with the HTL, TAPC give complementary
exciplex emissions. They have realized the blue and orange exciplex emissions from
TAPC:TPBi and TAPC:PO-T2T combinations. The EL spectra of the devices and the energy
level diagram involving the mechanism of white light emission is shown in Figure 1.6 (a). This
work has provided a new EML configuration for white emission by proper arrangement of
different layers. The optimized WOLED showed the maximum luminance and CE of 3206
cd/m? and 3.17 cd/A, respectively. The CIE coordinates of (0.365, 0.393) and CRI index of 73
was obtained. In 2020, our group have introduced a novel idea of combining exciplex and
electromer emission to achieve white light®®. The combination of TAPC:TPBi gives blue
exciplex emission, combining with yellow electromer emission of TAPC leads to white
emission with the CIE coordinates (0.31, 0.34). The EL spectra and the photographs of the
devices are shown in Figure 1.6 (b). This report suggests the possibilities of simplified device
designs by utilizing monomer emissions of the component molecules along with the exciplex
emission. Dong et al. presented a pure white OLED by using spacer materials ; 2,6-Bis(3-(9H-
carbazol-9-yl)phenyl)pyridine (26DCzPPy) and Bis[2-(diphenylphosphino)phenyl]ether oxide
(DPEPO)®%. The combination of blue (26DCzPPy:PO-T2T) and orange (TAPC:PO-T2T)
exciplexes were combined to generate white light emission. The energy level diagram of the
devices with spacer is shown in Figure 1.6 (c). Table 1.2 summarizes the major reports on
WOLEDs where exciplex is used as an emitter.

All exciplex-based white OLEDs can address the issue of lack of blue emitters. It can avoid
complicated synthetic procedures for high quantum yield dopant materials. The main challenge

in exciplex-based WOLED:s is the trade-off between device efficiency and quality of white
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light. Many studies are focusing on novel device architecture designs to circumvent this

problem.
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Figure 1.6. (@) The energy level diagram showing the mechanism of white emission by
combining blue and yellow exciplex emissions at TAPC/TPBi and TAPC/PO-T2T interfaces,
respectively (adapted from ref. 64) (b) EL spectra of the WOLEDs combining yellow
electromer emission of TAPC and blue exciplex emission from TAPC:TPBi (adapted from ref.
65) (c) The energy level diagram of all exciplex-based WOLED with spacer layers (adapted
from ref. 66).
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Table 1.2. Summary of major reports on WOLEDs where exciplex is used as an emitter

without any dopant materials.
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1.5.2 Exciplex as host — literature review

Exciplex emission can be effectively utilized by combining it with phosphorescent, fluorescent
or TADF dopants as depicted in shown in Figure 1.7. The spectral overlap between the
absorption spectra of the dopant and exciplex emission is considered as the basic criteria for
energy transfer from exciplex to the selected dopant. In exciplex host devices, energy transfer
occurs through Forster resonance energy transfer (FRET)®° and Dexter energy transfer
(DET)®": %870 In the case of WOLEDs, complex tandem device architectures and use of high
cost phosphorescent emitter materials are the main challenges for cost-effectiveness. These
problems can be addressed by employing the exciplex emission mechanism in WOLEDs. Here,
the exciplex can be used as an emitter as well as host with suitable phosphorescent dopants of
complementary colors. In exciplex-based OLEDs transporting layers contributing to emission
and function as a host in the same device. Hence, the device complexity can be minimized to
an extent. Exciplex host-based monochrome as well as WOLEDs in combination with various
types of emitters are discussed here. Exciplex host systems have a lot of advantages over
traditional hosts. The comparison between an exciplex host and a traditional host is

summarized in Table 1.3.
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Figure 1.7. IHllustration of using exciplex as a host with phosphorescent, TADF, or fluorescent

emitters.
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Traditional host

Exciplex host

Both charge trapping and energy transfer

occur

Energy transfer dominates

Trap assisted recombination leads to high

driving voltage

Langevin recombination gives reduced

driving voltage

Efficiency is limited since majority are

fluorescent materials

High power efficiency by utilizing 100 %

electrogenerated exciton energy

o Broadened recombination zone due to
Narrow recombination zone
balanced charge

) Transport layers have charge blocking
Due to weak charge blocking effect, -
) effect. Hence, additional layers are not
blocking layers are needed
needed

_ o Low efficiency roll-off due to broad
High efficiency roll-off o
recombination zone

Chances for the formation of additional Exciton confinement in dopants and avoid

exciplex the formation of additional exciplex

Table 1.3. Comparison between traditional and exciplex host

1.5.2.1 Monochrome OLEDs

There are several reports on exciplex host OLEDs in which exciplex act as a host with
phosphorescent emitters for highly efficient devices. Commercially available phosphorescent
dopants include bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(I11) (Ir(ppy)zacac)’®
2 Ir(ppy)s™ ™ and tris[2-(p-tolyl)pyridine]iridium(I11) (Ir(mppy)s)™> 7 (green) and 2-
methyldibenzo[f,h]Jquinoxaline  (Ir(MDQ)zacac)’""® bis(2-benzo[b]thiophen-2-ylpyridine)
(acetylacetonate)iridium(l11) (Ir(btp)2(acac))® &, platinum(11) octaethylporphine (PtOEP)®82 8
(red) etc.. Bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(l11) (Flrpic)®2¢ and

bis(4-phenylthieno[3,2-c]pyridinato-N,C2") (acetylacetonate) iridium(I11) (PO-01)%7-% are blue
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and yellow phosphorescent emitters, respectively; which are widely used in OLEDs. Red,
green, and blue phosphorescent emitters together in suitable host matrices can yield white
emission, although, the high cost of these materials is still a bottleneck in this scenario.
Simplified non-tandem device architectures of WOLEDSs using exciplex emitters with suitable
phosphorescent dopants in exciplex host can yield efficient white light. For the energy transfer
to occur, the triplet energy of the formed exciplex must be less than that of its individual
components and higher than that of the dopant molecule®® *2, In 2011, Park et al. effectively
utilized the exciplex formed at the molecular interface of CBP and 4,6-Bis(3,5-di(pyridin-3-
ylphenyl)-2-methylpyrimidine (B3PYMPM) and the energy transfer to Ir(ppy)s®. They got
an EQE exceeding 20% for a doping concentration of 6 mol%. Lee et al. presented a color
stable orange OLED where red and green phosphorescent emitters doped in exciplex co-host®*.
This co-host system minimizes the triplet quenching by providing a wide recombination zone.
Exciplex formation in devices can be in two different ways; bulk and interface types. Several
reports on exciplex host with phosphorescent dopants have come up with high EQEs. In 2017,
Lee et al. have presented a combination of NPB and PO-T2T as the exciplex host with
phosphorescent dopants, (Ir(MDQ)2(acac)) and Bis[2-(3,5-dimethylphenyl)-4-methyl-
quinoline] (acetylacetonate)iridium(I11) (Ir(mphmaq)2(tmd))*®. The device architecture was
optimized as follows; ITO/TAPC/NPB/NPB:PO-T2T:5wt% dopant/POT2T /0.5% rubidium
carbonate (Rb2CO3):PO-T2T /Al and could achieve maximum EQE of 34.1%. Balanced carrier
mobilities in the emissive layer can provide balanced electron-hole capture in devices where
exciplex is used as the host, giving high efficiencies. Hung et al. have reported a new star
shaped molecule, CN-T2T (1,3,5-triazine/cyano hybrid molecule) and it is used as an electron

acceptor with a donor 9-Phenyl-3,6-bis(9-phenyl-9Hcarbazol-3-yl)-9H-carbazole (Tris-PCz)
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to form an exciplex®. The charge carrier mobility in the device could be attributed to their
individual mobilities with same magnitudes. They could achieve EQEs of 6.9% and 9.7% by
using 1wt% of rubrene ((5,6,11,12)-tetraphenyl-naphthacene) and DCJTB in to the exciplex
matrix, respectively as shown in Figure 1.8 (a). A deep blue emitting exciplex consisting of
mCP and BM-A10 (phosphine-oxide-based ETM) was used as a host with a blue
phosphorescent  dye Bis(3,5-difluoro-4-cyano-2-(2-pyridyl)phenyl-(2-carboxypyridyl)
iridium(111) (FCNIrPic)®. Luminance vs. EQE as well as PE plots are shown in Figure 1.8 (b).
The EQE of 19% with CIE coordinates of (0.15, 0.19) indicates improved performance and
higher color purity compared to Flrpic-based blue devices. By modifying a conventional
electron donating material TCTA, exciplex with high triplet energy was achieved.%®. Here, Ph-
O-TCTA (modified TCTA analog) and Tris(4-(diphenylphosphoryl)phenyl)benzene (PhPO)
together give exciplex emission, which is used as a host with dopants Flrpic and 2,3,4,5,6-
pentakis(3,6-di-tert-butyl-9H-carbazol-9-yl)benzonitrile (5TCzBN). They could get maximum
current efficiency of 35.3 cd/A. Chiu et al. have reported an exciplex host OLED with an
extremely low efficiency roll-off ®. They have modified donor molecules by adding an
electron withdrawing benzimidazole moiety in donor molecule leading to a reduced hole
mobility and hence balanced charge recombination. The exciplex system consists of 9,9'-
Diphenyl-9H,9'H-3,3'-bicarbazole (BCzPh-pim) as the donor and B3PyMPM as the acceptor
with the green dopant Ir(ppy)2z(acac). A deep blue exciplex system was designed by Xia et al.
in 2023, consisting of mCBP as the electron acceptor and difluoroboron(Z2)-3-
(diphenylamino)-3-hydroxy-N,N-diphenylacrylamide (DNPhB) as the donor'®, This system
exhibits deep blue emission at 444 nm and a high PLQY of 56%. Wide color phosphorescent

OLEDs were fabricated using the exciplex as a host, achieving a brightness of up to 1,50,000
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cd/m? for a green PhOLED using Ir(ppy)s. This work paves the way for achieving high
performance deep blue exciplex OLEDs, meeting the demands for potential applications such
as wide color displays. Exciplex hosts with fluorescent dopants were also investigated in
parallel with the phosphorescent dopants. In 2015, Zhao et al. have reported an efficient red
fluorescent OLED by using TCTA:3P-T2T as the host and DCJTB as the dopant!®. They got
an EQE of 10.15% and a lower efficiency roll-off compared to conventional devices. Liu et al.
have come up with the concept of 100% exciton harvesting by using an exciplex host along
with a conventional fluorescent host'%2, The EML configuration is as follows: TAPC: (3-(4,6-
diphenyl-1,3,5-triazin-2-yl)-9-phenyl-9Hcarbazole) DPTPCz: x wt% 2,3,6,7-Tetrahydro-
1,1,7,7, -tetramethyl-1H,5H,11H-10 (2benzothiazolyl)quinolizino[9,9a,1gh]  coumarin
(C545T) (30nm) where x = 0.2, 0.4 and 0.8 wt%. In this case, exciton harvesting is achieved
via up-conversion of singlet excitons by the exciplex host with energy levels similar to that of
the dopant. The minimized exciton trapping leads to high efficiency of the device. In 2019,
Liang et al. have developed a novel electron accepting molecule along with a donor to form
the exciplex host'%. They got a power efficiency approaching 100 Im/W by using the green
fluorescent dopant C545T. The luminance vs. EQE plot is shown in Figure 1.8 (c). The
exciplex combination was TAPC: 2-(3-(4,6-Diphenyl-1,3,5-triazin-2-yl) phenyl)-1-phenyl-
1H-benzo[d]imidazole) (PIM-TRZ), in which PIM-TRZ was a newly synthesized electron
acceptor with high electron accepting nature. The utilization of triplet excitons in a fluorescent
OLED is a cost-effective strategy for efficient OLEDs. An electro-optical device model has
been presented by Regnat et al., which account for triplet harvesting and exciton quenching®.
The model gives the parameters like RISC rate, TTA rate, etc. which accounts for the details

on charge carrier and exciton dynamics in the device. This work suggests the possibilities of
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theoretical modeling in predicting exciton dynamics in exciplex-based OLEDs. Also, by
utilizing fluorescent dopants can achieve cost-effectiveness compared to Ir or Pt based
phosphorescent dopants. Phosphorescent OLEDs have made a revolutionary improvement in
the efficiency of OLEDs, though the high cost issue of phosphorescent materials remained. It
has led to the beginning of third generation OLED materials by utilizing TADF emission
mechanism. Here, all the triplet excitons can be converted into singlets via RISC. Hence,
achieving maximum efficiencies. There are several reports on the designing and synthesis of
novel TADF molecules. TADF-based OLEDs had reached an EQE of 37%. Several new
strategies and device engineering techniques for more efficient TADF OLEDs has also been
coming up. In general, TADF emitters-based OLEDs require host with deep lying HOMO level
and high singlet energy without forming an exciplex. In 2014, Kim et al. have reported a green
exciplex host-based OLED with a TADF dopant'®, They used mCP: 1,3-bis[3,5-di(pyridin-3-
ylphenyl]benzene (BmPyPb) as the host and 1,2,3,5-Tetrakis(carbazol-9-yl)-4,6-
dicyanobenzene (4CzIPN) as the green emitter to get an EQE of 28.6%. In 2016, Sun et al.
have reported a blue TADF OLED using an exciplex combination of mCP: 2,8-Bis(diphenyl-
phosphoryl)-dibenzo[b,d]thiophene (PO15) as a host with a TADF emitter, 4,5-Bis(carbazol-
9-yl)-1,2-dicyanobenzene (2CzPN)%. However, the device showed high efficiency roll-off
even with a good charge balance. This might be due to the triplet exciton quenching due to low
RISC rate of 2CzPN. Hence, for an exciplex host-based TADF OLED, the dopant must have
a high RISC rate to avoid the efficiency roll-off. A different approach with double dopant
TADF-sensitized system for exciplex OLED was introduced by Li et al.%”. Here, a multi
process energy transfer occurs which offers effective triplet harvesting. The novel double

dopant EML offers two additional FRET process compared to a conventional TADF OLED
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with one-step process. Yang et al. have presented a solution-processed green TADF OLED
with an interfacial exciplex host'”. They have reported a new TADF emitter 2’-(10H-
phenoxazin-10-yl)-[1,1°:3',1"-terphenyl]-4,4",5'-tricarbonitrile (oPTBC) and doped it in
CBP/PO-T2T interfacial exciplex host. An EQE of 16.2% was achieved with a low turn-on
voltage of 3V. This shows the potential of interfacial exciplex hosts for developing high
efficiency OLEDs. Subsequently, a dendritic interfacial exciplex as a host with green emitting
a TADF material 5,10-Bis (4-(3,6-di-tert-butyl-9H-carbazol-9-yl)-2,6-dimethylphenyl)-5,10-
dihydroboranthrene(tBuCzDBA) was reported by Chen et al.!%. The exciplex system consists
of a dendritic oligocarbazole donor with two acceptors 4,6-Bis(3,5-di-4-pyridinylphenyl)-2-
methylpyrimidine (B4PyMPM) and B3PyMPM. For enhancing carrier balancing between the
donor and acceptor system, a small structural variation has been made in B4PyMPM to get
B3PyMPM. The mechanism of exciplex formation and energy transfer to the TADF emitter
is depicted in the Figure 1.8 (d). They could achieve a power efficiency of 95 Im/W and EQE
of 26.4%. The progress in TADF emitter-based exciplex host OLEDs are less compared to
those with phosphorescent emitters. This might be due to the lack of efficient novel TADF
emitters. In 2022, Zhou et al. reported interface exciplex OLEDs doped with fluorescent,
phosphorescent, and thermally activated delayed fluorescence (TADF) emitters to investigate
the relationship between their excited state properties and electroluminescence efficiencies'®.
This report demonstrated that careful consideration of the photophysical process is essential in
designing high performance emitters for exciplex host materials. This approach provided an in
depth understanding on improving exciton utilization and electroluminescence efficiency in

interface exciplex OLEDs.
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Figure 1.8. (a) The illustration of exciplex emission at the interface of molecules DN-T2T and
Tris-PCz and FRET to the dopant (DCJTB) (adapted from ref. 96) (b) luminance vs. EQE and
power efficiency of the FCNIr doped blue exciplex OLED. molecular structure of the blue
dopant is shown in the inset. (adapted from ref. 97) (c) EQE versus luminance plot of the
device. the device architecture and the EL spectra are shown in the inset. (adapted from ref.
103) (d) representation of exciplex formation in terms of energy levels between a dendritic
oligocarbazole donor (H2) with two acceptors B4PyMPM and B3PyMPM and the energy
transfer to the TADF dopant tBuCzDBA (adapted from ref. 108).

Recently, Yin et al. reported HLCT-type acceptor molecule-based exciplex system for highly
efficient solution-processable OLEDs with low efficiency roll-offs. Solution-processable
OLEDs using these TADF exciplexes achieved a maximum EQE of 20.8%. Additionally, a
high EQE > 25% with low efficiency roll-off (= 3.5% at 1000 cd /m?) was obtained for solution

-processable phosphorescent devices using HLCT-based exciplexes as the host matrix. This
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study paves the way for designing effective TADF molecules and host matrices for solution -

processable OLEDs. Table 1.4 shows the summary of major reports on monochrome OLEDs

where exciplex is used as a host with dopant materials.

Sl Remarks on Maximum
No EML configuration device desian strate efficiency ref
g 9y (EQE, CE, PE)
With Phosphorescent emitters
0,
1 CBP: BAPYMPM: Exciplex as a host with a green 20.1% 03
6 mol% Ir(ppy)s phosphorescent emitter
TCTA: B3PYMPM: .
3wct:°/ Ir(m3 ha)a(acac) Color stable orange emission 22.8%
2 ° ar?d @2 by using red and green emitters 50.9 Im/W 94
8W1% Ir(ppy)s(acac) in exciplex forming co-host
NPBIPO-TZTSWL% | inlex as a host with red 34.1%
3 | Ir(mphmq)2(tmd) and P emitters 62.2 Im/W 95
Ir(MDQ)2(acac)
TrisPCz: CNT2T: A novel donor molecule is 9.7%
4 1wt% Rubrene synthesized; exciplex as host 21.4 cd/A 96
1wt% DCJTB with green and red emitters 28.1 Im/W
" . 24%
5 mCP:BM-A10: Deep blue emitting exciplex as 41 Im/W 97
12 wt% FCNIr a host and as an emitter
Efficient exciplex formation by 16.5%
6 Ph-O-TCTA: modifying an electron 33.6 cd/A 08
PhPO:10 wt% FlIrpic | acceptor; exciplex as host with 20.6 Im/W
a blue emitter
Efficient exciplex formation by
BCzPh-mimi: modifying an electron donor; 22.31%
7 B3PyMPM: exciplex as host with a green 99
8 wt% Ir(ppy)2(acac) emitter
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With Fluorescent emitters
10.15%
TCTA:3P-T2T: Exciplex as a host with red 22.7 cd/A 101
1% DCJTB fluorescent emitter 21.5 Im/W
Low dopant concentration in 14.5%,
TAPC:DPTPCz: exciplex host to minimize the 44 cd/A 102
0.8 wt% C545T triplet- triplet energy transfer 46.1 Im/W
from host to dopant
i 0,
TAPC-PIM-TRZ: A nove.l electror? acceptor is 20.2%,
3 0.6 WiV C545T synthesized. exciplex as host 68.3 cd/A 103
' with green emitter 86.4 Im/W
Exciplex as a host with red
4 TCTA:B4PYMPM: emitter. An electro-optical 104
0.5 wt% DCJTB device model is presented
With TADF emitters
0,
1 mCP: BmPyPb: Exciplex as a host with blue 5:?%;\/\/ 105
3% 4CzIPN TADF emitter '

(}TrisPCz: 9-Phenyl-3,6-bis(9-phenyl-9Hcarbazol-3-yl)-9H-carbazole)

Table 1.4. Summary of major reports on monochrome OLEDs where exciplex is used as a host

with dopant materials.

1.5.2.2 White OLEDs

White OLEDs and their dynamic applications in the general lighting industry have been
growing fast. WOLED possesses true color qualities, high uniformity, more brightness and is
highly energy efficient compared to conventional lighting technologies. These features have
made WOLEDs an alternative for other lighting sources in solid-state lighting. Achieving long

operational lifetime without compromising power efficiency at high brightness is a
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considerable challenge. In the display market, the additional costs for RGB OLEDs can be
addressed by WOLEDs to some extent. In 2012, Su et al. have come up with a hybrid WOLED
structure by utilizing two phosphorescent emitters with a newly synthesized host material
containing a triazine core and three phenyl carbazole arms, called 2,4,6-tris(3-(carbazol-9-
yDphenyl)-triazine (TCPZ)!°. The exciplex emission was obtained from TCPZ:Flrpic
combination which covers the green-light region along with blue and red emissions from
phosphorescent dopants Flrpic and tris(1-phenylisoquinoline) iridium(I1l) (Ir(piq)s),
respectively. The EL spectra of the device consist of a yellow peak at 540 nm combined with
the blue and red bands, rendering white emission. A slight variation for CIE coordinates from
(0.39, 0.45) at 100 cd/m? to (0.42, 0.46) at 1000 cd/m? has been observed. The efficiency
achieved was quite low with EQE = 5.4% and PE = 9.4 Im/W at 100 cd/m?. However, this
work offers strategies of device engineering for obtaining stable white light emission with
simple device architecture. Later in 2014, Duan et al. have reported a uniqgue WOLED device
consisting of a blue emitter of singlet state exciplex in combination with phosphorescent
emitters!! . TCTA: Bphen was used as the blue exciplex EML and as a host for the green and
red phosphorescent emitter layers; Ir(ppy)s and Ir(piq)s respectively. The maximum EQE and
PE of 7.1% and 11.4 Im/W at 1000 cd/cm? was achieved. The CIE coordinates obtained were
slightly changing from (0.39, 0.43) at 10 cd/m? to (0.37,0.44) at 10000 cd/m? with a
corresponding CRI of 62. Zhang et al. have presented a hybrid WOLED by utilizing energy
transfer from the exciplex to an orange emitter'!2. Blue exciplex combination consists of 3,3'-
Di(9H-carbazol-9-yl)-1,1'-biphenyl (mCBP) and PO-T2T as the donor and acceptor materials.
The orange phosphorescent dopant bis(2-phenyl-1,3-benzothiozolato-N,C2’) iridium

(acetylacetonate) (Ir(bt)2(acac)) of 2 nm is inserted in the EML and an excellent warm
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WOLED with CIE coordinates of (0.42, 0.43) was obtained. Further simplification of the
device structure was carried out by doping a small percentage of the emitter in the whole EML
and a brightness up to 40,000 cd/m? was obtained. A new technique for complete harvesting
of singlet and triplet excitons to generate white light was demonstrated. A blue exciplex was
observed between (4,5-Bis(carbazol-9-yl)-1,2-dicyanobenzene) CDBP and PO-T2T. Green
and red phosphorescent emitters Ir(ppy).acac and (Ir(MDQ).acac), respectively were used as
dopants in the exciplex host matrix**® . They divided the emissive region into three different
zones- zone 1: excitons transfer energy to the respective emitters, zone 2: only triplet excitons
can be transferred, zone-3: no exciton can reach the dopant. Proper involvement of the three
zones gives an efficient white emission. This single EML hybrid WOLED showed a maximum
EQE of 25.5%. The CIE coordinates showed a slight variation from (0.41, 0.45) to (0.38, 0.42)
when the luminance increases from 10 to 10000 cd/m? with CRI of 72 at 10 cd/m?to 76 at
10000 cd/m?. A blue device with an EML of mCP: B3PYMPM: Flrpic (1:1:0.4%, 10nm)/
B3PYMPM (15 nm) was fabricated, where exciplex excitons were transferred to Flrpic via
FRET. In 2017, Dongxiang and his co-workers have presented a blue molecular emitter-free
hybrid white OLED**. Yellow and red phosphorescent dopants were combined with a blue
exciplex or electroplex emission at the TAPC/TmPyPB interface. The phosphorescent layers
can effectively harvest triplet exciplex excitons via diffusion process and hence the distance
between the dopant layers and exciton forming molecular interface has a crucial role in the
performance. An additional TmPyPB layer at n-side and TAPC at p-side has enhanced EQE.
The device exhibited a PE of 28.2 Im/W with a high CRI (92.1). In 2018, Ying et al. have
reported a WOLED by introducing ultra-thin phosphorescent layers in exciplex host!®.

Emissive layer consists of an ultra-thin orange and green phosphorescent emitters in the
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exciplex host. Firstly, they fabricated a blue exciplex device in which, a thin layer of mCBP
was inserted between TCTA and emissive layer to prevent the exciplex formation at the
TCTA/PO-T2T interface. A blue phosphorescent device was also fabricated in which mCBP:
PO-T2T: Flrpic (1:1:10%, 15 nm) was used as the EML. It exhibited an improved efficiency-
roll-off compared to the exciplex device. Inorder to obtain the exciton diffusion profile, they
fabricated a series of white OLEDSs by inserting an ultrathin orange sensing layer at different
locations within the EML. The optimized double ultra-thin layer (UTL) WOLED exhibited
maximum EQE, PE and CE of 22.8%, 953 Im/W and 72.8 cd/A, respectively. Zhang et al. have
presented a high-performance WOLEDs by using sequential arrangements of blue, green and
red ultra-thin phosphorescent layers in an exciplex host''®, as shown in Figure 1.9 (a) The
exciplex excitons were efficiently transferred to blue, green and red emitters; Flrpic,
Ir(ppy)zacac and iridium (I11)bis[2,-4-dimethyl-6-[5-(2-methylpropyl)-2-quinolinyl-N]phenyl-
C]-(2,4-pentanedionato-02,04) (RD071) respectively. The thickness of UTLs in EML were
optimized. The resulting WOLEDSs achieve the maximum EQE, PE and CE of 26.1%, 50 Im/W
and 40 cd/A, respectively. Most of the high efficiency OLEDs among the exciplex WOLEDs
are based on phosphorescent emitters. One of the major drawbacks is the trade-off between the
low cost and high efficiency. This could be addressed via novel device designs for dopant -
free exciplex only OLEDs.

Zhang et al. in 2018 have reported a pure fluorescent WOLED by using an exciplex host
(mCP:PO-T2T) and fluorescent dopant. The traditional fluorescent material, rubrene was used
as the orange emitter’'’. The energy transfer ability of the blue exciplex to rubrene was
confirmed by the spectral overlap existing between the PL spectrum of the blue exciplex and

the absorption spectrum of the dopant. The proposed WOLED structure was as follows:
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ITO/M0O3(3 nm)/mCP(20 nm)/mCP : PO-T2T (1 : 1): x wt% rubrene (15 nm)/PO-T2T (35
nm)/LiF (1 nm)/Al (where the x = 0.8, 1.6 and 2.4, respectively). The device showed an EQE,
PE and CE of 4.90%,12.8 Im/W and 14.2 cd/A, respectively. The EL spectra and the CIE
diagram for white OLED with 2.4% of dopant is shown in Figure 1.9 (b). Ivaniuk and his team
have demonstrated a combination of a yellow-green exciplex emission with blue pure
fluorescence''®, Exciplex emission was observed at the interface of 3,6-di (4.4-
dimethoxydiphenylaminyl)-9-(1-naphthyl) carbazole (DPNC)/BPhen. The blue and green
emissions were obtained via pure fluorescence of m-MTDATA and DPNC respectively. The
proposed hybrid-WOLED exhibited maximum brightness of 10,000 cd/m? with an EQE and
CE of 5.3% and 5 cd/A, respectively. The CIE coordinates which is close to pure white
emission (0.31,0.34) were obtained. Zhao et al. have introduced a yellow emitter to fabricate
a series of all-fluorescent WOLEDs by doping it in in blue emitting exciplex host mCP:PO-
T2T8, The device showed a maximum EQE of 5.65% and maximum brightness of 74,820
cd/m?. The EL spectra of the yellow and white device are shown in Figure 1.9 (c). Better
strategies for TADF-Phosphorescent-fluorescent dopants with exciplex hosts can be adopted
for stable white light emission. Fluorescent emitters : DCJTB?%122 Rubrene 12315 (E)-2-(2-
tert-Butyl-6-(2-(2,6,6-trimethyl-2,4,5,6-tetrahydro-1H-pyrrolo[3,2,1-ijJquinolin-8-yl)vinyl)-

4H-pyran-4ylidene)malononitrile  (DCQTB)!*® (red dopants) and 4,4'-Bis(9-ethyl-3-
carbazovinylene)-1,1'-biphenyl (BczVBi)?> 127129 perylene (blue) and green emitters like
C545T33 130. 131 can pe effectively utilized to create hybrid WOLEDs with exciplex host.
Acquiring good spectral stability with simple device structures for WOLEDs is in progress. By
employing TADF emission mechanism, WOLEDs based on TADF-phosphorescence or

fluorescence hybrid structures can be adopted. In 2016, Liu et al. have reported a WOLED by
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employing three different TADF emitters with an exciplex host**2. The doping concentrations
of the TADF emitters 2CzPN and 4CzIPN were optimized to 6 and 4 wt %. The device
exhibited an extremely low turn-on voltage of 2.3 V and maximum EQE, CE and PE of 19.0%,
50.1 cd/A and 63.0 Im/W, respectively. In 2018, Luo Dongxiang have introduced an idea of
single TADF emitter to develop high quality WOLEDs'*. A TADF emitter 9,9',9",9"-((6-
Phenyl-1,3,5-triazine-2,4-diyl)bis(benzene-5,3,1-triyl))tetrakis(9H -carbazole) (DDCzTrz) is
placed in between p-type and n-type layers. The blue emission peak at 462 nm was originated
from the TADF emitter DDCzTrz, which combined with an orange emission generated from
an exciplex formed at the TAPC/DDCzTrz interface. This can be due to the p-type TAPC and
the high electron barrier between TAPC and DDCzTrz. The molecular structures, device
architecture and energy level diagram are shown in Figure 1.9 (d). The maximum EQE and PE
of 28.4% and 68.5 Im/W were achieved with ultrahigh CRIs of 90. Kaminskiene et al. have
reported a warm white OLED based on a novel TADF emitter'®*. Here, they utilize the
contribution of TADF emission of the molecule as well as its exciplex forming ability. An
exciplex emission was confirmed at the molecular interface of 4,4'-(9H,9'H-[3,3'-bicarbazole]-
9,9'-diyl)bis(3-(trifluoromethyl) benzonitrile) (pCNBCzoCF3)/m-MTDATA. The white
emission was obtained via the combined effect of a green-blue emission of the pPCNBCzoCF3
with the orange exciplex emission of the m-MTDATA/pCNBCzoCF3 interface. The device
exhibited an EQE, CE and PE of 18.8%, 53.8 cd/A and 19.3 Im/W, respectively. Maximum

brightness of 40,900 cd/m?was achieved.
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Figure 1.9. (a) The illustration of EML configuration in terms of energy levels by using
sequential arrangements of blue, green, and red ultra-thin phosphorescent layers in the exciplex
host (mcBP:PO-T2T) in WOLEDs (adapted from ref. 116) (b) The EL spectra of the WOLED
where mCP:PO-T2T blue exciplex is used as the host with an orange dopant rubrene. CIE
diagram is shown in the inset. (adapted from ref. 118) (c) The EL spectra of the white and
yellow OLEDs where blue emitting exciplex as a host with a yellow emitter. The photographs
of the devices are shown in the inset. (adapted from ref. 119) (d) The device architecture,
molecular structures, and energy level diagram of the WOLED combining the blue emission
of TADF emitter DDCzTrz and orange exciplex emission of TAPC/DDCzTrz. (adapted from
ref. 133).

Solution-processed WOLEDs have lower efficiency compared to the vacuum-deposited
devices™®. Chen et al. have reported solution-processed WOLED by using an interfacial

exciplex host with a TADF emitter. A record PE of 93.5 Im/W was achieved, comparable to



Introduction 39

vacuum-deposited OLEDs. In 2023, Lu et al. have introduced a new strategy to develop simple
and efficient exciplex-based monochrome and WOLEDs. In this work, a simpler device
structure was developed to achieve high performance white OLEDs by demonstrating
vertically stacked multiple interfacial exciplexes. By cleverly arranging donor and acceptor
layers and inserting ultra-thin blue phosphorescent emitting layers, a blue phosphorescent
OLED achieved a maximum EQE of 28.15%. This approach was employed for other color
phosphorescent OLEDSs, leading to the development of four-color WOLEDs with maximum
EQEs of 21.33%, 25.38% and 24.15%, respectively. A high color stability with CRI exceeding
80 was obtained. This work presents a significant strategy for developing simple and efficient
monochrome and white OLEDs via doping-free technology. Recently, Wei et al. evaluated the
impact of exciton dynamics on the efficiency roll-off properties of exciplex OLEDs using four
different exciplex emitters. Insights into exciton behavior were provided by simulating the
diffusion lengths of singlet and triplet excitons based on their annihilation rate constants.
Additionally, blue, green, yellow, and red phosphorescent OLEDs with high efficiency and
low efficiency roll-off were fabricated by optimizing exciplexes as hosts for different color
phosphors. The understanding of exciton dynamics in exciplexes was enhanced, contributing
to the development of high efficiency, low roll-off phosphorescent OLEDs. Table 1.5. shows
the summary of major reports on WOLEDs where exciplex is used as a host with various

dopant materials.
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Table 1.5. Summary of major reports on WOLEDs where exciplex is used as a host with

dopants.
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Figure 1.10. The chemical structures of the dopants listed in Tables 1.4 and 1.5.

1.6 Scope of the thesis

This thesis aims to explore the device design strategies to employ exciplex emission in OLEDs;
as emitters and as host with suitable dopants to develop simple and cost-effective devices.
Firstly, the exciplex emission in selected conjugate pairs are confirmed via spectroscopic
studies of the thin films, particularly the expected exciplex emission is based on their HOMO-
LUMO gap at the HTM/ETM molecular interfaces. Blue exciplex emission can be combined
with yellow or orange emission of fluorescent/phosphorescent/TADF dopants to achieve white
emission. This approach simplifies the device architecture and leads to cost-effective device

designs for WOLEDs without complex tandem structures. The thesis investigates novel
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exciplex-based OLED designs by utilizing commonly available blue emitting transport
molecules and the ability of their exciplex formation with suitable dopants. Efficient energy
transfer from selected exciplex systems to suitable dopant materials are explored, for the
development of stable and efficient WOLEDs. White emission can also be achieved by
combining exciplex and excitonic emissions within a single emissive layer, without the need
for expensive phosphorescent dopants. The multifunctionality of the exciplex system is
explored by utilizing the strong UV-absorption and the phenomenon of SOP in the thin films
of organic semiconductors. Notably, this is the first report to explore the multifunctionality of
exciplex-based devices. Hence, this thesis will contribute to advancing the understanding and
practical application of exciplex systems in the development of cost-effective and efficient
white OLEDs, with potential implications for multifunctional optoelectronic devices.

The primary objectives of the thesis are as follows:

I.  To study suitable conjugate pairs for exciplex emission from commonly used hole and
electron transport materials employed in OLEDs and to explore the photophysical
properties of the selected exciplex systems

Il.  To employ the selected exciplex combinations in OLEDs by designing simple and
efficient device architectures and to explore the solution-processing method for device
fabrication instead of vacuum deposition

1. To utilize the exciplex as a host for suitable dopants and to obtain white light emission
IV. To design single emissive layer WOLEDs by combining multiple exciplex systems
without using high cost phosphoroscent dopants

V.  Todesign and fabricate multifunctional devices using exciplex by utilizing the concept

of surface potential in organic small molecules.
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Chapter 2

NPB:TAZ blue emitting exciplex as host for yellow and
white organic light emitting diodes

la

(0.36,0.39)

(0.16,0. 12)

CRI=58 (0.46,0.49)
CCT =4643 K QE,...= 7%

& °°°|ﬁ|
WOLED with tetracene as spacer

2.1 Abstract

The limited availability of wide bandgap materials for stable blue emitters is a significant
challenge in organic light emitting diode (OLED) technology, limiting the quality of white
emission. This issue can be addressed by employing exciplex emission in OLEDs by utilizing
commercially available and relatively cheap transport materials. This work investigates the
use of a standard blue emitting hole transport material (HTM) N,N' bis(naphthalen-1-yl)-N,N'-
bis(phenyl)benzidine (NPB) with an electron transport material (ETM) 3-(biphenyl-4-yl)-5-(4-
tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ) to obtain blue exciplex emission. Blue and
yellow OLEDs with simplified device structures were designed by employing a blend layer of

NPB:TAZ, serving both as a blue emitter as well as a host for the yellow phosphorescent
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dopant iridium(1I1)bis(4-phenylthieno[3,2-c]pyridinato-N,C2")acetylacetonate  (PO-01).
Yellow OLED with 5% doping of PO-01 into the NPB:TAZ blend layer showed the best
performance with maximum brightness of 13,070 cd/m? and a maximum external quantum
efficiency (EQE) of 7%. Modified device architecture for white OLED (WOLED) utilizes a thin
layer of tetracene as a spacer to connect the blue and yellow emitting units. This ambipolar
spacer layer enhances carrier transport and controls exciton diffusion leading to balanced
blue and yellow emissions. As a result, the overall white light emission properties are
significantly improved, achieving Commission Internationale de I'Eclairage -1931 (CIE)
coordinates of (0.36, 0.39) and a correlated color temperature (CCT) of 4643 K, giving cool

white light.

2.2 Introduction

The development of stable and efficient blue emitters continues to be a critical bottleneck in
the OLED industry. This challenge is primarily due to difficulties in designing wide band gap
materials, thereby limiting the availability of suitable blue emitters=. The scarcity of stable
blue fluorophores poses a significant challenge for achieving accurate RGB color balance in
displays, underscoring the urgent need for the development of stable and efficient blue emitters
and improvements in the yield of existing materials. While many blue emitting charge transport
materials have not been explored due to their low quantum yield, there is a significant
opportunity for breakthroughs via novel device designs that utilize these commonly available
blue emitting transport molecules. In recent years, the concept of exciplex has emerged as a
promising alternative emission mechanism in OLEDs* °. Exciplex emission, occurring at the

interface of a HTM and an ETM, simplifies device architecture by eliminating the need for a
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separate emissive layer (EML)® 7. Although exciplex emission typically has a lower quantum
yield, it can be effectively utilized as a host for phosphorescent, fluorescent, and thermally
activated delayed fluorescence (TADF) dopants®®. By identifying suitable exciplex
combinations and employing innovative design strategies, it is possible to develop efficient
WOLEDs without complex tandem structures*?.

NPB or NPD is extensively utilized in OLEDs***# and in various other organic electronic
devices including polymer photovoltaics (OPVs)*™ ¢ and perovskite solar cells'” due to its
exceptional hole transport capabilities. NPB is the most widely used material in OLED
applications. This prominence is attributed to its high glass transition temperature (T) of up to
95°C, which enhances film morphology and contributes to improved device longevity8. The
material possesses a highest occupied molecular orbital (HOMO) energy level of 5.5 eV and a
low unoccupied molecular orbital (LUMO) energy level of 2.4 eV!® 20 and it exhibits blue
fluorescence'?. However, its poor quantum yield limits its use as a blue emitter in OLED
applications. A deep blue exciplex by utilizing NPB and 1,3,5-Tris(1-phenyl-1H-
benzimidazol-2-yl)benzene (TPBi) combination was reported by Jankus et al. in 201321, Deep
blue OLEDs exhibiting an EQE of 2.7% and an emission at 450 nm were fabricated. Major
part of electroluminescence is harvested from triplet excitons via triplet fusion. From the
comparison of electroluminescence (EL) and photoluminescence (PL) characteristics, they
concluded that the charge recombination occurs in the blend layer via direct injection into the
exciplex state, yielding blue emission. This result underscores the importance of using NPB
with a suitable ETL in achieving efficient deep blue exciplex OLEDs. Later in 2020, Hippola
et al. reported a bright deep blue TADF OLED, with emissive layer consisting of NPB/TPBI:

triphenylphosphine oxide (PPhsO), were PPh3O is a novel molecule??. They could achieve a
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brightness of 14,000 cd/m? with deep blue exciplex OLEDs with emission peak at
approximately 435 nm and CIE coordinates of (0.1525, 0.0820). The intriguing properties of
these OLEDs are linked to the presence of PPh3O and the characteristics of the emitting layer
composed of NPB and a host mixture of TPBi and PPh3O in a 5:1 weight ratio. The intense
electroluminescence is attributed to NPB/TPBi exciplexes involving triplet states through
TADF, as indicated by significant quenching of PL by oxygen. The transient PL decay times
for an NPB/TPBI 5:1/PPh30 film are 43 ns in air and a weak delayed component of 2000 ns in
N2. They concluded that the slow emitting states are associated with PPh3O aggregates
interacting with NPB. Despite the limited number of studies on NPB-based exciplexes, the
successful demonstration of NPB and TPBi combination necessitates more focused
investigation on the same.

In this work, NPB is combined with suitable ETLs to develop efficient exciplex systems. This
approach aims to exploit the excellent hole transport properties of NPB while overcoming its

limitation as an emitter through the exciplex emission.
2.3 Experimental section

The devices were fabricated on pre-patterned indium tin oxide (ITO) (purchased from Kintec,
Hong Kong, ITO thickness 150 nm, sheet resistance < 15 ohm/sq) coated glass substrates.
These patterned ITO substrates were initially cleaned by ultra-sonication in chloroform for 15
minutes and then washed in dilute detergent solution followed by ultra-sonication in
isopropanol and deionized water for 10 minutes each and dried using a hot air gun. UV- ozone
cleaning for 15 minutes was done just before the fabrication of the devices. Then cleaned
substrates were transferred to the evaporation chamber through the glovebox. 1,4,5,8,9,11-

Hexaazatriphenylenehexacarbonitrile (HAT-CN), NPB, TAZ, Tris(8-hydroxyquinoline)
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aluminium (Algsz), Lithium Fluoride (LiF) and Al were thermally evaporated. HAT-CN was
evaporated at a rate of 1 A/s, while NPB, TAZ, and Alqgs were each evaporated at a rate of 2
AJs. In the co-deposited film, NPB and TAZ were simultaneously evaporated at a rate of 1 A/s
each. LiF and Al were evaporated at 0.1 A/s and 2 A/s, respectively. The physical vapour
deposition was done in a glovebox integrated thermal evaporation system (Angstrom
Engineering, Canada) at 10’ torr. The thickness of the layers was measured using Dektak XT
surface profilometer. After the evaporation, the devices were encapsulated inside the nitrogen
filled glovebox by using a UV-curable epoxy (Epoxy Technology inc.). HAT-CN, NPB, TPBI
and Algs were purchased from Luminescence Technology Corp. (Lumtec), Taiwan and TAZ
from Sigma-Aldrich. The absorption studies of the thin films of the materials were done using
HORIBA Jobin Yvon and PerkinElmer UV/VIS/NIR Spectrometer. Emission spectra were
recorded using a Fluorolog-3 spectrofluorometer (HORIBA), equipped with a 450 W xenon
arc lamp. The OLED characterization system consists of a SpectraScan PR (Photo Research)-

655 spectroradiometer and a Keithley 2400 source meter integrated with a PC.
2.4 Results and discussion

2.4.1 Pairing of NPB with suitable electron transport layers

The primary objective is to utilize the hole transporting ability of NPB while mitigating its low
quantum yield as an emitter by utilizing exciplex emission. To achieve this, NPB is paired with
suitable ETLs to form efficient exciplex systems. The commonly used ETLs in OLEDs include
Algs®, TPBi?*, 4,7-Diphenyl-1,10-phenanthroline (BPhen)®, TAZ?, 1,3-Bis[2-(4-tert-
butylphenyl)-1,3,4-oxadiazo-5-yl]benzene (OXD-7)%, etc. To identify a suitable ETL to pair
with NPB, the energy levels and HOMO-LUMO gaps at the NPB/ETL interfaces were

compared as shown in Figure 2.1 (a) and (b), respectively. Based on this comparison, the
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NPB/TPBi and NPB/TAZ combinations are predicted to exhibit deep blue exciplex emissions.
While NPB/TPBI has been previously studied, NPB/TAZ deep blue exciplex pair is selected

for further study due to its unexplored nature.

@ , (b)
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Figure 2.1. (a) Energy levels of NPB and ETLs (HOMO-LUMO values obtained from
https://www.ossila.com/) (b) HOMO-LUMO gaps at the NPB/ETL interfaces.

2.4.2 NPB:TAZ blue exciplex emission

The exciplex emission in the NPB:TAZ interface was investigated via spectroscopic studies.
The electrons in the LUMO of TAZ and the holes in the HOMO of NPB form an excited state
complex, where NPB functions as the donor and TAZ as the acceptor. The excited state species
at the NPB/TAZ interface is expected to produce an emission at approximately 443 nm, based
on the HOMO-LUMO gap. The molecular structures of NPB and TAZ are shown in Figure
2.2 (a). The exciplex emission at the NPB/TAZ interface is depicted in Figure 2.2 (b) in terms
of energy levels, with the HTM and ETM represented by their HOMO-LUMO energy levels.
The offset values at the interfaces are 0.3 eV at HOMO-HOMO and 0.8 eV at LUMO-LUMO.
TAZ serves as both an efficient electron transport and a hole blocking layer?. Its high triplet

energy level ensures the confinement of triplet excitons within the emissive layer, enhancing
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device performance?. The low HOMO/LUMO energy levels (6.3 eV/2.7 eV) facilitate hole
blocking and electron injection/transport®® 3, TAZ belongs to the class of triazole derivatives
and is widely used in OLEDs and other organic electronic devices®* %,

The thin films of NPB, TAZ, and NPB:TAZ (1:1) were fabricated via vacuum deposition. The
comparison of absorption and emission spectra of the thin films of the materials were done. As
an excited-state complex, an exciplex lacks a ground-state counterpart. Consequently, it does
not exhibit a distinct absorption spectrum, instead displays the individual absorption features
of its component molecules. The absorption spectrum of the NPB:TAZ (1:1) mixed film
reveals distinct absorptions for NPB and TAZ at 343 nm and 290 nm, respectively. The
NPB:TAZ mixed film does not show a separate absorption peak, instead reflecting the
individual absorption spectrum of NPB and TAZ. In the emission spectra, an exciplex should
show a distinct emission that is significantly red shifted compared to its individual components.
The emissions of NPB, TAZ and the NPB:TAZ mixture occur at 433 nm, 370 nm and 448 nm,
respectively as shown in Figure 2.2 (c). The mixed film shows a distinct emission that is red
shifted from the individual emissions of NPB and TAZ. This along with the absence of a

distinct absorption spectrum for the blend film confirms exciplex emission.
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Figure 2.2. (a) Molecular structures of NPB and TAZ (b) exciplex formation at the molecular
interface of NPB and TAZ in terms of energy levels (c) comparison of absorption and emission
spectra of the thin films of the materials (NPB, TAZ, NPB:TAZ).

With the initial confirmation of exciplex emission, preliminary device fabrication was done.
Hence, a bilayer NPB/TAZ device (B1) was fabricated with a device architecture of ITO/HAT-
CN (5 nm)/NPB (60 nm)/TAZ (40 nm)/Algs (20 nm) /LiF (1 nm)/Al (100 nm) as shown in
Figure 2.3 (a). A thin layer of HAT-CN (5 nm) was deposited prior to NPB to improve the
hole injection, which acts as HIL. In order to balance the electron injection into TAZ, Algs is
incorporated in the structure, as an ETL. The J-V-L plot and the comparison of EL and PL
spectra are given in Figure 2.3 (b) and (c), respectively. The device exhibited a maximum

luminance of 1419 cd/m? with a current density of 436 mA/cm? at 11 V. Based on the
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comparison between PL and EL spectra, the emission of TAZ can be ruled out. The EL
spectrum of the device closely matches the PL spectra of both NPB and the NPB:TAZ blend,

suggesting that energy transfer from TAZ to NPB is also possible.
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Figure 2.3. (a) Device architecture of NPB/TAZ device (b) J-V-L plot and (c) comparison of
EL spectrum of the device and PL spectra of the thin films of the materials (NPB, TAZ,
NPB:TAZ (1:1)).

To further investigate the lack of evidence for exciplex emission from the device
characteristics, we conducted additional spectroscopic studies. Figure 2.4 (a) illustrates the

spectral overlap between the absorption spectrum of NPB and the emission spectrum of TAZ,

indicating possibility of energy transfer from TAZ to NPB. The PL spectra and transient decay



72 Chapter 2

kinetics of NPB:TAZ thin films with 1:1 and 1:3 ratios were compared, as shown in Figure 2.4

(b) and 2.4 (c), respectively.
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Figure 2.4. (a) Spectral overlap between emission of TAZ and absorption of NPB (b)
comparison of PL spectra of NPB:TAZ (1:1, 1:3) films (c) transient decay kinetics of NPB,
NPB:TAZ (1:1, 1:3) films.

The PL spectra of both films did not show any noticeable shift, although a slight improvement
in the photoluminescence quantum yield (PLQY) was observed for the 1:3 ratio film, where

the concentration of TAZ was increased to three times that of NPB. The transient decay kinetics

revealed no delayed component in the mixed films compared to the NPB film alone. The
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fluorescence decay parameters, PLQY and FWHM of the thin films are summarized in Table
2.1. These observations support the energy transfer hypothesis than exciplex emission. The
spectroscopic studies of NPB: TAZ mixed film indicate that both exciplex emission and energy

transfer coexist, leading to blue emission.

Thin films 11 (NS) 12(NS) Tavg (NS) PLQY (%) FWHM (nm)
NPB 2.2 4.1 3.5 31 52
NPB:TAZ (1:3) 1.96 4.5 3.8 44 63
NPB:TAZ (1:1) 1.81 4.4 3.5 38 60

Table 2.1. Summary of fluorescence decay parameters (t: fluorescence lifetime decay
component), PLQY and FWHM of the thin films.

To get better insights into energy transfer from the device performance, we further fabricated
devices (B2 & Bs) with NPB:TAZ as the EML sandwiched by the pristine NPB and TAZ layers.
The device architecture is shown in Figure 2.5 (a). The NPB and TAZ layers on both sides
provide better charge transport and carrier confinement. Specifically, EML consists of the co-
deposited layer of NPB:TAZ at 1:1 and 1:3 ratios for devices B, and Bs, respectively with total
thickness of 15 nm. The doping ratio of NPB in TAZ in device Bz was reduced by three times
compared to B». It may be noted that the blend device is nothing but a device where a 15 nm
blend layer is added in between the pristine NPB and TAZ layers of the bilayer device. At
higher voltages, charge injection into the blend increases but charges may become trapped
within the blend layer. In a bilayer structure, this trapping does not occur as charges tend to
recombine either radiatively or non-radiatively at the interface. However, the trapping of
carriers in the blend may promote exciplex formation. To investigate this, we analyzed the J-

V-L plots of these devices as shown in Figure 2.5 (b) and observed that the bilayer device
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exhibits a much higher current density compared to the blend devices. This may be due to the
charge trapping as mentioned above. We observe that radiative recombination in the thin blend
layer is more efficient than in the bilayer device. Consequently, the device performance
indicates that the blend device outperforms the bilayer one. Among the blend devices, the 1:1
ratio device demonstrated better performance compared to the 1:3 ratio device, because the 1:1
ratio offers more molecular interfaces for exciplex formation®*. Therefore, we can conclude
that the device performance confirms NPB:TAZ exciplex emission. A maximum luminance of
1703 cd/m? was obtained with a current density of 245 mA/cm? for the 1:1 device. There was

no shift in the EL spectra of the devices at 440 nm as shown in Figure 2.5 (c).
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Figure 2.5. (a) Device architecture of NPB:TAZ blend devices (b) J-V-L plots and (c) EL
spectra of the NPB:TAZ devices (bilayer, 1:1, 1:3).
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All three devices exhibited a deep blue emission at 440 nm. The CIE coordinates of (0.16,
0.10) with a very high color purity of 91% was obtained for the 1:1 device as shown in the CIE
diagram in Figure 2.6 (a). There was no variation in the CIE coordinates as shown in Figure

2.6 (b), which shows the high color stability of the device.
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Figure 2.6. (a) CIE diagram with the inset showing the photograph of the NPB:TAZ (1:1)

device (b) voltage vs. CIE coordinates plot of the device.

2.4.3 NPB:TAZ blue emitting exciplex as host

2.4.3.1 Yellow phosphorescent organic light emitting diodes

The core idea of this work was to develop novel device design strategies to improve the quality
of white emission in OLEDs using cost-effective solutions. Exciplex host system (exciplex)
can effectively transfer its energy to the dopants via Forster or Dexter energy transfer
mechanisms. Therefore, a dopant was selected based on the spectral overlap of the emission of
NPB:TAZ mixed film and the absorption of the dopant. Initially, a yellow phosphorescent
emitter, PO-01 was selected as the dopant with NPB:TAZ exciplex host for fabricating yellow

OLEDs. PO-01 is an Iridium-based yellow phosphorescent emitter used in OLEDs due to its
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high quantum yield and color purity®>-3’. Figure 2.7 (a) shows the spectral overlap between the
absorption of PO-01 and emission of NPB:TAZ films and Figure 2.7 (b) shows the molecular
structure of PO-01 and depicts the energy transfer from exciplex to PO-01. Figure 2.7 (c) shows
the yellow OLED device architecture, consisting of a doped exciplex layer in which PO-01 is
doped in to NPB:TAZ (1:1). The EML configuration comprising of blue and yellow emitting

units, in terms of energy levels is shown in Figure 2.7 (d).
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illustration of energy transfer from exciplex to PO-01 (c) device architecture of PO-01 doped
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The EML consists of a layer of undoped exciplex, NPB:TAZ (1:1, 10 nm) followed by the
doped exciplex layer of NPB:TAZ:PO-01 (1:1, x%, 5 nm), where x = 2.5%, 5% and 10% are
doping ratios of PO-01 doped into the exciplex matrix. The yellow devices are termed as Y25,
Yo% and Y1o%, With doping ratios of 2.5%, 5% and 10%, respectively. The device Ysy showed
the best performance with maximum brightness of 13,070 cd/m? and maximum EQE of 7%.
The J-V-L plots, EQE and current efficiency vs. current density plots of the devices are shown
in Figure 2.8 (a), (b) and (c), respectively. Figure 2.8 (d) compares the EL spectra of the
devices, dominated by a yellow emission at around 560 nm. The yellow emission is due to the
energy transfer from the exciplex to PO-01. Additionally, a blue exciplex emission around 444
nm was observed alongside the yellow emission. White emission can be achieved by properly
balancing the blue and yellow emissions. When the dopant concentration was decreased to
2.5%, the relative contribution of the blue exciplex emission slightly enhanced to give a white
emission with CIE coordinates (0.43, 0.46). The blue-to-yellow emission intensity ratio is the
ratio of the intensities of blue and yellow emissions in the EL spectrum of the selected device.
The blue-to-yellow emission intensity ratio for the Y29 device increased to 15%, compared
to 4% and 3% in the other yellow devices Ysy and Yio%. The summary of device performance
of yellow OLEDs is shown in Table 2.2. The CIE diagram indicating the CIE coordinates of
the three devices and the photographs of the Yse and Y259 devices are shown in Figure 2.8 (e).
Color temperature ranges may vary slightly depending on the specific country or region. We
follow the European standards for color temperature, according to which a CCT of 2700K -
3000K is considered as warm white and 3000K - 4000K is categorized as neutral white. The
cool white emission is in the range of 4000K - 6500K. Here, a neutral white light with a CCT

of 3443 K and CRI of 41 was obtained for the Y2.s¢ device.
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Figure 2.8. (a) J-V-L plot (b) EQE vs. current density plot (c) current efficiency vs. current

density plot (d) EL spectra and (e¢) CIE diagram with photographs of the yellow and white

devices.
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Luminan Current Current Max Luminance,
Device ‘;c p /mz)ce density | efficiency | EQE (%) max CE,
(mA/cm?) (cd/A) max EQE
2
Y, | 58804104 | 13247 | 45+1.70 | 140+005 | 0164 Cdf(l) ;ng’ cd/A,
2
oo | 7620292 | 45+044 | 1702037 | 530012 | 12970 C‘;/ g‘% 22 cdia,
2
Y, | 3910£233 | 133£39 | 2.94+009 | 097+004 | ¥ Cd/lm7 ’0/5'5 cd/A,
. 0

Table 2.2. Summary of device performance of the yellow devices at 10V and the maximum

luminance, CE and EQE values.

To enhance the blue emission in the device, we increased the thickness of the NPB:TAZ blue
emitting layer from 10 nm to 25 nm. As a result, the total thickness of the EML was doubled,
increasing from 15 nm to 30 nm. Hence, a modified Y2 sy device with 25 nm exciplex undoped
layer with the EML configuration of NPB:TAZ (1:1, 25 nm)/NPB:TAZ:PO-01(1:1, 2.5%, 5
nm) was fabricated. Increasing the thickness of the blue emitting layer did not lead to an
enhancement in blue emission, resulting in no significant improvement in the quality of white
light compared to the Y259 device, with a 10 nm blue layer. While the increased thickness
improved the efficiency of the device, it negatively impacted the quality of the white light
emission. The comparison of EL spectra of the devices and current efficiency vs. current

density plot are given in Figure 2.9 (a) and (b), respectively.
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Figure 2.9. Comparison of the (a) EL spectra and (b) current efficiency vs. current density

plots of the devices with 10 nm and 25 nm of the blue emitting unit.

As mentioned earlier, increasing the thickness of the NPB:TAZ layer to 25 nm to further
enhance the blue contribution did not yield the expected results. The weak intensity of blue
emission is primarily due to the difference in hole and electron mobilities of the component
molecules. Due to the high hole mobility of NPB, more holes get accumulated at the HOMO
of NPB in the NPB:TAZ layer. The comparatively lower electron mobility of TAZ and the
longer path for electrons from cathode to reach this layer can delay electrons migration to the
LUMO of TAZ in the NPB:TAZ layer. This loss of carriers can lead to decreased blue exciton
formation and subsequent emission in the NPB:TAZ layer. The device architecture comprises
of two emissive units with co-deposited film of NPB and TAZ. The unbalanced flow of carriers
to the NPB:TAZ layer might be a reason for reduction in blue emission among the white

devices.
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To study the problem of carrier imbalance in the device, we fabricated the hole only and
electron only devices. The device architecture was as follows: ITO/HAT-CN(5nm)/NPB(60
nm)/NPB:TAZ(50 nm)/Ag(100 nm) for the hole only device and AI(100 nm)/LiF(1
nm)/BCP(5 nm)/NPB:TAZ(50 nm)/TAZ(40 nm)/Alqgz(20 nm)/LiF(1 nm)/ AI(100 nm) for the
electron only device. The comparison of the J-V characteristics of the devices are shown in
Figure 2.10. The hole only devices showed much higher current density compared to electron
only devices; this observation is evidence for the charge imbalance in the NPB:TAZ mixed

layer.
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Figure 2.10. Current density vs. voltage plots for hole and electron only devices.

2.4.3.2 White organic light emitting diodes

2.4.3.2.1 Incorporation of charge generation layer (CGL)

To further improve the quality of white emission, it is critical to balance the blue and yellow
emission. This can be done by adjusting the flow of holes and electrons toward the respective

layers by incorporating a CGL between the two emitting units. A suitable CGL would provide
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adequate flow of electrons and holes toward the respective units. We have therefore selected a
typical fullerene (Ceo)/pentacene organic heterojunction as the CGL>® between the blue and
yellow emitting units as shown in Figure 2.11 (a). The high electron mobility of Ceo®® and high
hole mobility of pentacene*® can make this p-n junction an efficient CGL*!. The balanced flow
of electrons from Cgo toward the NPB:TAZ layer is expected to enhance the blue emission.
Also, the availability of holes in the NPB:TAZ:PO-01 layer is ensured by pentacene. The EML
of devices with CGL has the structure, NPB:TAZ (1:1, 10 nm)/ Ceo (15 or 10 nm)/pentacene
(10 or 5 nm)/NPB:TAZ:PO-01 (5 nm, 2.5% PO-01). The device architecture is shown in Figure
2.11 (b). Two CGL devices are fabricated with two different thicknesses of Ceo and pentacene.
The thickness of Ceo was kept slightly higher than that of pentacene to compensate the high
hole mobility of pentacene compared to the electron mobility of Cso. However, the device
performance was drastically diminished upon the incorporation of the CGL. The J-V-L plots
and EL spectra of the devices are compared in Figure 2.11 (c) and (d), respectively. Hence,
unlike in a normal tandem WOLED, the CGL here functioned more like a barrier. However,
the percentage of blue emission in the CGL devices has slightly improved compared to that in

the devices without a CGL.



NPB:TAZ exciplex for white OLED 83

(a) (b)
\\ Al (100nm)
-1-Y- prapaps LiF (Inm)
Alg (200 nm)
o TAZ (40
- 3 —
O < E NPB :TAZ -PO-01(5nm)
Pentacene (15nm/10 nm)
Colisnmaonm) 4
TAZ TAZ NPB :TAZ (10 nm)
| S [ NPB (60 nm)
Blue Yellow HAT-CN (Snm)
Imo
(c) (d)
10|
10000 10nm/Snm
10nm/5nm 3
~ 15mmi1onm Ny 15nm/10nm
E1s0} yloe_2"r
I ] E £
E 4100 B L o6
Z100} 1 873
c 110 S S04
[} 3 =l ]
o 3 — E
£ 1+ §5
§ 50T 17 32 02f
= ]
= 4
o 40.1 00
o} 3 T
lo.o1 '460'450'560'550'660'6510'760'7:;0'
1I:I 11 12 13 14 15 13 ’ Wavel h
Voltage (V) avelength (nm)

Figure 2.11. (a) EML configuration (in terms of energy levels) of the devices with CGL (b)
device architecture (c) J-V-L plots and (d) EL spectra of the CGL devices.

2.4.3.2.2 Incorporation of ambipolar spacer layer

The overall performance of the devices with CGL implies the need of a separation layer other
than CGL for balanced flow of carriers between the NPB:TAZ:PO-01 and NPB:TAZ units of
the EML, which can be called as a spacer layer. In this context, it was further proposed that an
ambipolar material would be a better choice as a spacer layer than a p-n junction. The energy
levels of the spacer material should be conducive not to completely block the electrons and
holes. Tetracene was selected as the spacer layer as it met the above requirements. The device

architecture was modified by adding a thin layer of tetracene as a spacer layer between the
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NPB:TAZ (blue emitter) and NPB:TAZ:PO-01 (yellow emitter) layers. The energy level
diagram of the emissive units for the modified device architecture for WOLED is shown in
Figure 2.12 (a). The device Y255 without the spacer layer is considered as the reference device
for white emission, and this device is now designated as W1. Two spacer white devices are
designed with 5nm and 10 nm of tetracene, designated as W1 and W, respectively. The EML
configuration of the spacer devices is NPB:TAZ (1:1, 10 nm)/tetracene (5 nm or 10
nm)/NPB:TAZ:PO-01 (5 nm, 2.5% PO-01). Tetracene devices showed a better performance
compared to the devices with CGL. Increasing the thickness of tetracene layer to 10 nm did
not improve the performance. The poor performance of the 10 nm spacer layer compared to
that of the 5 nm shows the impact of resistance in the devices. The J-V-L plots, current
efficiency and EQE vs. current density plots are shown in Figure 2.12 (b), (c) and (d),
respectively. The devices with tetracene spacer layer indeed resulted in a higher intensity of
blue emission compared to the CGL devices. The weak peak at about 484 nm could be the
monomer emission of tetracene*?. White emission with CIE coordinates of (0.36, 0.39) close
to the true white point (0.33,0.33) was achieved, when 5 nm of tetracene was employed. The
EL spectra and CIE diagram with a photograph of the device (W>) are shown in Figure 2.12
(e) and (f), respectively. Cool white emission with a CRI of 58 and CCT of 4043 K was

obtained.
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The ratios of intensities of blue and yellow emissions were compared. The ratio of blue to
yellow emission intensities was increased from 12% to 23%, when the spacer layer was
employed. This could be attributed to the balanced flow of carriers to NPB:TAZ layer due to
the ambipolar nature of tetracene layer. The increase in current density after the addition of
tetracene layer is evidence for the role of the same in the charge transport mechanism in the
device. Unlike in CGL, a single layer can provide improved white light as well as device
performance. The summary of performance of the WOLEDs with spacer layer is shown in
Table 2.3. Hence, device architecture with a spacer layer can be considered as an alternative
to complicated tandem structures. A balanced white OLED combining yellow emission from

dopant and blue emission from exciplex was achieved with an ambipolar thin spacer layer.

Luminance Current Current Max Luminance,

Device (cd/m?) density efficiency EQE (%) max CE,
(mA/cm?) (cd/A) max EQE

6164 cd/m?, 13
W1 5880 + 104 132 +4.7 45+1.7 1.4+0.05 cd/A, 4 %

4040 cd/m?, 6.0
W 3180 + 355 265+ 8 1.27+£0.13 | 0.51+£0.08 cd/A. 2 %

2
Wa | 2980+154 | 369+146 | 047=0.1 | 027+003 | 2080 C%/rgt;z cd/A,
. 0

Table 2.3. Summary of device performance of the white devices at 10V and the maximum

luminance, CE and EQE values.

2.4 Conclusion

A novel blue emitting exciplex system based on widely used charge transport materials, NPB
and TAZ has been demonstrated which can be used both as a blue emitter and a host for a
yellow dopant. By incorporating a phosphorescent dopant (PO-01) into the NPB:TAZ matrix,

yellow OLED with maximum brightness of 13,070 cd/m? and maximum EQE of 7% was
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obtained, with a doping concentration of 5% PO-01. White emission with CIE coordinates of
(0.36, 0.39) and a correlated color temperature of 4643 K was realized through a novel device
design, utilizing tetracene as a spacer for balanced carrier transport. This spacer separates a
blue emitting unit where exciplex is the emitter and a yellow emitting unit where exciplex is
the host. This approach offers a promising alternative to complex tandem structures for
achieving stable white OLEDs, presenting a versatile platform for further development of
exciplex-based systems, and enabling the application of custom-designed molecules for

enhanced device performance.
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Chapter 3

NPB:OXD-7 exciplex as a multifunctional device; blue
emitting OLED and a photodetector
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3.1 Abstract

L

The solution processing method for device fabrication simplifies the fabrication process and
minimizes material consumption. In this chapter, solution processing method was employed to
develop exciplex organic light emitting diodes (OLEDSs) using the hole transport material
(HTM), N,N"-Di(1-naphthyl)-N,N'-diphenyl-(1, 1"-biphenyl)-4,4’-diamine)(NPB) and the
electron transport material (ETM), 1,3-Bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-
yl]benzene (OXD-7). Introducing the yellow phosphorescent dopant Bis(4-phenylthieno[3,2-
c]pyridinato-N,C2") (acetylacetonate) iridium(111) (PO-01) into the exciplex host resulted in a
yellow OLED with a maximum brightness of 36,000 cd/m? and an external quantum efficiency

(EQE) of 11%. In parallel, the dual functionality of the NPB/OXD-7 exciplex was also
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investigated. Large surface potential of OXD-7 causes spontaneous exciplex dissociation at
the NPB/OXD-7 interface. This coupled with the strong UV absorption capability of OXD-7
help generate photocurrent under UV illumination, enabling it to function as a self-powered
UV detector. This allows the device to operate as both an OLED and a UV photodetector.
Higher OXD-7 concentrations enhanced UV absorption and diminished exciplex emission.
NPB:OXD-7(1:3) ratio device excelled as a UV detector but performed poorly as an OLED.
Notably, a self-powered UV detector with a 1:3 ratio exhibited a detectivity of 4x10 Jones,
responsivity of 17 mA/W and an ON-OFF ratio of 3x10° with a reasonable OLED
performance. Integrating different functions in a single device is a significant step towards

miniaturization of electronic devices.

3.2 Introduction

Exciplex-based OLEDs are particularly interesting due to their simplified device designs.
While there are numerous reports on fully vacuum-deposited exciplex OLEDs!3, the literature
on solution-processed exciplex OLEDs remains limited*®. Unlike traditional vacuum
deposition methods, solution processing offers several advantages including cost-
effectiveness, scalability and compatibility with flexible substrates’°. Precise control over the
mixing and deposition of donor-acceptor blend is crucial for optimal device performance of
exciplex OLEDs. Solution processing techniques such as spin coating*™ *?, inkjet printing*3 4,
slot-die coating® etc. can be employed to deposit the materials onto various substrates. Spin
coating is commonly used due to its simplicity, ability to produce uniform films and reduced
material usage. The process parameters such as concentration of the solution, rotation speed,

solvent evaporation rate and annealing conditions are optimized to control the film morphology
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and thickness. Optimizing these parameters can lead to significant improvements in device
efficiency and stability. Additives or interfacial layers can also be added to enhance the charge
injection and transport*®. The primary challenges in the development of solution-processed
OLEDs include the deposition of multilayers and the selection of appropriate solvents.
Achieving uniform films and optimizing film thickness are significant factors that critically
impact the performance and reliability of the devices. In this chapter our primary focus is on
employing solution processing method for the fabrication of efficient exciplex OLEDs.

The concept of multifunctionality is another critical aspect recently getting emphasized in the
development of organic electronic devices. Multifunctional organic electronic devices hold
immense potential across a wide variety of applications, promising to revolutionize various
sectors through their unique properties and capabilities'” 8. By considering the unique
properties of organic materials, devices offering advanced functionalities integrated within a
device, are referred to as multifunctional device. In this chapter, we integrate light emission
(OLED) and UV detection (organic UV photodetector) capabilities within a single device. For
this, we need materials with unique photophysical as well as charge transporting abilities. In
this context, OXD-7 has exceptional electron transporting capabilities, primarily attributed to
the electron accepting characteristics of the oxadiazole units incorporated within its molecular
structure®2L. The presence of these oxadiazole groups of OXD-7 in conjunction with poly(9-
vinylcarbazole) (PVK), an electron donating polymer, serves as one of the most widely utilized
hybrid type host materials?> 23, This combination exploits the complementary electron
donating and electron accepting properties of PVK and OXD-7, respectively, to facilitate
balanced charge transport in optoelectronic devices?*. The bulky tert-butyl units attached to the

OXD-7 molecule enhance its solubility and improve film morphology, contributing to the
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overall performance and stability of the resultant films. In addition to its electron transporting
and film forming capabilities, OXD-7 demonstrates strong UV absorption, highlighting its
potential for use in UV photodetectors.

3.2.1 Photodetectors

Photodetectors are devices that convert light into electrical signals, playing a crucial role in
various scientific, industrial and consumer applications?®. They are integral to systems that
require the detection and measurement of light, such as imaging, communication,
environmental monitoring, and biomedical diagnostics?®. The Figure 3.1 illustrates the
structure and working of an organic photodetector in terms of the energy levels of the
molecules. It comprises of an active layer sandwiched between electron and hole extraction

layers, followed by their respective electrodes.

6’ . Cathode

HE

EEL (Electron Extraction Layer)
AL (Active Layer)
HEL (Hole Extraction Layer)

Figure 3.1. lllustration of working principle of a photodetector in terms of energy levels.
Incident photons are absorbed by the active layer, leading to exciton dissociation. The excitons
dissociate into free electrons and holes at the donor acceptor interface within the active layer.

Electrons are transported through the electron extraction layer towards the cathode, while holes
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are transported through the hole extraction layer towards the anode. The cathode and anode
collect the electrons and holes, respectively, creating a flow of photocurrent through the
external circuit. The key parameters which determine photodetector performance are
Responsivity (R), Detectivity (D), ON/OFF ratio, Rise time and Fall time.

Responsivity is a critical parameter that defines the efficiency of a photodetector in converting
incident optical power into an electrical signal. It is the ratio of the photocurrent (Ion) generated
to the incident optical power (Po) of the source lamp. Mathematically, it is expressed as in

equation (1).

1
Responsivity (R) = ;;h 1)
0

Responsivity is measured in units of amperes per watt (A/W) and indicates how effectively the
photodetector converts incoming photons into electrical current. Detectivity is a measure of
sensitivity and its ability to detect weak optical signals. It is defined as the reciprocal of the
Noise Equivalent Power (NEP) as given in equation (2), normalized by the active area of the
device. The detectivity (D) can also be expressed in terms of responsivity as given in the

equation (3). Where q is the electron charge and Jq is the dark current density.

. 1
Detectivity, D = NEP 2

R

- 2q]a )

;

Detectivity is measured in Jones and a higher detectivity indicates better performance in
detecting low levels of light. The ON-OFF ratio is a crucial parameter that quantifies the

difference in current between the illuminated (ON) and dark (OFF) states of a photodetector.
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It is the ratio of the photocurrent to the dark current, which is the current that flows through

the photodetector under dark condition. The ON-OFF ratio is expressed in equation (4).

Iph
ON/OFF ratio = —Z (4)
dark

A higher ON-OFF ratio indicates a photodetector with better performance, as it shows a
significant increase in current upon illumination compared to the dark state. Rise time and fall
time describe how quickly a device responds to a change in the input signal, which is
particularly important in applications such as high-speed communication, imaging, and
sensing. Rise time is the time required to reach from 10% to 90% of the maximum value of the
photocurrent whereas fall time is the time required to fall from 90% to the 10% of the

maximum value of the photocurrent.

3.3 Experimental section

The devices were fabricated on pre-patterned indium tin oxide (ITO) (purchased from Kintec,
Hong Kong, ITO thickness 150 nm, sheet resistance < 15 ohm/sq) coated glass substrates.
These patterned ITO substrates were initially cleaned by ultrasonication in chloroform for 15
minutes and then washed in dilute detergent solution followed by ultrasonication in
isopropanol and deionized water for 10 minutes each and dried using a hot air gun. UV-ozone
cleaning for 15 min was done just before the fabrication of the devices. Poly (3,4-
ethylenedioxythiophene: polystyrene sulfonate (PEDOT:PSS) (purchased from Heraeus) was
spincoated at 2500 rpm at ambient conditions. After annealing these substrates for 20 minutes
at 120°C, the substrates were transferred to the wet glovebox. Mixed solution of NPB and

OXD-7 in 1:1 weight ratio was prepared in chlorobenzene and spincoated at 2000 rpm inside
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glovebox. The films were then annealed at 110°C for 15 minutes, followed by annealing in
vacuum for 2 hours. Then substrates were transferred to thermal evaporation chamber. Electron
transport layer (ETL) (OXD-7, TPBI), LiF and Al were thermally evaporated in a thermal
evaporation system (Angstrom Engineering, Canada) at 10 torr. The rate of evaporation of
ETL, LiF and Al were 2 A/s, 0.1 A/s and 2 A/s respectively. The thickness of the layers was
confirmed using Dektak XT surface profilometer. After the evaporation, the devices were
encapsulated inside the nitrogen filled glovebox by using a UV-curable epoxy (Epoxy
Technology inc.). TPBi was purchased from Luminescence Technology Corp. (Lumtec),
Taiwan, while NPB and OXD-7 were purchased from TCI chemicals.

The absorption studies of the thin films of these materials were done using HORIBA Jobin
Yvon and PerkinElmer UV/VIS/NIR Spectrometer, Lambda 950. Emission spectra were
measured using a Fluorolog-3 spectrofluorometer (HORIBA), equipped with a 450 W xenon
arc lamp. The surface potential mapping of the thin films was conducted using the kelvin probe
microscopy by Bruker multimode 8 nanoscope atomic force microscopy (AFM). The OLED
characterization system consists of a SpectraScan PR (Photo Research)-655 spectroradiometer
and a Keithely 2400 source meter integrated with a PC. The photodetector characterization
was done using a UV-lamp and Keithley 4200 semiconductor parameter analyzer at ambient

conditions.

3.4 Results and discussion

3.4.1 Strategy for materials selection

In this chapter, NPB and OXD-7 were selected as the HTM and ETM respectively and the
respective molecular structures are given in Figure 3.2 (a). According to the highest occupied

molecular orbital (HOMO)- low unoccupied molecular orbital (LUMO) gap of 2.5 eV at the
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interfaces, a blue exciplex emission is expected at the NPB/OXD-7 interface as illustrated in
Figure 3.2 (b). The HOMO-HOMO and LUMO-LUMO offsets at the interfaces are 1 and 0.6
eV, respectively. These materials were selected because they have absorption in the UV-
region; below 400 nm, and do not have any absorption in the visible. Hence, they can be

considered visible-blind.

(a) (b)
2’- A -2.4eV
Q - 25
avavs 3 I
~ 79 0 2 | NPB OXD-7
O N\ /J\©/‘\P 'N = %
N N =
& 1N 5
N,N’-Di(1-naphthyl)-N,N’-diphenyl-(1,1’- (N,N'-!?is(naphthalenjl.-yl)-N,N’- e
biphenyl)-4,4'-diamine bis(phenyl)benzidine) 55eV _g5ey

(NPB) (OXD-7)

Figure 3.2. (a) Molecular structure of NPB and OXD-7 (b) exciplex formation at the molecular

interface of NPB and OXD-7 in terms of energy levels.

3.4.2 Spectroscopic studies

The thin films of the materials NPB, OXD-7 and NPB:OXD-7 (1:1) were fabricated. The
absorption as well as emission spectra of the thin films of the materials were compared. The
absorption spectra of the NPB:OXD-7 mixed film only indicates the individual absorptions of
NPB and OXD-7. The absence of a distinct absorption peak for the mixed film indicates the
exciplex formation at NPB/OXD-7 interface. The comparison of absorption spectra and
emission spectra are given in Figure 3.3. Whereas, in the emission spectra the mixed film
exhibited a significantly red shifted and broadened emission peak. The emission of NPB,
OXD-7 and NPB:OXD-7 (1:1) films are observed at 412 nm, 436 nm and 465 nm, respectively.

The emission of NPB:OXD-7 mixed film is 53 nm and 29 nm redshifted from that of NPB and
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OXD-7 respectively. The full width at half maximum (FWHM) values are 55 nm, 53 nm and
77 nm for NPB, OXD-7 and NPB:OXD-7(1:1), respectively. Spectroscopic studies reveal a
significant red shift and broadening in the mixed film compared to NPB and OXD-7,

confirming NPB:OXD-7 exciplex emission.
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Figure 3.3. Comparison of absorption and emission spectra of the NPB, OXD-7, NPB:OXD-
7 (1:1) films.

3.4.3 Device fabrication and characterization

Based on the spectroscopic studies, devices were fabricated using the NPB/OXD-7 exciplex
as both an emitter and a host. The aim was to develop solution-processed exciplex OLEDs
using NPB:OXD-7 combination. Solution processable devices offer several advantages,
contributing to their popularity and widespread use. It reduces device fabrication complexity
and material consumption. Hence, more cost effective and versatility in substrates. However,
the solution processing method is not suitable for devices with multiple solution-processed
layers due to the challenge of selecting solvents for depositing multiple layers of organic

materials sequentially. In this chapter, solution-processed OLEDs were designed by using
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NPB:OXD-7 blue emitting exciplex as an emitter as well as a host with a yellow
phosphorescent dopant, PO-01.

3.4.3.1 Blue OLEDs by utilizing NPB:OXD-7 exciplex emission

Solution-processed blue exciplex OLEDs were fabricated by using a blend of NPB and OXD-
7 as the emissive layer. PEDOT:PSS is used as the hole injection layer (HIL) as well as the
hole transport layer (HTL), followed by the emissive layer of NPB:OXD-7 mixed film. The
device configuration is as follows: ITO/PEDOT:PSS (35nm)/ NPB:OXD-7 (1:1, 35 nm)/OXD-
7( 45 nm)/ LiF (1nm)/Al (100 nm). EML is followed by the OXD-7 alone layer of 40 nm for
better electron transport. LiF is used as electron injection layer (EIL) and Aluminum (Al) as
cathode. The device architecture and detailed energy level diagram are shown in Figure 3.4 (a)
and (b) respectively. PEDOT:PSS was first spin coated onto the substrate at ambient
conditions. Subsequently, a NPB:OXD-7(1:1, weight ratio) mixed solution in chlorobenzene
was spin coated onto the PEDOT:PSS at 2000 rpm inside a glove box. Finally, OXD-7, LiF

and Al were thermally evaporated.

b) r Y

-2.4eV
evaporated layers / -3.5eV
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NPB:OXD (35 nm,1:1) f—- Spincoated layers D o oo oX©

PEDOT:PSS (35 nm) / . Ve
-5.5eV

Figure 3.4. (a) Device architecture of NPB:OXD-7 blue exciplex OLED (b) detailed energy
level diagram of the device and the exciplex emission at the NPB/OXD-7 interfaces in the
EML.
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The current density (J) - voltage (V) - luminance (L) plot and electroluminescence (EL) spectra
of the device are shown in Figure 3.5 (a) and (b) respectively. The device exhibited a sky blue
emission at 482 nm. The Commission Internationale de 1’Eclairage-1931 (CIE) coordinates of
(0.17, 0.28) remain constant with respect to the applied voltage. The variation in CIE
coordinates with respect to voltage, CIE diagram and photograph of a working device are

shown in Figure 3.5 (c), (d) and (e).
(a) (b)

350 | e J

0.008
—— |

< 300

-
2,8

o
< 250 0.006

> 200}

0.004
150

—
o

L, Luminance (cd/m

100

EL intensity (watts/sr/m?)
2
o
N

J, Current density (m

0f 0.000

1 1 1 1 1 1 1 1

1
9 1011121314 15 16 200 450 500 550 600 650
(c) Voltage (V) (d) Wavelength (nm)

0.32} o X 03
030} ——Y

w
sk
o b
o}
~
o

§ 0.28 -

T

g
5 026

8024
o

(0.17,0.28)

w
o 0.22
0.20

P—y

0.18

I TN NN TN NN TN SN S S|

2 345678 910111213141516 0 02 04 0.6 08
Voltage (V) CIEX

0.16

Figure 3.5. (a) J-V-L plot (b) EL spectra at different voltages (c) CIE coordinates with respect
to applied voltage (d) CIE diagram and (e) photograph of the NPB:OXD-7 blue exciplex
OLED.
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The device exhibited a maximum luminance of 218 cd/m? with a current density of 330
mA/cm? at 16V. The low brightness could be due to the lower electron transport capability of
OXD-7% compared to the high hole mobility of PEDOT:PSS?’. This discrepancy can cause an
imbalance in charge carrier transport, leading to inefficient recombination of electrons and
holes, and consequently reducing the overall luminance. To improve the electron transport, the
OXD-7 alone layer (as sole ETL) was replaced by TPBi. TPBI is an excellent electron transport
material for both vacuum-deposited and solution-processed OLEDs?® 2°, The modified device
architecture is as follows: ITO/PEDOT:PSS (35nm)/ NPB:OXD-7 (1:1, 35 nm)/TPBi( 45 nm)/
LiF (1nm)/Al (100 nm). The modified device architecture and detailed energy level diagram
are shown in Figure 3.6 (a) and (b), respectively. The device performance has significantly
improved when TPBi is used. The device exhibited a maximum luminance of 1462 cd/m? with
a current density of 355 mA/cm? at 12V. The device with TPBi as the ETL demonstrates
significantly higher luminance and higher current efficiency than the device with OXD-7. The
luminance and CE of the device with TPBi are over three times higher than those with OXD-
7. The comparison of J-V-L and current efficiency (CE) vs. voltage plot are shown in Figure
3.6 (c) and (d), respectively. TPBi exhibits high electron mobility*®, enabling efficient electron
transport throughout the device. This reduces recombination losses and enhances overall
device performance. From the comparison of the EL spectra of the devices as shown in Figure
3.6 (e), emission peak was not seen to be affected by changing the ETL. Also, both devices
exhibit the same turn-on voltage of 3V, indicating that the initial energy barrier for electron

injection is not affected by changing the ETL.
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with a photograph of a working device is given in the inset.
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3.4.3.2 Yellow OLEDs by utilizing NPB:OXD-7 exciplex as host

To explore the efficiency of the NPB:OXD-7 exciplex as a host with an appropriate
phosphorescent dopant, solution-processed exciplex host OLEDs were designed and
fabricated. Based on the spectral overlap depicted in Figure 3.7(a), PO-01 is selected as the
yellow phosphorescent dopant. The device configuration is as follows: 1TO/
PEDOT:PSS(35nm)/ NPB:OXD-7:PO-01(1:1, X%,35nm)/TPBi(45nm)/LiF(1nm)/Al(100nm).
In the emissive layer, different weight percentages of PO-01 is doped in the NPB:OXD-7

mixed layer. The device architecture is shown in Figure 3.7(b).
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Figure 3.7. (a) Spectral overlap between absorption of PO-01 and emission of NPB:OXD-7
(2:1) thin films (b) device architecture of exciplex host OLED and the molecular structure of

the yellow phosphorescent dopant PO-01.

Exciplex host devices were fabricated with x = 3%, 5%, 7% and 9% of PO-01 doped in the
NPB:OXD-7 mixed layer. Maximum luminance of 36,000 cd/m?, maximum CE of 37 cd/A
and maximum EQE of 11 % were achieved for 5% doping of PO-01. It shows the efficient
energy transfer occurred from the exciplex host to the phosphorescent dopant. The high

quantum yield of the phosphorescent dopant, along with the bipolar nature of the exciplex host,
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likely contributed to the high efficiency of the devices. The J-V-L plots are compared in Figure
3.8 (a). The EL spectra at different voltages for the device with x=5% is shown in Figure 3.8
(b). All the devices exhibited yellow emission of PO-01 at 560 nm. The device performance is
summarized in the Table 3.1. The EQE and CE vs. current density plots of the devices are
compared in Figure 3.8 (¢) and (d). The CIE coordinates remain constant with respect to the
applied voltage as shown in Figure 3.9 (a). The CIE diagram and photograph of a working

device with 5% doping ratio are shown in Figure 3.9 (b).
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% of L uminance Current Current Max Luminance,
PO-01 | (cd/m?) density | efficiency | EQE (%) max CE,
(mA/cm?) (cd/A) max EQE
35780 cd/m?
0 + * * t ’
3% 27800 +537 | 132+192 | 22.0+0.32 | 6.55+0.10 26.5 cd/A. 9 %
35680 cd/m?
0 + + * e ’
5% 33000 £596 | 162 +2.76 | 20.9+£0.57 | 6.00+0.70 37.0 cd/A, 11 %
36710 cd/m?
0 + + + e ’
7% 31900 +712 | 176 +3.60 | 17.8+0.63 | 5.20 £+ 0.08 18.0 cd/A., 5 %
17420 cd/m?,

9% 16600 +435 | 132+1.96 | 6.06 +0.26 | 1.93 +0.07

10.3 cd/A, 3%

Table 3.1. Summary of device performance at 10V and the maximum luminance, CE and EQE
values of yellow solution-processed exciplex host OLEDs with different doping ratios of PO-

01 into the exciplex matrix.
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Figure 3.9. (a) CIE coordinates vs. voltage plot and (b) CIE diagram of the device with 5%
doping of PO-01 and a photograph of a working device is given in the inset.

The lifetime testing of the best yellow device with 5% doping of PO-01 was conducted over
approximately 30 hours. Throughout the test, the device was monitored at a constant current

of lo = 0.12 mA; the initial luminance being 96 cd/m?. The variation in the ratio of luminance
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at a time to the initial luminance vs. operational time is shown in Figure 3.10 (a). The initial
luminance was maintained for over 30 hours, indicating the high operational stability of the
device. A slight increase in the initial luminance was observed, likely due to initial trap-filling
processes occurring within the device. Also, the emission wavelength of the spectrum and the

CIE coordinates remain stable throughout its operation as shown in the Figure 3.10 (b) and (c).
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Figure 3.10. (a) Lifetime testing (L/Lo) vs. operational time (b) wavelength vs. operational
time and (c) CIE coordinates vs. operational time of the yellow device with 5% doping of PO-
01 into the NPB:OXD-7 blend film.
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3.4.4 Multifunctional devices

3.4.4.1 Concept of multifunctionality

The need for integration of multifunctionality in optoelectronics has been recognized for
advancing smart device technologies. From a practical perspective, multifunctional devices
hold significant promise for the evolution of smart devices. The multifunctionality can be
realized by combining the distinct functions of different categories of devices. An example of
such integration in organic electronic devices is the incorporation of both light emission and
detection functions within the same device. The fabrication and characterization of NPB:OXD-
7 blue exciplex OLEDs was discussed in the previous section. Here, we are proposing a
multifunctional device based on NPB:OXD-7 exciplex emission. The UV-absorption
capability of NPB:OXD-7 mixed film was first investigated by Zhu et al. in 20143, They
fabricated a UV-photodetector by using NPB:OXD-7 mixed film as the active layer, exploiting
the strong UV absorption of OXD-7. TiO-, which acts as the electron extraction layer, plays a
crucial role. After UV photo-excitation, the reduced work function and increased conductivity
of the TiO: film create a low-impedance contact at the carrier-extraction layer-metal interface,
facilitating the collection of photogenerated carriers at the electrodes. They did not investigate
the light emission properties of the NPB:OXD-7 exciplex. Instead, they used it as the active
layer specifically for UV detection. In our work, the high UV-absorption capability of OXD-7
and its exciplex forming capability with NPB are combined to create a multifunctional device.
Under forward bias, exciplex emission occurs at the NPB/OXD-7 interfaces in the mixed film.
Hence, device operates as an OLED under forward bias. Conversely, under reverse bias and
upon UV illumination, a photocurrent is generated which can be attributed to the built-in

potential at the NPB/OXD-7 interface and high UV absorption of OXD-7.
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To confirm the effect of OXD-7, the UV-visible absorption spectra of mixed films with
different NPB:OXD-7 ratios (1:3, 1:1, and 3:1) were compared, as shown in Figure 3.11. Both
1:1 and 3:1 films exhibit the individual absorptions of NPB and OXD-7, with OXD-7
absorption dominating in all cases. As expected, the 1:3 film shows the highest UV absorption.
Increasing the concentration of OXD-7 enhances the absorption of the mixture, confirming

high UV absorption properties of OXD-7.
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Figure 3.11. Comparison of absorption spectra of mixed films NPB:OXD-7 (1:1, 1:3 and 3:1).

3.4.4.2 Device fabrication and characterization

The high UV-absorption capability as well as exciplex emission in NPB:OXD-7 mixed film is
utilized for the design of multifunctional devices. Initially, the performance of the UV detector
using the NPB:OXD-7 (1:1) device was analyzed, as its exciplex emission has already been
discussed in the previous sections. The photodetector characterization was done under UV-
illumination and reverse bias. The IV characteristics were measured both in the dark and under
365 nm UV light. Figure 3.12 (a) illustrates the variation in dark/photocurrent density with

applied voltage. The ON/OFF ratio of 26, responsivity of 4 mA/W, and detectivity of 1.76x10'°
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Jones was obtained at OV. The cyclic photoresponse of the device, shown in another Figure
3.12 (b), demonstrates the variation in photocurrent with operational time, revealing a rise time
and fall time of 287 ms. The device demonstrated photodetector performance, with a
detectivity value in the range of 10-1% Jones, making it suitable for UV-detection applications.

Hence, the multifunctionality of the devices is confirmed with this observation.
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Figure 3.12. (a) Steady-state IV characteristics of dark and photocurrent under 365 nm UV
light and (b) cyclic photoresponse of NPB:OXD-7 (1:1) device.

The multifunctional device proposed in this work does behave as an OLED under forward bias

and as a UV-detector under reverse bias as depicted in Figure 3.13.
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Figure 3.13. lllustration of the working mechanism of multifunctional devices.

By considering the high surface potential and UV- absorption of the OXD-7 in the mixed films,
two devices were designed with emissive layers consisting of 1:3 and 3:1 ratios of NPB and
OXD-7. The multifunctional exciplex devices were fabricated with the modified EMLs with
the device structure of ITO/PEDOT:PSS (35nm)/ NPB:OXD-7 (1:3 or 3:1, 35 nm)/TPBIi( 45
nm)/ LiF (1nm)/Al (100 nm). Steady-state IV characteristics of these devices are compared in
Figures 3.14 (a) and (b). The 1:3 ratio shows high ON/OFF ratio of ~ 10° and a high detectivity
of 1.1x10"! Jones. The improved detector performance of 1:3 can be attributed to the higher
UV-absorption of OXD-7. Whereas, the responsivity of the 3:1 device is found to be very low
compared to the 1:1 and 1:3 devices. This behavior is due to the less concentration of OXD-7
in the mixture, resulting in decreased UV absorption. The cyclic photoresponses of the three
devices are compared in the Figure 3.14 (c). The photodetector parameters of the devices at

0V were compared and are summarized in the Table 3.2.
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Figure 3.14. Steady state IV of dark and photo current under 365 nm UV light (a) NPB: OXD-
7 (1:3) device (b) NPB:OXD-7 (3:1) devices (c) cyclic photoresponse of NPB:OXD-7 (1:1,
3:1 and 1:3) devices.

NPB:OXD-7 O':'; S(':F Re(srgim'ty D‘Z;icr:;‘;;ty Risetime | Fall time
1:1 0.26x10° 4.00 1.76x10% 287 ms 287 ms
1:3 0.96%107 4.30 1.00x10™ 191 ms 279 ms
3:1 0.18x102 0.37 430x10° | 1000 ms 382 ms

Table 3.2. Summary of the detector performance of the NPB:OXD-7 (1:1, 1:3 and 3:1)

devices.

The effect of high UV absorption of OXD-7 is reflected in the UV-detector performance of

these devices. Further, the OLED performance of the same devices was also analyzed. The
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devices with 1:1 and 3:1 ratios exhibited comparable performance. The J-V-L plots, CE vs.
current density plots and EL spectra of the devices were compared as shown in Figures 3.15

(@), (b) and (c), respectively.
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Figure 3.15. (a) J-V-L plot and (b) CE vs. current density plot (c) EL spectra with maximum
intensities of NPB:OXD-7 (1:1, 1:3 and 3:1) devices.

The 1:3 device with more OXD-7 demonstrated a marked decrease in current density and
luminance compared to 1:1 and 3:1. The variation in device performance suggests that an
additional factor may be influencing the exciplex emission in the devices. This hypothesis has
led to the consideration of surface potential effects in organic small molecules. This finding is
crucial as it highlights that while UV absorption of OXD-7 is a significant factor, the role of

surface potential cannot be ignored in understanding the device performances. Further
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investigation into the surface potential and its impact on device performance is needed to fully
understand the mechanisms in the devices.

3.4.4.3 Effect of spontaneous orientation polarization (SOP)

Spontaneous orientation polarization (SOP) has been observed in films of organic small
molecules, which consist of randomly or horizontally oriented molecules®. This phenomenon
is dependent on the molecular orientation within the film and occurs in molecules that possess
a permanent dipole moment (PDM). The surface potential (SP) arises from the spontaneous
ordering of these PDMs, a process known as SOP. In organic semiconductor films, PDM
results from the symmetric structure of the molecules. The macroscopic orientation
polarization in the film occurs when the average orientation of PDMs aligns in a specific
direction as shown in Figure 3.16. When this PDM remains constant on average, the SP
becomes directly proportional to the thickness of the film. SOP can be assessed through surface
potential measurements using Kelvin-probe microscopy, typically conducted at room
temperature, in the dark and under vacuum conditions*. This technique minimizes surface free
energy by reducing the boundary effects between the vacuum and the film surface. Despite
extensive research, the underlying mechanism of SOP remains unclear. Understanding SOP is
crucial for optimizing the design and functionality of organic semiconductor devices. The
effect of SOP on the photodetection capabilities of devices can be better understood through
the study of vacuum-deposited films. SOP is more pronounced in vacuum-deposited films

compared to solution-processed films, making them suitable for this investigation.
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Figure 3.16. lllustration of SOP in a thin-film and development of surface potential.

Prior to device fabrication, surface potential mapping of thin films was performed to analyze
their properties. Thin films of NPB, OXD-7, and a 1:1 mixture of NPB:OXD-7 were fabricated
using vacuum deposition. The surface potential mapping of these films was conducted using
kelvin probe force microscopy (KPFM) combined with atomic force microscopy (AFM) under
ambient conditions®!. The KPFM images with the range of surface potential values are shown
in Figure 3.17 (a). The surface potential measurements indicate that the NPB film exhibits a
less positive and more variable potential, whereas the OXD-7 film shows a consistent and high
negative potential. The mixed film of NPB:OXD-7(1:1) demonstrates a more uniform
potential, between the individual components. The results show that OXD-7 has high surface
potential compared to NPB. In 2020 Adachi et al. have reported the role of spontaneous
orientational polarization in organic donor—acceptor blends for exciton binding®. The behavior
of exciplexes in organic semiconductor devices is significantly influenced by the presence of
an electric field. Specifically, molecules with high SOP within the exciplex film generate a
surface potential, which plays a crucial role in the dissociation of exciplexes. Exciplexes,
which are complexes formed between excited donor and acceptor molecules is sensitive to
such internal electric fields. When molecules in the exciplex film possess high SOP, they create

a surface potential due to the orientation of permanent dipole moments. This surface potential
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can lead to the dissociation of the exciplexes as illustrated in Figure 3.17 (b). In order to
confirm the effect of SOP in photoluminescence, the photoluminescence emission spectra of
the mixed films were compared as shown in Figure 3.17 (c).
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Figure 3.17. (a) Surface potential mapping images of the vacuum-deposited NPB, OXD-7 and
NPB:OXD-7 thin films (b) illustration of weakening of exciplex in presence of electric field.
(c) comparison of photoluminescence spectra of the vacuum-deposited thin films of
NPB:OXD-7 (1:1, 1:3 and 3:1).

From the photoluminescence spectra, 3:1 film showed very poor luminance compared to 1:1

and 3:1. Hence, OXD-7 with more SOP caused the dissociation of exciplex excitons resulting

in reduced luminance in 1:3 film compared to the other two. The exciplex dissociation is



NPB:OXD-7 multifunctional exciplex 121

beneficial for organic photodetectors (OPDs) as it enhances photocurrent generation. In these
devices, the dissociation of exciplexes under an electric field result in efficient charge
separation and photocurrent generation. Conversely, low SOP is found to favor exciplex
emission, which is desirable for OLEDs. This distinction is crucial for the design and
optimization of organic multifunctional devices. By tailoring the SOP of the materials used, it
is possible to enhance either the dissociation of exciplexes for OPDs or the emission of
exciplexes for OLEDs, thus improving the performance of these devices for their respective
applications.

3.4.4.4 Fabrication and characterization of vacuum-deposited devices

The impact of SOP is more significant in vacuum-deposited films compared to solution-
processed films. Therefore, we opted for fully vacuum-deposited devices instead of using
solution processing method. The modified device architecture for fully-vacuum deposited
devices are illustrated in the Figure 3.18 (a). HAT-CN serves as the HIL, while an additional
layer of NPB is incorporated before the emissive layer to enhance hole transport. Three devices
were fabricated with co-deposited layer of NPB:OXD-7 in varying ratios as 1:3, 1:1, and 3:1.
Initially, we performed OLED characterization of the devices, analyzing the J-V-L plot, current
efficiency vs. current density plot and EL spectra as depicted in the Figure 3.18 (b), (c) and (d)
respectively. The NPB:OXD-7 (3:1) device with less concentration of OXD-7 demonstrated
the highest current efficiency among the three. The 1:3 device, containing a higher proportion
of OXD-7, exhibited low current density and luminance, resulting in reduced efficiency. In
this device, the high surface potential of OXD-7 in the mixture leads to exciplex dissociation,

resulting in a reduced OLED performance.
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Figure 3.18. (a) Device architecture (b) J-V-L plot (c) CE vs. current density plot and (d) EL
spectra at maximum intensities of NPB:OXD-7 (1:1, 1:3,3:1) vacuum-deposited devices.

Subsequently, we conducted photodetector characterization. The steady-state 1V and cyclic

photoresponse of the devices are presented in the Figure 3.19 (a), (b), (c) and (d) respectively.
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Figure 3.19. Steady state IV of dark and photo current under 365 nm UV light of the vacuum-
deposited devices (a) NPB:OXD-7 (1:1) (b) 1:3 (c) 3:1 (d) comparison of cyclic photoresponse
of the devices.

Among the photodetector devices, the 1:3 device showed better performance than the others,
while the 3:1 device, with a lower OXD-7 content, showed the least performance. In the 1:3
device with a higher OXD-7 content, the increased SOP causes the exciplex to dissociate
leading to photocurrent generation. Notably, the self-powered UV detector with a 1:3 ratio
exhibited impressive performance, achieving a detectivity of 4x10*! Jones, a responsivity of
17 mA/W and an ON-OFF ratio of 3x10° at 0V, while also maintaining satisfactory OLED

performance. Comparing the OLED and photodetector performance reveals that the high SOP
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of OXD-7, combined with its strong UV absorption plays a crucial role in device performance,

contributing to its multifunctionality. The photodetector parameters are summarized in the

Table 3.3.
) .| Responsivity | Detectivity . .
NPB:OXD-7 | ON/OFF ratio (MAW) (Jones) Rise time | Fall time
1:1 1.00x10? 4.00 1.76x10% 2.36s 0.89s
1:3 3.50%x10° 17.00 4.00x101 2.45s 1.23s
31 0.15%x10? 0.92 6.00x10° 1.40s 2.43s

Table 3.3. Summary of the photodetector parameters at OV of the vacuum-deposited devices.

3.5 Conclusion

In this chapter, we successfully demonstrated the dual functionality of an exciplex by using
NPB, as the donor and OXD-7, as the acceptor, highlighting its potential for both OLED and
UV-photodetector applications. The blue exciplex emission at the NPB/OXD-7 interface was
confirmed from the spectroscopic studies. Solution-processed blue exciplex OLED was
successfully fabricated. Introducing the yellow phosphorescent dopant PO-01 into the exciplex
host resulted in a yellow OLED exhibiting a maximum brightness of 36,000 cd/m? and an EQE
of 11%. The significant surface potential of OXD-7 facilitated exciplex dissociation at the
NPB/OXD-7 interface with its strong UV-absorption, generating photocurrent under UV
illumination. This enables the device to function dually as both an OLED and a UV
photodetector, achieving a balance between exciplex emission and dissociation. Blend films
of varying NPB:OXD-7 ratios (1:1, 1:3, 3:1) were studied to optimize the device performance.
The high surface potential and strong UV-absorption of OXD-7, resulted in photocurrent

generation. The NPB:OXD-7 (1:3) device performed better as a UV detector but showed poor
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performance as an OLED. Conversely, the 3:1 device excelled as an OLED but was a poor UV
detector. This study demonstrates that the NPB:OXD-7 exciplex combination holds potential
for multifunctionality, enabling the devices to serve as both OLEDs and UV photodetectors.
Many exciplex combinations remain unexplored, offering potential for multifunctional
devices. By considering factors such as surface potential development, UV absorption, etc. in
the transport materials, these combinations could be effectively utilized for enhanced device

performance.
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Chapter 4

Yellow emitting exciplex for solution-processable white
organic light emitting diodes
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4.1 Abstract

In this chapter, we combine exciplex and excitonic emissions within a single emissive layer to
achieve white emission. Two blue emitting hole transport materials (HTMs), namely, N,N'"-
Bis(3-methylphenyl)-N, N'-diphenylbenzidine (TPD) and Poly(9,9-dioctylfluorene-alt-N-(4-
sec-butylphenyl)-diphenylamine) (TFB) were combined with a commonly used electron
transport material (ETM), 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T).
Photoluminescence studies confirmed the exciplex emissions in TPD:PO-T2T and TFB:PO-
T2T mixed films. Electroluminescence studies showed that the TPD:PO-T2T exciplex organic
light emitting diode (OLED) exhibited yellow exciplex emission whereas the TFB:PO-T2T
device did not have any exciplex emission; instead, it exhibited the characteristic deep blue
emission of TFB. In TPD:PO-T2T device, when 2,2",2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-

benzimidazole) (TPBi) was used as the ETL, a blue emission from the TPD/TPBI exciplex was
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obtained along with the yellow exciplex emission. Hence, white emission could be achieved by
suitably combining the yellow exciplex emission of TPD:PO-T2T and the blue exciplex
emission of TPD/TPBI. To optimize this, the ratios of TPD:PO-T2T in the emissive layer was
varied. The TPD:PO-T2T (90:10) device achieved a maximum luminance of 3358 cd/m?, a
maximum current efficiency (CE) of 4.8 cd/A and a maximum external quantum efficiency
(EQE) of 1.8%. Whereas, the TPD:PO-T2T (40:60) device achieved a high CRI value of 78.
Subsequently, the deep blue emission of TFB was incorporated into the emissive layer to design
a single emissive layer white OLED (WOLED). This device exhibited voltage-dependent
emission, where the deep blue emission of TFB dominated at low voltages and the yellow
exciplex emission became dominant at higher voltages. Voltage-dependent
electroluminescence shows a transition from blue emission with commission internationale de
[’Eclairage -1931 (CIE- 1931) coordinates of (0.24, 0.23) to cool white emission with CIE
coordinates of (0.34, 0.39), color rendering index (CRI) of 69 and correlated color

temperature (CCT) of 5083 K at 14V biasing.

4.2 Introduction

Over the past decade, extensive research has been conducted on OLEDs with the goal of
enhancing brightness and outcoupling efficiency. Particularly, WOLEDs have obtained
significant attention due to their potential applications in the lighting arena. Conventional
tandem structures for WOLEDs typically employ high cost phosphorescent, fluorescent or
thermally activated delayed fluorescence (TADF) emitters in complementary colors,
connected via charge generation layers (CGLs)*. These high cost emitters are doped into

appropriate host materials to avoid the aggregation induced quenching and to achieve better
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efficiency®’. However, integrating exciplex systems as both emitter and host in WOLEDSs can
significantly reduce the device complexity®3. By using exciplex emitters of complementary
colors, innovative device design strategies have been developed offering a cost-effective
alternative to traditional high cost emitters in tandem WOLEDs!#8, Various strategies have
been employed to fabricate WOLEDSs, with promising approaches for reducing the number of
emissive components by utilizing excimer'” 18, exciplex'® 2, electroplex?! and electromer?? 23,
In 2009, Yang et al. investigated the exciplex emission at the 1,1-Bis[(di-4-
tolylamino)phenyl]cyclohexane (TAPC)/ Bathocuproine (BCP) interface and bilayer OLEDs
were fabricated 2*. The intensity of exciplex emission increased with the thickness of the BCP
layer from 10 nm to 30 nm. Combination of yellow electromer emission from TAPC as well
as TAPC/BCP blue exciplex emission gives white light. The light output power vs. voltage
plot is shown in Figure 4.1 (a). Later in 2016, Angioni et al. presented a novel triaryl molecule
featuring a benzene-benzothiadiazole-benzene core and utilized the same in a WOLED through
a combination of emissive states including exciton, electromer, exciplex and electroplex
emissions®® as shown in Figure 4.1 (b). WOLED with multiple exciplexes featuring blue and
yellow-green emitting layers was reported by Beak et al.?®. Blue exciplex emission at the
molecular interface of tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 4,7-diphenyl-1,10-
phenanthroline (BPhen) and yellow-green exciplex emissions at 4,4'.4"-Tris[phenyl(m-
tolyl)amino]triphenylamine (m-MTDATA)/Bphen and m-MTDATA/TPBIi combinations were
realized. Multiple exciplexes can control the electrical behavior of holes and electrons
throughout the entire EML without any fluorescent or phosphorescent dopants. Efficiency roll-
off was improved by 40% compared to WOLEDs without multiple emissive layers (EMLS)

and a CRI higher than 70 was achieved at 1000 cd/m2. The energy level diagram of the
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WOLED is shown in Figure 4.1 (c). Pure exciplex WOLED with complementary orange and
blue exciplexes have been realized using spacers by zhao et al. ?’. CIE coordinates of (0.31 +
0.00, 0.37 + 0.02) and a very high CRI of approximately 83 were acheived for the white
emission. The orange and blue exciplex emissions are obtained by utilizing TAPC/PO-T2T
and (1,3-Bis(N-carbazolyl) benzene) mCP/PO-T2T, respectively. The broad emission band of
the exciplex contribute to a stable white light with high CRI. Later Wei et al. have presented a
novel strategy for structuring WOLEDSs by utilizing all exciplex emissions?®. This approach
involves fabricating white devices by simply depositing multiple exciplex acceptor layers on
a single exciplex donor layer in a vertical arrangement. Complementary exciplex emissions are
achieved at the interfaces of TAPC/TPBi and TAPC/PO-T2T. Based on this strategy, a series
of WOLEDs with various arrangements of exciplex acceptor layers on the same exciplex donor
layer was demonstrated. The device featuring a common HTL with two different ETLS
achieved excellent two-color white emission as shown in the normalized EL spectra in Figure
4.1 (d) with a high CRI of 71 and a current efficiency of 3.17 cd/A. This new strategy
effectively addresses the issues associated with using interface exciplexes when employed to
achieve multi-color white emission, offering a new approach to develop all-exciplex
WOLED:s. In this work, we demonstrate a simplified device architecture that combines yellow
exciplex emission with blue exciplex and excitonic emissions. This design yields a high color
rendering index (CRI) of 78, underscoring the cost-effectiveness and simplicity of exciplex-
based WOLED designs, achieved without resorting to complex tandem structures. Moreover,
a unique voltage-dependent emission phenomenon is observed upon the incorporation of a blue

emitting HTM. This tunable emission characteristic highlights the potential of novel device
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designs utilizing commercially available transport materials to enable color tuning in OLEDs,

further emphasizing the versatility and practicality of exciplex-based systems.
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Figure 4.1. (a) The light output power vs. applied voltage plots of the WOLEDs by utilizing
exciplex emission at TAPC/BCP interface; with varying thickness of BCP is shown. The
illustration of exciplex emission in terms of energy levels is shown in the inset (adapted from
ref. 24) (b) EL spectra of the WOLED by utilizing exciplex emission at the TPD/1 interface;
the structure of the novel molecule and the photograph of the device is shown in the inset
(adapted from ref. 25) (c) The device structure of the multiple exciplex OLED in terms of
energy levels; TAPC/Bphen (blue) and m-MTDATA/Bphen and m-MTDATA/TPBI (yellow-
green exciplex emissions) (adapted from ref. 26) (d) The normalized EL spectra of all-exciplex
WOLED with CIE diagram shown in the inset (adapted from ref. 27).
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4.3 Experimental section

The devices were fabricated on indium tin oxide (ITO) (purchased from Kintec, Hong Kong,
ITO thickness 150 nm, sheet resistance < 15 ohm/sq) coated glass substrates. These patterned
ITO substrates were initially cleaned by ultrasonication in chloroform for 15 minutes and then
washed in dilute detergent solution followed by ultra-sonication in isopropanol and deionized
water for 10 minutes each and dried using a hot air gun. UV-ozone cleaning for 15 min was
done just before the fabrication of the devices. Poly(3,4-ethylenedioxythiophene:Polystyrene
sulfonate (PEDOT:PSS) was purchased from Heraeus and spincoated at 2500 rpm at ambient
conditions. After annealing for 20 minutes at 120°C, the substrates were transferred to the wet
glovebox. Mixed solution of TPD and PO-T2T in 1:1 weight ratio was prepared in
chlorobenzene and spincoated at 2000 rpm inside glovebox. Substrates were then annealed at
110°C for 15 minutes, followed by annealing in vacuum for 2 hours. The solution of TFB in
different weight ratios was prepared in chlorobenzene and it was added to the TPD:PO-T2T
solution in chlorobenzene at required concentrations. The substrates were then transferred to
thermal evaporation chamber. ETLs (PO-T2T or TPBI), LiF, Al were thermally evaporated
using a dry glovebox integrated thermal evaporation system (Angstrom Engineering, Canada)
at 107 torr. The rate of evaporation of ETL, LiF and Al were done at 2 A/s, 0.1 A/s and 2 A/s
respectively. The thickness of the layers was confirmed using Dektak XT surface profilometer.
After the evaporation, the devices were encapsulated inside the nitrogen filled glovebox by
using a UV-curable epoxy (Epoxy Technology inc.). The materials TPD, TFB and TPBi were
purchased from Luminescence Technology Corp. (Lumtec), Taiwan and PO-T2T from TCI

chemicals.
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The absorption studies of the thin films of the materials were done using HORIBA Jobin Yvon
and PerkinElmer UV/VIS/NIR Spectrometer, Lambda 950. Emission spectra were measured
using a Fluorolog-3 spectrofluorometer (HORIBA), equipped with a 450 W xenon arc lamp.
The OLED characterization system consists of a SpectraScan PR (Photo Research) -655
spectroradiometer and a Keithley 2400 sourcemeter integrated with a PC.

4.4 Results and discussion

4.4.1 Strategy for materials selection

In this chapter, blue emitting transport materials are combined with a common ETM. TPD and
TFB are selected as the HTMs. TPD is a prominent hole transport material in organic electronic
devices. TPD serves as a blue-violet light emitting material or host material in phosphorescent
OLEDs due to its wide energy band of approximately 3.2 eV with highest occupied molecular
orbital (HOMO) and low unoccupied molecular orbital (LUMO) energy levels at 5.5 eV and
2.3 eV, respectively. TFB is a triarylamine-based semiconductor noted for its high hole
mobility of 2x10° cm2/Vs and a band gap of 3.0 eV, featuring HOMO and LUMO levels of
5.3 eV and 2.3 eV, respectively. The low ionization potential and high hole mobility of TFB
make it an ideal material for use as a HTL and HIL. As an interface material, TFB effectively
serves as an electron blocking layer, minimizing electron leakage and reducing the possibility
of exciton quenching at the interface between the active layer and charge transport layer. It is
widely used in quantum dot and perovskite light emitting diodes?® *. PO-T2T is selected as
the electron transport material for both combinations. PO-T2T is an electron-deficient
semiconducting molecule characterized by a triazine center and three diphenyl phosphines.
PO-T2T efficiently forms exciplexes with electron donating host materials such as mCP3L,

These exciplexes have been shown to effectively transfer energy to blue phosphorescent
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dopants, such as Bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium (Flrpic),
facilitating triplet harvesting without energy loss®?. With a deep HOMO level of 7.55 eV, PO-
T2T also functions as an ETL and hole blocking layer (HBL) in organic electronic devices. Its
electron deficient nature and high triplet energy level contribute to improved device lifetime,
efficiency, and lower driving voltage when used as a universal exciplex host in combination
with other electron donating materials®> 34, In this chapter, we introduce two exciplex
combinations; TPD:PO-T2T and TFB:PO-T2T. The molecular structures and the exciplex
formation at the TPD/PO-T2T and TFB/PO-T2T molecular interfaces in terms of energy levels

are depicted in Figure 4.2 (a) and (b), respectively.
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Figure 4.2. (a) Molecular structure of TPD, PO-T2T and TFB (b) schematic representation of
exciplex emissions at the molecular interfaces of TPD/PO-T2T and TFB/PO-T2T in terms of
energy levels.
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The main goal of this work is to design a single-emissive-layer WOLED utilizing exciplex and
excitonic emissions, without relying on expensive phosphorescent emitters. The aim is to
achieve a non-tandem WOLED design by using only commercially available transport
materials.

4.4.2 Spectroscopic studies

To confirm the exciplex emission in the selected combinations, the photoluminescence
emission spectra of the thin films of the materials were compared. The emission of TPD and
PO-T2T occurs at 400 nm and 375 nm, respectively. The TPD:PO-T2T (1:1) mixed film
showed a significantly red shifted and broadened emission at 593 nm as shown in Figure 4.3
(@), confirms TPD:PO-T2T yellow exciplex emission. The TPD:PO-T2T mixed film indicates
a feeble emission of TPD as well, the intensity of which is very low compared to that of the
exciplex emission. The FWHM values of TPD, PO-T2T and TPD:PO-T2T emission spectra
are 44 nm, 82 nm and 137 nm, respectively. For the materials in the second combination, the
emission of TFB and PO-T2T occurs at 430 nm and 375nm, respectively. TFB:PO-T2T (1:1)
mixed film showed two major emission peaks at 430 and 530 nm, respectively as shown in
Figure 4.3 (b). The significantly red shifted and broadened emission at 530 nm is the green
exciplex emission in TFB:PO-T2T mixture whereas the narrow blue emission peak around 430
nm is the excitonic emission of TFB. The full width at half maximum (FWHM) values of the
emission peaks of TFB, PO-T2T and TFB:PO-T2T are 24 nm, 82 nm and 186 nm, respectively.
Thus, exciplex emissions are confirmed in both TPD:PO-T2T and TFB:PO-T2T combinations
from the photoluminescence spectra. The emission of TFB is prominently observed in the
TFB:PO-T2T mixed film, whereas the emission of TPD is quite weak in the TPD:PO-T2T

film. The emission of PO-T2T were completely absent in both cases. Hence, it is expected that
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the exciplex emissions with the blue excitonic emissions from both combinations can be

effectively utilize for the fabrication of exciplex- based WOLEDs.
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Figure 4.3. Photoluminescence emission spectra of the thin films of the materials (a) TPD,
PO-T2T and TPD:PO-T2T (1:1) (b) TFB, PO-T2T and TFB:PO-T2T (1:1).

4.4.3 Device fabrication and characterization
4.4.3.1 Blue OLEDs by utilizing TPD and TFB excitonic emissions
Based on the confirmation of exciplex emissions from the photoluminescence spectra of the

mixed films of TPD:PO-T2T and TFB:PO-T2T in equal ratio of thickness, we proceeded with
thickness optimization and device fabrication. Prior to developing the exciplex devices, blue
OLEDs were designed by utilizing the blue excitonic emissions of TPD and TFB. The device
architecture is as follows; ITO/PEDOT:PSS (35 nm)/TPD or TFB (40 nm)/TPBi (40 nm)/LiF
(2 nm)/Al (100 nm) (Figure 4.4 (a)). PEDOT:PSS acts as the HIL as well as HTL and TPBI
acts as the ETL. For the TPD device, a maximum luminance of 983 cd/m? at a current density
of 393 mA/cm? was obtained, as shown in Figure 4.4 (b). The electroluminescence (EL) spectra
of the blue device with TPD as the EML exhibited multiple peaks. The split peaks around 420

nm is the characteristic emission of TPD and in addition a shoulder peak around 475 nm was
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observed as illustrated in Figure 4.4 (c). This shoulder peak likely results from the exciplex
emission at the TPD/TPBI interface. Based on the HOMO-LUMO gap at the TPD/TPBI
interface, exciplex emission is expected to occur around 443 nm and could be red shifted to
470 nm in the EL spectra. However, the emission from TPD dominates the EL spectra more

than the possible TPD/TPBI exciplex emission.
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Figure 4.4. (a) The device architecture of the TPD only device with schematic representation
of blue emission from TPD and exciplex emission at the TPD/TPBi interface (b) current
density (J)-voltage (V)- luminance (L) plot and (c) EL spectra of the of the TPD device at

varying voltages with the photograph of the device shown in the inset.

TFB device performed badly when compared to the TPD device with a luminance of 280 cd/m?
at a current density of 393 mA/cm?. The device exhibited a single peak of deep blue emission

of TFB at 435 nm with its characteristic shoulder peak and there was no trace of any possible
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TFB/TPBI exciplex emission. The device architecture with the emission mechanism, EL

spectra and J-V-L plots are shown in Figure 4.5 (a), (b) and (c) respectively.
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Figure 4.5. (a) The device architecture of the TFB only device with schematic representation
of blue emission from TFB (b) EL spectra and (c) J-V-L plot of the TFB device.

4.4.3.2 Yellow and white OLEDs by using exciplex and excitonic emissions
4.4.3.2.1 TPD:PO-T2T exciplex WOLEDs

Based on the confirmation of exciplex emission from the photoluminescence studies, the
exciplex OLEDs were fabricated via solution processing method. The device architecture with
TPD:PO-T2T as the emissive layer is as follows: ITO/ PEDOT:PSS (35 nm)/ TPD:PO-T2T
(2:1) (40 nm) / PO-T2T (40 nm)/ LiF (1nm)/ Al (100 nm). Initially, PO-T2T was only used as

the ETL for the better charge transport to TPD:PO-T2T mixed layer from cathode. The device
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architecture, energy level diagram, J-V-L plot and EL spectra of the devices are shown in

Figure 4.6 (a), (b), (c) and (d) respectively.
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Figure 4.6. (a) Device architecture of TPD:PO-T2T exciplex device (b) energy level diagram
of the device and exciplex emission at the molecular interfaces of TPD and PO-T2T in the
emissive layer is depicted (c) J-V-L plot and (d) EL spectra with varying voltages and the inset

picture shows the photograph of a working device of TPD:PO-T2T exciplex device.

In this typical exciplex device, only the yellow exciplex emission is observed, with the blue
emission from the individual components being completely absent. The TPD:PO-T2T exciplex
emission is observed at 568 nm. The device exhibited a maximum luminance of 920 cd/m?
with a current density of 133 mA/cm? at 12 V. To enhance electron transport, PO-T2T was
replaced by TPBi as the sole ETL. The device characteristics with two different ETLs are

compared in Figures 4.7 (a) and (b).
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Figure 4.7. Comparison of the (a) J-V-L plot and (b) EL spectra of the TPD:PO-T2T devices
with TPBi and PO-T2T as ETLs.

When TPBi is used as the ETL, there is an improvement in the current density and
consequently the luminance of the device. The EL spectra showed a blue emission at 476 nm,
in addition to the yellow exciplex emission. This blue emission is identified as the exciplex
emission at the TPD/TPBI interface from the TPD only device as discussed earlier, which is
not observed when PO-T2T is used as the ETL. Hence, combination of blue and yellow
exciplex emissions results in white emission. This leads to the design of a single emissive layer
WOLED which utilizes two exciplex combinations; TPD:PO-T2T bulk exciplex for yellow
emission and TPD/TPBI interface exciplex for blue emission. To enhance the quality of the
white light, the emissive layer was modified with different ratios of TPD:PO-T2T as shown in
Figure 4.8 (a). The ratios of TPD:PO-T2T is varied to be 40:60, 60:40, and 90:10 in an attempt
to balance the intensity of yellow and blue emissions. The EL spectra of the TPD:PO-T2T
devices with ratios of 40:60, 50:50, 60:40 and 90:10 is shown in Figures 4.8 (b), (c), (d) and
(e), respectively. CIE diagrams are given in the inset of the EL spectra and CCT and CRI index

are also mentioned.
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Figure 4.8. (a) Device architecture of TPD:PO-T2T exciplex WOLEDs with the illustration of
yellow exciplex emission of TPD:PO-T2T and the blue exciplex emission at TPD/TPBI
interface, in terms of energy levels. The EL spectra of the TPD:PO-T2T devices; (b) 40:60 (c)
50:50 (d) 60:40 and (e) 90:10 with CIE diagram, CCT and CRI index shown in the inset of EL
spectra.
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The EL spectra show blue and yellow emissions with varying intensities. Notably, the blue
emission intensity is weak in the 50:50 device compared to the others. This happens because
an equal concentration of TPD and PO-T2T results in more TPD:PO-T2T exciplex emission
(yellow). For all other devices, two distinct peaks are observed in the blue region; the emission
of TPD around 400 nm and the blue exciplex emission of TPD/TPBi at around 468 nm. The
90:10 device exhibited the highest blue emission intensity, while the 50:50 device showed the
least as expected. The 40:60 and 60:40 devices had almost similar blue emission intensities.
The CIE coordinates, ratio of blue to yellow emission intensities, CRI indices, and CCTs are

compared and summarized in Table 4.1.

Blue / yellow
TPD:PO-T2T | CIE coordinates intensity ratio (%) CRI index CCT
40:60 (0.38,0.40) 27.08% 78 4024 K
50:50 (0.44,0.46) 08.90% 72 3389 K
60:40 (0.37,0.45) 26.50% 72 4320 K
90:10 (0.34,0.44) 37.80% 68 5216 K

Table 4.1. Summary of the emission parameters of WOLEDs with varying ratios of TPD and
PO-T2T (40:60, 50:50, 60:40, and 90:10).

The 40:60 device with low concentration of TPD achieves the highest CRI value of 78. Here,
low concentration of TPD creates a balance between blue and yellow exciplex emissions giving
white light. The CIE coordinates for the 40:60 and 90:10 devices are closer to the true white
point (0.33, 0.33). In the 90:10 device, higher concentration of TPD gives more blue emission

with contribution from TPD/TPBI exciplex emission as well as emission of TPD. Hence, this
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device yields the highest blue to yellow intensity ratio of 37.8%. According to European
standards, a CCT of 3000K - 4000K is considered neutral white and 4000K - 6500K is
categorized as cool white emission. Here, the 50:50 device provides neutral white emission,
while the other devices exhibit cool white emission. The J-V-L plot and current efficiency (CE)

vs. current density plots of the WOLEDSs are presented in Figure 4.9 (a) and (b), respectively.
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Figure 4.9. (a) J-V-L plot and (b) CE vs. current density plots of the TPD:PO-T2T exciplex
WOLEDs with varying ratios of TPD and PO-T2T (40:60, 50:50, 60:40, and 90:10).

The 40:60 device performed badly, while the 90:10 device exhibited superior performance
compared to the other devices. This indicates that a high concentration of PO-T2T diminishes
device performance, whereas high concentration of TPD enhances device efficiency. The
90:10 device showed low current density due to the reduced electron mobility due to the low
concentration of PO-T2T in the emissive layer. The summary of device performances at 10 V
and the maximum efficiencies are provided in Table 4.2. The 90:10 device achieved a
maximum luminance of 3358 cd/m?, a maximum CE of 4.8 cd/A and a maximum external
quantum efficiency (EQE) of 1.8%. Overall, the 90:10 device demonstrated the best

performance along with the white emission.
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TPD: Luminance Current Current Max Luminance,
PO-TéT (cd/m?) density efficiency EQE (%) max CE,
(mA/cm?) (cd/A) max EQE
1526 cd/m?
40: +1 170 + 2. .60 £ 0. 23 +£0.01 i
0:60 860+ 13 70+2.0 | 0.60£0.03 | 0.23+0.0 2.1 cd/A, 0.95%
2625 cd/m?,
: + + 90 £ 0. 40 0.
50:50 1480 + 34 171 + 66 0.90+0.03 0.40 +0.01 225 cd/A, 0.94%
3474 cd/m?,
: + + 2. A2 £0. .40 0.
60:40 1840 =47 159+2.5 1.12£0.02 0.40 +0.02 224 cd/A, 0.90%
3358 cd/m?
1 1770 £82 | 100+8. 1.83+0.1 67 £0.04 X
90:10 770 + 8 00+8.5 83+£0.10 | 0.67+0.0 4.8 cd/A, 1.80%

Table 4.2. The summary of device performance of TPD:PO-T2T exciplex WOLEDs with
varying ratios of TPD and PO-T2T (40:60, 50:50, 60:40, and 90:10).

4.4.3.2.2 TFB:PO-T2T Blue OLED

The TFB:PO-T2T exciplex device was fabricated using a similar architecture as the TPD:PO-
T2T device, with the emissive layer consisting of a mixed film of TFB and PO-T2T. But the
device exhibited a deep blue emission of TFB with no trace of TFB:PO-T2T exciplex emission.
While the TFB:PO-T2T exciplex emission was clearly observed in photoluminescence, the
same was completely absent in electroluminescence. This indicates that the TFB:PO-T2T
exciplex cannot be electrically excited. The device architecture, energy level diagram, J-V-L
plot, and EL spectra of the devices are shown in Figure 4.10 (a), (b), (c), and (d) respectively.
The device efficiency significantly decreased and the turn-on voltage increased from 6 V to 8

V compared to the TFB-only device.
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Figure 4.10. (a) Device architecture of TFB:PO-T2T exciplex device (b) energy level diagram
of the device with a deep blue emission of TFB in the emissive layer is depicted (c) J-V-L plot
and (d) EL spectra of the TFB:PO-T2T device.

4.4.3.2.3 Color tunable emission from a single emissive layer WOLED

Later, to enhance the quality of white emission, we propose integrating the exciplex and
excitonic emissions together in a single emissive layer. The deep blue emission of TFB can be
combined with the TPD:PO-T2T yellow exciplex emission to achieve white light. The device
architecture for the single emissive layer WOLED is as follows: ITO/ PEDOT:PSS (35 nm)/
TPD:PO-T2T (90:10): x wt% TFB (40 nm) / TPBi (40 nm)/ LiF (1 nm)/ Al (100 nm), where
x= 0.2, 0.4, and 0.6 wt%. Here, TFB is doped into the TPD:PO-T2T mixed layer in various
concentrations. The yellow exciplex emission in TPD:PO-T2T with the blue excitonic

emission from TFB and blue exciplex emission at TPD/TPBi interface gives a voltage
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dependent white emission. The EML configuration with the emission mechanisms involved

are depicted in Figure 4.11 (a) and the device architecture is shown in Figure 4.11 (b).
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Figure 4.11. (a) EML configuration of the TFB doped TPD:PO-T2T device. yellow exciplex
emission in TPD:PO-T2T, blue excitonic emission from TFB and blue exciplex emission at
TPD/TPBI are depicted in terms of energy levels (b) device architecture of the TFB doped
TPD:PO-T2T device.

The emissive layer consists of TPD:PO-T2T in 90:10 ratio, with varying concentrations of
TFB (0.2, 0.4, and 0.6 wt%) doped into it. The EL spectra and the shift in CIE coordinates of
the devices are shown in Figure 4.12 (a) - (f). The EL spectra consisted two peaks: deep blue
emission from TFB at 436 nm and yellow exciplex emission at 568 nm. The blue emissions
from TPD and the TPD/TPBi exciplex were completely absent. Interestingly, a voltage
dependence was observed in the EL, with blue emission dominating up to 14V and then
decreasing. Whereas the yellow exciplex emission is distinctly seen after 11V and became
dominant at 17V. The enhancement of yellow emission at higher voltages got suppressed as

the percentage of TFB in the mixture increased, indicating that the presence of TFB is
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responsible for the voltage dependence. The J-V-L plots of the devices are compared in Figure
4.13 (a). The device performance was notably poor when TFB was incorporated into the
emissive layer. The device with 6 wt% TFB achieved a maximum luminance of 406 cd/m2 at
a current density of 126 mA/cmz2. Additionally, an increase in the TFB concentration resulted

in a decrease in the turn-on voltage.
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Figure 4.12. EL spectra of the devices with respect to voltage at different concentrations of
TFB (a) 2 wt% (b) 4 wt% and (c) 6 wt% respectively. Variation in CIE coordinates of the
devices at different concentrations of TFB (d) 2 wt% (e) 4 wt% and (f) 6 wt% respectively.

In the TFB devices discussed in the previous section, the direct excitation of TFB is always
preferred and there were no exciplex emissions in TFB:PO-T2T or TFB:TPBi. Here, holes
from PEDOT:PSS preferentially reach the HOMO of TFB rather than that of TPD. This might
be due to a lower barrier of 0.2 eV for the holes at the PEDOT:PSS/TFB interface compared

to a barrier of 0.4 eV at the PEDOT:PSS /TPD interface. The TFB:PO-T2T exciplex cannot be
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electrically excited as discussed in the previous section. At lower voltages, charge carriers
prefer the direct excitation of TFB leading to emission, while at higher voltages holes
overcome the energy barrier to reach the HOMO of TPD causing yellow exciplex emission to
become dominant. This voltage-dependent EL demonstrates a transition from blue emission
with CIE coordinates (0.24, 0.23) to cool white emission with CIE coordinates (0.34, 0.39),

CRI of 69 and CCT of 5083 K, respectively. The tuning of emission in the devices are depicted

in Figure 4.13 (b).
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Figure 4.13. (a) J-V-L characteristics and (b) CIE coordinates showing the variation in

emission and photographs of the TFB doped devices.

4.5 Conclusion

The integration of exciplex and excitonic emissions within a single emissive layer to achieve
WOLED:s is demonstrated. By combining blue emitting HTMs (TPD and TFB) with PO-T2T
as the ETM, confirmed exciplex emissions from the photoluminescence studies. Whereas,
electroluminescence studies showed that only the TPD:PO-T2T device exhibited yellow
exciplex emission and TFB:PO-T2T did not give any exciplex emission. The incorporation of

TPBi in TPD:PO-T2T exciplex device allowed simultaneous blue and yellow emissions,
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achieving white emission by varying the TPD:PO-T2T ratio. The optimized 90:10 device
achieved high luminance of 3358 cd/m?, current efficiency of 4.8 cd/A and EQE of 1.8%, while
the 40:60 device had a high CRI of 78. Further Incorporation of TFB in TPD:PO-T2T device
enabled a voltage-dependent emission, demonstrates a transition from blue emission of TFB
at lower voltages with CIE coordinates (0.24, 0.23) to cool white emission with CIE
coordinates (0.34, 0.39), CRI of 69 and CCT of 5083 K at higher voltage. In conclusion, the
use of a single emissive layer device architecture, by utilizing both exciplex and excitonic
emissions, successfully achieves white emission with a high CRI of 78. The TFB doped
emissive layer led to the observation of voltage-dependent emission, transitioning from blue
to cool white. This work paves the way for the development of efficient, high CRI WOLEDs
with tunable emission properties, offering significant potential for applications in display

technologies and solid-state lighting.
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Summary of the thesis and scope for future work

5.1 Summary

This thesis investigates innovative device design strategies to develop cost-effective organic
light-emitting diodes (OLEDs) by utilizing the concept of exciplex emission. Three distinct
exciplex combinations were identified using commercially available and relatively low-cost
charge transport materials. N,N’-Di(1-naphthyl)-N,N’-diphenyl-(1,1’-biphenyl)-4,4'-diamine
(NPB), a well-known hole transport material (HTM), is used with electron transport materials
(ETMs), 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ), and 1,3-
bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazol-5-yl]benzene (OXD-7). Both these combinations
serve as blue-emitting exciplexes. The third combination, N,N’-Bis(3-methylphenyl)-N,N'-
diphenylbenzidine (TPD) /2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T),
is a yellow-emitting exciplex, where TPD is a blue-emitting HTM and PO-T2T is the ETM.
The exciplex emissions were confirmed through spectroscopic studies of the thin films. The
study explored solution processing method for fabricating exciplex OLEDs using NPB/OXD-
7 and TPD/PO-T2T combinations. While the solution processing method does reduce
fabrication complexity and material consumption, it presents challenges in depositing multiple
layers.

In NPB:TAZ exciplex OLEDs, blue exciplex emission was realized and used as a host for
yellow phosphorescent OLEDs. The device design consists of a double emissive layer

consisting of a blue-emitting NPB:TAZ exciplex layer and the yellow-emitting doped layer.
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The doped layer consists of a yellow phosphorescent emitter Bis(4-phenylthieno[3,2-
c]pyridinato-N,C2") (acetylacetonate) iridium(l11) (PO-01) doped into the NPB:TAZ exciplex
matrix. By controlling the dopant ratio, the balanced blue and yellow emissions can be
achieved, leading to white emission. To further enhance the white emission quality, a spacer
layer was introduced between the blue and yellow emissive units. Tetracene, known for its
ambipolar properties, was used as the spacer layer to balance carrier transport. This simplified
design for exciplex-based white OLEDs provides an alternative to tandem WOLEDs, which
often require complex architectures involving charge generation layers (CGLS).

A solution-processed yellow OLED was developed using an NPB:OXD-7 blue-emitting
exciplex as the host material, doped with the yellow phosphorescent emitter PO-01. The device
achieved a maximum brightness of 36,000 cd/m? and an external quantum efficiency (EQE) of
11%. Simultaneously, NPB/OXD-7 blue exciplex devices exhibited multifunctionality,
operating as both OLEDs and UV photodetectors. This multifunctionality is attributed to the
high surface potential and strong UV absorption properties of OXD-7. This study investigated
the spontaneous orientation polarization (SOP) mechanism and the development of surface
potential in organic semiconductors and its role in the dissociation of exciplex at the NPB/OXD
interfaces. Notably, this is the first report on exploring multifunctional capabilities of exciplex-
based devices. This research paves the way for novel multifunctional devices harnessing the
unique properties of exciplex emissions.

White emission in OLEDs can be achieved by combining exciplex and excitonic emissions
within a single emissive layer, without the need for expensive phosphorescent dopants. White
OLED (WOLED) with a simplified device architecture is demonstrated that combines yellow

emission from the TPD:PO-T2T exciplex with blue emission at the TPD/TPBi interface
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exciplex combined with the excitonic emission of TPD itself. This yields a high color rendering
index (CRI) of 78, underscoring the cost-effectiveness and simplicity of exciplex-based white
OLED designs, achieved without resorting to complex tandem structures. Moreover, a unique
voltage-dependent emission phenomenon is observed upon the incorporation of TFB, a blue-
emitting polymer commonly used as HTM. Deep blue emission of TFB dominates at lower
voltages, while the yellow exciplex emission prevails at higher voltages, resulting in a shift
from blue to cool white emission as the voltage increases. This tunable emission characteristic
highlights the potential of novel device designs utilizing commercially available transport
materials to enable color tuning in OLEDs, further emphasizing the versatility and practicality

of exciplex-based systems.

5.2 Scope for future work

This research highlights the potential of exciplex emissions for simplifying device
architectures and achieving white emission in OLEDs while enabling multifunctional
applications, offering promising pathways for the development of advanced technologies in

organic electronics.

» There is significant potential in identifying new exciplex combinations using
commercially available transport materials. These new combinations could lead to a
wider range of emission spectra, which would be valuable in developing OLEDs with
customizable color outputs, further enhancing their applicability in various display and

lighting technologies.
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Blue emission remains as a critical challenge in OLED technology, particularly for
efficient and stable blue OLEDs. Investigating blue-emitting HTLs, which can also
function as emitters, offers a promising avenue for improving device performance.
Such HTLs combined with suitable ETLs can give efficient exciplex emissions,
simplifying the device architecture.

Exploring spacer-like structures as an alternative could simplify the device designs by
eliminating the need for CGLs. This approach could lead to simpler, more cost-
effective devices while maintaining high efficiency and performance. By identifying
suitable ambipolar materials and employing it in non-tandem WOLED designs it could
be possible to optimize charge injection and transport within the emissive layer and
improving overall device efficiency.

Exciplex systems can be effectively utilized for multifunctional device applications,
including light emission and photodetection. By investigating the effects of surface
potential and film morphology of transport materials, it may be possible to fine-tune
exciplex systems for different applications, enhancing their versatility in both OLEDs
and other organic electronic devices.

One of the main challenges in single emissive layer white OLEDs is achieving efficient
carrier transport while maintaining high efficiency. By optimizing the charge injection
and transport mechanisms in exciplex-based OLEDs, it may be possible to achieve high
efficiencies compared to multi-layered devices, but with a much simpler architecture,
making OLED fabrication more cost-effective and scalable.

The voltage-dependent color tuning observed in exciplex-based OLEDs presents a

unique opportunity for developing tunable lighting and display technologies. Further



Summary and Future Outlook 163

studies could explore the underlying mechanisms of this phenomenon, offering new
possibilities for dynamic display systems and smart lighting.

» Computational models and simulations can provide valuable insights into exciton
dynamics, charge transport, and emission processes within exciplex based devices.
These theoretical tools can help guide experimental work by predicting the behavior of
new material combinations and optimizing device designs for high efficiencies, further

accelerating advancements in OLED technology.
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Appendix A

Fabrication and characterization of devices; techniques
and instrumentation

The efficiency and longevity of devices are deeply influenced by the precision and control of
the device fabrication process. Cleaning of substrates and fabrication techniques such as thin-
film deposition, spin coating and encapsulation play pivotal roles in determining the
uniformity, charge transport, and overall optoelectronic characteristics of the devices. Detailed
characterization allows for a thorough understanding of the impact of material selection, layer
thickness and interface quality on the performance of devices.

A.1 Device fabrication

A.1.1 Substrate cleaning

Substrate cleaning is the initial step in device fabrication. Contaminants and impurities on the
substrate surface can significantly affect the reliability and performance of the final devices,
making it essential to ensure that the surface is clean and smooth. Any contaminants can disrupt
the formation of uniform and smooth films, leading to pinholes, defects, and variations in
thickness. These issues can negatively impact charge transport, light emission, and overall
device performance. Furthermore, contaminants may cause unwanted chemical reactions or
interactions with the deposited materials, resulting in interfacial defects. The cleaning process
typically involves several sequential steps to adequately prepare the substrates for subsequent

film deposition and device fabrication.
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The first step in substrate cleaning starts with chloroform, where the substrate is immersed in
a solvent bath and will be subjected to sonication. Then these substrates will be thoroughly
brush cleaned with detergent and will be washed with hot water to remove any remaining
cleaning agents or residues. Subsequently these substrates will be further cleaned by sonicating
in isopropyl alcohol, followed by deionized water. During sonication, ultrasonic vibrations
create cavitation bubbles in the cleaning solution, which remove and agitate contaminants
adhering to the substrate surface. The sonicator (Elma) is shown in Figure A.1 (a). These
solvents efficiently dissolve any organic residues, oils or greases that are present on the
substrate surface, as well as any leftover photoresist or other pollutants from substrate
patterning. Later, the substrates are dried using a combination of hot air drying and hot plate
annealing. After the drying process the substrates will be transferred to UV Ozone Cleaner
(Novascan, Model. PSDP-UV 41) (Figure A.2 (b)). In this process, the ozone generated under
UV irradiation will acts as a powerful oxidizer that effectively decomposes organic
contaminants that are still present on the surface and leaves behind a clean, hydrophilic surface.

Finally, these substrates will be directly used for device fabrication.

(b)

Figure A.1. (a) Sonicator (b) UV-o0zone cleaner
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A.1.2 Thin film deposition and optimization

A.1.2.1 Spincoating

Spin coating is a commonly used deposition technique used for fabricating thin films of
solution processable materials. The method involves dispensing a solution of precursor
material onto a substrate and spinning it rapidly to distribute the solution uniformly across the
substrate surface. Spin coating offers several advantages, including ease of use, scalability, and
compatibility with different substrates. It gives good control over film thickness and
morphology for a large area, which makes it suitable for large-scale production. It is also
relatively less expensive and require minimal equipment and maintenance compared to other
techniques. The centrifugal force generated during spinning helps to achieve uniform thin films
with controlled thicknesses. The concentration of the solution, spinning speed and time of
spinning determine the thickness and uniformity of the deposited film. Thickness of a spin
coated film is directly proportional to the concentration of the solution and inversely
proportional to the square root of spin speed? as in equation (1) where o is angular velocity/spin

speed and d is the final thickness of the film.

__2nC

d=—= (1)

Despite its widespread use, spin coating has certain limitations, such as solvent evaporation
induced defects and limited control over film uniformity and morphology. Over a large area,
all materials are not compatible with spin coating due to their limited solubility in commonly
used organic solvents. Optimization of spinning parameters and solvent selection is crucial in
minimizing defects and achieving desired film properties. This method is well suited for lab-
level fabrication but not ideal for the commercial LED production. Image of the Laurell make

spin coater that we have used is shown in the Figure A.2.
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Figure A.2. Spincoating unit

A.1.2.2 Thermal evaporation

Vacuum-based thermal evaporation is widely used for thin film deposition for fabricating
optoelectronic devices. The material to be deposited is heated to its evaporation temperature
using resistive heating method. It employs the principle of sublimation, where a solid material
undergoes a phase transition directly into a vapor without passing through the liquid phase. It
is done inside a vacuum chamber to avoid the exposure to atmospheric gases or other
contaminants. In a vacuum chamber, the mean free path of molecules increases and at low
pressures materials tend to sublime. A typical thermal evaporation consists of a vacuum
chamber, crucible, heating source, substrate holder, thickness monitoring and deposition
control systems. After placing the desired material in the crucible and pumping down the
chamber to a high vacuum, the crucible is heated, to evaporate the material. The vaporized
molecules travel freely within the chamber and condense onto the cool substrate, forming thin
film. By precisely controlling the temperature and deposition time, thin films with uniform

thickness and controlled composition can be achieved. A piezoelectric quartz crystal is used as
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the thickness sensor. We have 6 quartz crystal sensors to control the process of deposition. The
deposition of a material from a specific source requires a unique proportional integral
derivative (PID) value, which is optimized through a process called autotuning. Thickness of
a film is optimized via tooling and the geometric tooling factor determines the thickness of the
film as given in the equation (2).

. Measured thickness
New Tooling Factor =

X gjven tooling factor 2
Actual thickness 8 g (2)

Many factors, including the substrate temperature, the distance between the source material
and the substrate, and deposition rate, affect the thickness and homogeneity of the film formed.
Thermal evaporation offers varied deposition rates, highly pure films with excellent film
uniformity, precise control over stoichiometry and compatibility with a wide range of
materials, particularly for small molecule and inorganic materials. But it requires specialized
equipment, careful process control and high maintenance requirements which increase the cost
and complexity of the overall fabrication process. Also, the high vacuum conditions may limit
the deposition of certain materials. We have used a cryosorption pump (CTI Cryogenics 8200)
to create a base vacuum ~ 107 Torr. Our evaporation chamber has 8 organic sources and 2
metal sources (inset of figure A.3). The evaporation process is controlled by the Inficon

software.
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A.1.2.2.1 Glovebox integrated thermal evaporation system

Gloveboxes are used in the fabrication processes where materials used must be handled in an
oxygen-free environment to prevent oxidation or contamination. These gloveboxes are filled
with high-purity nitrogen gas to ensure that sensitive materials, such as semiconductors or
organic compounds, are protected during the fabrication process, thus enhancing the reliability
and performance of the devices. Once the substrate is cleaned it will be loaded into the thermal
evaporation chamber (Angstrom Inc.) maintained under ~10~ Torr vacuum, integrated to the
glovebox (Purelab). Figure A.3 shows the picture of a glovebox integrated thermal evaporation
system that is used to fabricate all the devices in this thesis.

]
S los .,
5 =

Figure A.3. Glovebox integrated thermal evaporation system (inset shows the internal view of
the evaporation chamber).
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A.1.3. Thickness optimization

After each deposition, the film thickness is measured, and the tooling factor is adjusted
accordingly using equation (2). This process is repeated over multiple depositions to fix the
tooling factor, ensuring that the measured thickness accurately corresponds to the actual
thickness. The finalized tooling factor is obtained only after ensuring precise control over the
deposition process. The thickness of the sample is measured using a Dektak XT stylus
profilometer as shown in Figure A.4. The profilometer is interfaced with a computer for data
acquisition and analysis. Stylus profilometer works by physically moving a probe along the
surface of the film to detect and measure its height. This operates on the principle of Linear
Variable Differential Transformer (LVDT), where the displacement (a non-electrical energy)
is converted into electrical energy. The sample thickness is determined from the thickness

profile generated after measurement using Vision 64 software.

Figure A.4. Stylus profilometer
A.1.4. Encapsulation
Encapsulation eliminates several of major challenges these devices face, and is essential for
ensuring their long life and performance. Encapsulation will protect the organic or inorganic

semiconductor layers from atmospheric conditions, particularly moisture and oxygen. Due to
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their extreme sensitivity to oxygen and moisture, these materials have a shorter operational
lifetime which in turn reduces the device performance. Glass encapsulation, barrier foil
encapsulation and thin film encapsulation are some of the encapsulating techniques used in
general. These layers will serve as a barrier of resistance surrounding the active layers in the
devices, keeping out moisture and oxygen while maintaining the material integrity and
enabling them to withstand challenging operating conditions like humidity, temperature
swings, and exposure to pollutants. It also helps to improve the mechanical durability of the
devices by protecting them from physical damage caused by handling especially in the case of
flexible or wearable applications. Overall, encapsulation of devices is essential for ensuring
the long-term reliability, environmental stability, extended lifespan and performance
consistency enabling their successful integration into various lighting, display and
optoelectronic applications. We have used glass-based sealing caps and the UV-curable epoxy

(Epo-Tek UV-curable epoxy, Epotek 0G142).

A.2. OLED characterization

The characterization of an OLED involves two key instruments: a spectroradiometer and a
source meter, both interfaced with a computer for data acquisition and analysis.

A.2.1 Source meter

A source meter, also known as a current-voltage (I-V) source, is an instrument that can
precisely source and measure both current and voltage values in electronic circuits. The source
meter can act as a power supply, providing a controlled and adjustable voltage or current to a

circuit or device. It is mainly used for measuring the electrical characteristics of electronic
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components like transistors, diodes, and solar cells. We have used a Keithley 2400 for our

electrical measurements (Figure A.5)

Figure A.5. Keithley 2400 source meter

A.2.2 Spectroradiometer

A spectrometer is a scientific instrument used to measure the spectral properties of light,
typically across a specific wavelength range. It separates incoming light into its constituent
wavelengths and quantifies the intensity of each component. This allows for the precise
determination of various light properties such as luminescence, electroluminescence spectra,
color temperature, color rendering index etc. For the device characterizations in this thesis a
PR655 spectroradiometer (Photo Research Inc.) is used as shown in Figure A.6. To prevent

interference from external light, all measurements were conducted inside a black box.
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Figure A.6. PR-655 Spectroradiometer

A.3. UV-photodetector characterization

The characterization of an ultraviolet (UV) photodetector includes both steady-state and
transient I-V measurements, which are conducted using two key instruments: a semiconductor
parameter analyzer for electrical analysis and a UV lamp for providing UV illumination.
A.3.1. Semiconductor parameter analyzer

A semiconductor parameter analyzer is an advanced instrument essential for the precise
electrical characterization of semiconductor devices. Renowned for its high precision and
accuracy, it can perform a variety of measurements such as current-voltage (I-V), capacitance-
voltage (C-V), and pulsed I-V testing, etc. The analyzer integrates multiple Source
Measurement Units (SMUs) capable of sourcing and measuring voltage and current
simultaneously, catering to a wide range of current and voltage levels. It features a user-
friendly graphical interface for real-time data visualization and automated testing sequences,
enhancing productivity and repeatability. We have a Keithley 4200A - SCS semiconductor

parameter analyzer as shown in Figure A.7.
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Figure A.7. semiconductor parameter analyzer

A.3.2. UV-lamp

A UV lamp is an essential tool for providing UV radiation in various scientific applications,
particularly in the characterization of optoelectronic devices such as UV photodetectors. For
our measurements, we used the 6 W ENF 260C Spectroline UV Lamp with 365 nm and 254
nm wavelengths with peak UV intensity 350 uW/cm? and 390 pW/cm? at a distance of 15cm.
The The current-voltage characteristics and transient photoresponse of the devices under UV
illumination was recorded using a semiconductor parameter analyzer. To prevent interference

from external light, all measurements were conducted inside a UV-viewing cabinet.
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Title of the thesis: Exciplex OLEDs : Strategies for White Emission and Multifunctional Devices

Organic Light Emitting Diodes (OLEDs) play a pivotal role in modern technology providing flexible and
foldable displays in consumer electronics and lighting solutions. Despite their significant progress, OLEDs face
challenges such as high production costs and limited lifespan, which restrict their widespread adoption. In this
context, excimer, exciplex, and electroplex emissions have gathered considerable attention due to their ability to
be generated using commonly used transport materials. Innovative design strategies by utilizing exciplex emissions
can be employed to overcome existing limitations. This thesis explores these advancements, focusing on the role
of exciplex emissions in the cost-effective fabrication of high-performance OLEDs.

Chapter 1 focuses on the recent progress in exciplex-based OLEDs, highlighting their potential for cost-effective
production by avoiding the need for separate emissive layers. Exciplex emissions, generated at the molecular
interface of transport materials, can serve as hosts for enabling efficient white OLED designs without the
complexity of tandem structures. Reports on exciplex-based OLEDs, where exciplexes are utilized both as emitters
and hosts, has been reviewed and discussed here.

Chapter 2 explores the development of simplified blue and yellow OLEDs by utilizing the exciplex emission from
a blend of the blue-emitting HTL N,N' bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine (NPB) and the ETL 3-
(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2 4-triazole (TAZ). The NPB:TAZ exciplex serves as both a
blue emitter and a host for the yellow phosphorescent dopant, iridium(lll) bis(4-phenylthieno[3,2-c]pyridinato-
N,C2"acetylacetonate (PO-01). Tetracene is used as a spacer layer between the blue and yellow emitting units,
controlling both exciton diffusion and carrier transport leading to white emission.

Chapter 3 investigates the dual functionality of an NPB/OXD-7 (1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-
yl]benzene) exciplex combination, serving both as an OLED and a UV photodetector. Solution processed devices
incorporating the yellow dopant PO-01 into the exciplex host yielded high EQE. By varying the raio of NPB:OXD-
7, multifunctional devices were fabricated, which function as both UV-detector and OLED. The multifunctionality
is attributed to the strong UV-absorption and high surface potential of OXD-7.

Chapter 4 combines two blue emitting HTLs TPD (N,N’-Bis(3-methylphenyl)-N,N’-diphenylbenzidine) and TFB
(Poly(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine) with an ETL PO-T2T (2,4,6-tris[3-
(diphenylphosphinyl)phenyl]-1,3,5-triazine). The TPD:PO-T2T vyellow exciplex, TPD/TPBi interface blue
exciplex and blue excitonic emission of TPD are combined to fabricate White OLEDs with a high color rendering
index (CRI) of 78. A voltage-dependent white emission from blue to cool white were observed after the
incorporation of TFB into the emissive layer.

Chapter 5 provides a brief summary of the work done in various chapters, highlighting the key achievements and

results of the research. It also outlines the future scope of this study, presenting guide lines for further exploration.
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1. International Conference on Advanced Materials, ICAM-2019

Studies on e performance of NPB based deep blue OLEDS with modified

device structures
Kavya Rajeev'?, Anjali K Sajeev'?, and Narayanan Unni K. N.*

Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR—National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram — 695019,
India
Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram —
695019, India
** Dr.Narayanan Unni K. N. Mobile: (+91) 9745300436; unni@niist.res.in
Even though the class of compounds called organic semiconductors are known since early 20th
century, it is with the invention of Organic Light Emitting Diodes by Tang and Vanslyke in
1987%, the new research area called organic electroluminescence began flourishing and now
OLEDS have matured into commercial applications. Light weight, fast response, wide viewing
angle, reduced processing steps and high brightness are the potential advantages of OLEDS.
But air-stability and high cost are the major impediments in market penetration. Particularly,
the blue OLED is a weak link in the display and lighting industry due to the lack of stability
and low luminescence efficiency. Developing novel blue emitters or designing new device
structures will be an ideal approach to circumvent this problem. N,N' -Bis(naphthalen-1-yl)-
N,N" -bis(phenyl)-benzidine (NPB) is widely used as a hole transporting layer (HTL) in
OLEDs. NPB can also act as a standard blue emitting material in OLED as well as a host for
certain phosphorescent emitters?>. However, NPB based fluorescent OLEDs have not been
studied in detail because of its reported low efficiency?. One of the reasons for this inferior
performance is the low electron mobility of NPB, which affects the charge balance in the
device. With this in mind, we have fabricated an OLED with the structure ITO/HAT-
CN(5nm)/NPB(60nm)/TAZ(40nm)/Algs(20nm)/LiF(1nm)/Al(150nm). The device exhibited
deep blue emission at 440nm. Then we tried another device structure with ITO/HAT-

CN(5nm)/NPB(60nm)/NPB:TAZ(15nm,1:1)/TAZ(40nm)/Algsz(20nm)/LiF(1nm)/Al(150nm)
where we incorporated an additional layer of NPB and TAZ by co-deposition. The later
structure showed improved device performance. The lowest unoccupied molecular orbital
(LUMO) of TAZ is close to the LUMO of NPB and hence we expect an easy electron injection
into NPB, which increases the charge balance factor. An improved charge balance factor might
be the reason for better device performance.

Keywords: OLED; charge balance; co-evaporation.
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2. National Conference on Recent Trends in Materials Science and Technology,
NCMST-2019

An Investigation into the Emission Mechanisms of NPB Based

Blue OLEDs

Kavya Rajeev, K. N. Narayanan Unni*

'Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR—National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram — 695019,
India
Kavyarajeev4@gmail.com

Although organic semiconductors were known from early 20" century, it is with the invention
of OLED by Tang and Vanslyke in 1987 , the new research area called organic electronics
began flourishing and now OLEDS have matured into commercial applications. OLEDs have
many advantages over inorganic LEDs which include, color contrast, low-cost , comparatively
easy processing steps, color tuning, usage of flexible substrates etc. But low air-stability,
increased failure rates are the main drawbacks of the OLED industry. Researchers are aiming
at improving the efficiency, life-time and cost-effectiveness of OLEDs. Blue OLEDS are so
important due to their modest light emitting performances and hence a bottle neck of
industrialization of OLED. NPB (N,N' -Bis(naphthalen-1-yl)-N,N' -bis(phenyl)-benzidine) is
usually used as a hole transporting layer in OLEDS. NPB can also act as a standard blue
emitting material in OLED. It’s spectrum peaks at around 445nm with a half peak width
around 60nm. But the NPB based blue OLED’s efficiency is found to be very low. So the idea
of an NPB based OLED device structure with high efficiency would be a great achievement.
A comparative study of NPB based blue OLEDs were done with emitting layers as 1. NPB
only device, 2. NPB:TAZ, 3. NPB:OXD-7. NPB only device showed very poor performance.
This may be due to the low quantum yield of NPB. Whereas for TAZ device, we got an
enhanced performance. Spectroscopic studies revealed a good exchange integral between
absorption of NPB and emission of TAZ. So, the enhanced performance can be attributed to
the energy transfer from TAZ to NPB. In the third device, where OXD-7 is used, very low
current density was observed. This may be due to the presence of trapped charges in the
NPB:OXD-7 co-deposited layer.

Figure 1. NPB:TAZ OLED
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3. International Conference on Ecomaterials, (ICEM-14, 2020)

Deep blue OLEDs Utilizing Forster Energy Transfer
Between Hole Transport and Electron Transport
Materials

Kavya Rajeev,*? Vipin C. K, K. N. Narayanan Unni**

!Photosciences and photonics, Chemical Sciences and Technology Division, CSIR-Nationall
institute for Interdisciplinary Science and Technology (CSIR-NIIST),
Thiruvananthapauram,India-695019, 2Academy of Scientific and Innovative Research
(AcSIR), CSIR-NIIST,Thiruvananthapauram,India-695019
Email: unni@niist.res.in

Organic Light Emitting Diodes (OLEDs) play a key role in the new generation lighting
industry. Major challenges in OLED industry are stability and high cost. Researchers all over
the world are addressing these same problems and exploring new emission mechanisms and
novel device structures. Particularly, the blue OLED is a weak link in the display and lighting
industry due to lack of stability and low luminescence efficiency. So, developing new device
structures and exploring different emission mechanisms for blue OLEDs can be a major future
development in this context. N,N' -Bis(naphthalen-1-yl)-N,N" -bis(phenyl)-benzidine (NPB) is
widely used as a hole transporting layer (HTL) in OLEDs. NPB can also act as a standard blue
emitting material in OLED as well as a host for certain phosphorescent emitters®. We selected
two organic materials NPB and TAZ (3-(Biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-
1,2,4-triazole). We took UV-Visible absorption spectra and Photoluminescence emission
spectra of the thin-films of NPB, TAZ and NPB:TAZ (co-deposited). We could observe an
effective overlap between the emission spectrum of TAZ and absorption spectrum of NPB,
which indicates an energy transfer between the two molecules. In this work, we are introducing
a novel device structure for a deep blue OLED by utilizing the concept of Forster energy
transfer mechanism between HTL and ETL materials. Here, TAZ acts as the host and NPB act
as the dopant. We fabricated an OLED with NPB:TAZ (3-(Biphenyl-4-yl)-5-(4-tert-
butylphenyl)-4-phenyl-4H-1,2,4-triazole) as the emissive layer. The device exhibited a deep
blue emission at 448nm and showed a luminance of 1419 cd/m? at 11V with a current density
of 436.25 mA/cm?,
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4. Indian Analytical Science Congress (IASC-2022)

White Organic Light Emitting Diodes by Utilizing Blue Exciplex as an

Emitter and as a Host ; Towards cost-effective OLEDs
Kavya Rajeev, Vipin C. K, Anjali K. Sajeev and K. N. Narayanan Unni *
Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-
National Institute for Interdisciplinary Science and Technology (CSIR-NIIST),
Thiruvananthapuram 695019, Kerala, India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, U.P., India

Organic Light Emitting Diode (OLED) technology offers high clarity visuals and flexible large
area displays. However, the cost of production is still a bottleneck in OLED industry. Here we
are employing an alternate emission technique — exciplex emission — to achieve simplified
device design. It points towards cost-effective fabrication of OLEDs.

Exciplex is an excited state complex formed at the interface of a hole transporting and electron
transporing material. Exciplex can be used as an emitter as well as a host with suitable
dopantst. In this work, white light emission is achieved by using a blue exciplex as an emitter
as well as a host with a yellow dopant. Blue exciplex emission is observed at the interface of
two transporting materials; N,N'-Bis(naphthalen-1-yl)-N,N’-bis(phenyl)benzidine (NPB) and
3-(Biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ). The confirmation
of exciplex emission is done via spectroscopic studies of the thin films®?. In the device
architecture for white emission, the emissive layer consists of an exciplex alone layer which
contributes to the blue component. Whereas the exciplex host layer with a yellow
phosphorescent  dopant  bis(4-phenylthieno[3,2-c]pyridinato-N,C2)  (acetylacetonate)
iridium(111) (PO-01) gives the yellow emission. An ambipolar spacer layer of tetracene inserted
between the two layers provides balanced blue and yellow emission for white light. The spacer
layer prevents the diffusion of exciplex excitons from the blue emitting unit to the yellow
emitting one while promoting a balanced carrier flow. The WOLED shows an external
quantum efficiency (EQE) of 1.2% at 1000 cd/m?2. The white light similar to day light was
achieved with color coordinates (0.36,0.39) and color temperature of 4643 K.

[1] M. Sarma, K.-T. J. A. a. m. Wong, interfaces,2018,10, 19279.
[2] W.-Y. Hung, G.-C. Fang, S.-W. Lin, S.-H. Cheng, K.-T. Wong, T.-Y. Kuo, P.-T. J. S.
r. Chou,2014,4, 1
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Dual Functional Exciplex with A Simple Device Design for

Blue, Yellow and White Organic Light Emitting Diodes
Kavya Rajeev!?, C. K. Vipin'?, Anjali K. Sajeev!?, K. N. Narayanan Unni'?"
1Photosciences and Photonics Section, Chemical Sciences and Technology Division,
CSIR-National Institute for Interdisciplinary Science and Technology,
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Smart gadgets like mobile phones, smart watches etc. have their ubiquitous presence in our
daily life. In this context, cost-effectiveness of organic-opto-electronic devices like organic
light emitting diodes (OLEDs), which are integral part of many consumer-electronic products,
have their own importance. Complicated fabrication procedure and high cost of emitter
materials are the major causes for high cost in OLED industry. In this work, we are presenting
a promising method for fabrication of OLEDs by utilizing the phenomenon of exciplex
emission. Exciplex emission occurs at the interface of an electron accepting and an electron
donating material. Hence it avoids the need for a separate emissive layer which helps to reduce
the cost-effectiveness of the device.

Here we present novel blue emitting exciplex combinations. We have selected N,N'-
Bis(naphthalen-1-yl)- N,N’-bis(phenyl)benzidine (NPB) and 3-(Biphenyl-4-yl)-5-(4-tert-
butylphenyl)- 4-phenyl-4H-1,2,4-triazole (TAZ); commonly used transporting materials for
OLED. We could develop a promising blue exciplex OLED by using exciplex as an emitter
and a yellow OLED by using exciplex as a host with a yellow phosphorescent dopant. A warm
white emission has been achieved by utilizing the dual functionality of exciplex as an emitter
as well as a host. The white emission is achieved via a device design strategy connecting these
blue and yellow emitters using a spacer layer of tetracene, exploiting its ambipolar transport.
The selection as well as confirmation methods for a suitable conjugate pair for efficient
exciplex emission are a crucial task. Analysis of photoluminescence spectra, UV-visible
absorption spectra and the transient PL spectra of the exciplex mixed film along with the
individual films have been done to give evidences for exciplex emission. Thus, by utilizing
dual-functioning of exciplex emission as well a simple device design strategy, we could
achieve blue, yellow as well as white emission in OLEDs. These results address the challenges
of complicated device fabrication and the lack of a stable and efficient blue emitter, providing
guidelines for a cost-effective white OLED.

Keywords: Organic Light Emitting Diodes, Exciplex emission, Spacer, Deep blue exciplex,
Yellow OLEDs, White light emission
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Multifunctional Devices Utilizing the Effect of Surface
Orientational Polarization (SOP) on Exciplex Excitons
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Organic opto-electronic devices contribute to the major part of modern electronics. The

concept of incorporating sensing, detection, emission, memory etc., within the same device
has aroused considerable interest among researchers. Here, a visible light emitting UV-
photodetector is presented by utilizing the effect of Surface Orientational Polarization (SOP)
at the donor-acceptor interface. N,N’-Di(1-naphthyl)-N,N’-diphenyl-(1,1’-biphenyl)-4,4'-
diamine (NPB) and 1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene (OXD-7) form
a conjugated pair which will give a blue exciplex emission. The high SOP nature of OXD-7
will weaken the exciplex excitons formed at the NPB/OXD-7 interface!. Under UV-
illumination (at 365 nm), the exciplex excitons will get dissociated to give a photocurrent.
Hence the same device performs as an Organic Light Emitting Diode (OLED) as well as a UV-
photodetector. Exciplex emission was confirmed via spectroscopical studies of the thin-films.
The bulk exciplex device gives better performance compared to the bilayer device for both
OLED and OPD characteristics. An increase in OLED performance was observed when a
yellow phosphorescent emitter Bis(4-phenylthieno[3,2-c]pyridinato-N,C2") (acetylacetonate)
iridium(I1) (PO-01) doped in NPB:OXD-7(1:1). A maximum brightness of about 14,000
cd/m? was achieved with a current density of 203 mA/cm?, when 4% of PO-01 was doped into
the NPB:OXD exciplex layer. In order to improve the OPD performance, the percentage of
OXD-7 was increased in the bulk. An improvement in responsivity was observed, it shows the
effect of high SOP of OXD-7 at the interface. For detector devices, maximum detectivity,
responsivity and ON-OFF ratio were obtained as 2.26 x10'! Jones, 13.33 mA/W and 1.52x102,
respectively. Here, we are combining exciton recombination and emission within the same
device. It seems paradoxical, but it can have several possibilities in near future.

References

1 Ueda, Y.; Nakanotani, H.; Hosokai, T.; Tanaka, Y.; Hamada, H.; Ishii, H.; Santo, S.; Adachi, Adv. Opt.
Mater , 2020, 8 (21), 2000896.
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Organic Light Emitting Diodes or OLEDs have immense applications in the display as well as
lighting industry. Display is an inevitable component of smart gadgets. Here we utilize the
concept of exciplex emission in OLEDs. We have selected four donor-acceptor combinations
(1) N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1"-biphenyl)-4,4'-diamine(NPB)/3 (Biphenyl-4-
yD)-5-(4-tert  butylphenyl)-4-phenyl-4H-1,2,4-triazole(TAZ), (2) NPB/1,3-bis[2-(4-tert-
butylphenyl)-1,3,4-oxadiazo-5-yl]benzene(OXD-7), (3) Poly(9,9-dioctylfluorene-alt-N-(4-
sec-butylphenyl)-diphenylamine)(TFB)/2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-

triazine(PO-T2T) and (4)1,3,5-tris(carbazol-9-yl)benzene(TCP)/PO-T2T for exciplex
emissions .The investigation on exciplex emission in the selected combinations were done via
spectroscopic studies. The broad and significantly red-shifted emission spectra for the donor :
acceptor mixed films in NPB:OXD-7, TFB:PO-T2T and TCP:PO-T2T combinations confirm
exciplex emission. Whereas the absence of red-shifted emission was observed for NPB:TAZ.
The comparison of excitation spectra and absorption spectra and transient decay studies of the
films were also done for further confirmation of exciplex emission. Based on the spectroscopic
evidences, device fabrication were done by using the selected donor : acceptor combinations.
The device architecture is ITO/ Hole transporting layer (HTL)/ HTL: Electron transporting or
acceptor material as a layer (ETL) /ETL /LiF/ Al. NPB:TAZ combination has exhibited the
best performance with a maximum brightness of 1102 cd/m2 with a current density of 303
mA/cm2 at 10 V. This high performance can be attributed to the formation of an electroplex
in NPB/TAZ combination which cannot be detected from PL studies. Other three exciplex
systems exhibits weak exciplex emission which can be effectively utilized as a host rather than
an emitter. Inorder to enhance the overall device performance, phosphorescent dopants such
as Bis(4-phenylthieno[3,2-c]pyridinato-N,C2") (acetylacetonate) iridium(l111)(PO-O1) and
Tris(2-phenylpyridine)iridium(I11) (Ir(ppy)3) was doped in to the exciplex matrix. The
maximum performance was observed for NPB:0OXD-7:PO-01 device. It showed a brightness
of about 14,000 cd/m2 achieved with a current density of 203 mA/cm2, when 4% of PO-01
was doped into the NPB:OXD exciplex layer. This work has several possibilities in effectively
utilizing the exciplex emission in fabricating simple and cost-effective OLEDSs in near future.

1. M. Sarma, K.-T. J. A. a. m. Wong, interfaces,2018,10, 19279.
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Abstract

White organic light-emitting diodes (WOLEDs) have several desirable features, but their commercialization is hindered by
the poor stability of blue light emitters and high production costs due to complicated device structures. Herein, we investi-
gate a standard blue emitting hole transporting material (HTM) N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine (NPB)
and its exciplex emission upon combining with a suitable electron transporting material (ETM), 3-(biphenyl-4-yl)-5-(4-
tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ). Blue and yellow OLEDs with simple device structures are developed
by using a blend layer, NPB:TAZ, as a blue emitter as well as a host for yellow phosphorescent dopant iridium (III) bis(4-
phenylthieno[3,2-c]pyridinato-N,C?)acetylacetonate (PO-01). Strategic device design then exploits the ambipolar charge
transport properties of tetracene as a spacer layer to connect these blue and yellow emitting units. The tetracene-linked
device demonstrates more promising results compared to those using a conventional charge generation layer (CGL). Judi-
cious choice of the spacer prevents exciton diffusion from the blue emitter unit, yet facilitates charge carrier transport to the
yellow emitter unit to enable additional exciplex formation. This complementary behavior of the spacer improves the blue
emission properties concomitantly yielding reasonable yellow emission. The overall white light emission properties are
enhanced, achieving CIE coordinates (0.36, 0.39) and color temperature (4643 K) similar to daylight. Employing intermo-
lecular exciplex emission in OLEDs simplifies the device architecture via its dual functionality as a host and as an emitter.

Keywords Organic light-emitting diodes - Dual functional exciplex - Spacers - Device design strategy - Blue exciplex -
Yellow OLEDs - White light emission

1 Introduction

OLED:s are one of the major components in the smart elec-
tronic world. Smart displays, watches, and other electronic
display gadgets employing OLEDs have an ubiquitous pres-
ence in everyday life. After the first OLED was reported in
1987 [1], rapid development enabled commercial produc-
tion of OLED displays by 1997, with the technology mak-
Centre for Sustainable Energy Technologies, CSIR-National ing steady progress ever since. However, the high cost and
Institute for Interdisciplinary Science and Technology, limited life span of OLED products are considered to be the
Thiruvananthapuram 695 019, India . . . .
major challenges preventing their deeper market penetration.
Academy of Scientific and Innovative Research (AcSIR), These are being addressed by efficient out-coupling tech-
Ghaziabad 201002, India . . . .
niques [2—4], novel emitter molecules [5, 6], efficient emis-
sion mechanisms such as phosphorescence [7], thermally
activated delayed fluorescence (TADF) [8] and simplified
device architectures [9]. However, stable and efficient blue
emission is still considered a bottleneck in the OLED dis-
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molecular design of wide band gap materials. Unfortunately,
these design challenges are present across fluorescent, phos-
phorescent, and TADF materials, resulting in a scarcity of
suitable materials. Furthermore, the lack of stable blue fluo-
rophores is detrimental to application in RGB color balanc-
ing of displays. Hence, there is an urgent need to further
develop stable and efficient blue emitters and to improve the
yield of existing materials.

There are many blue emitting charge transport materi-
als, which have not been explored due to their low quan-
tum yield. Hence, novel device designs utilizing com-
monly available blue emitting transport molecules would
provide a major breakthrough. In the past few years,
excited state emission mechanisms such as exciplex
(involving excited states in pairings of materials) have
emerged as an alternative resource for use in OLEDs.
Exciplex emission occurs at the interface of an HTM and
an ETM and it provides a simple device architecture by
avoiding the need for a separate emissive layer (EML).
Exciplex as an emission mechanism has comparatively
low quantum yield. Nonetheless, it can be effectively used
as a host with phosphorescent, fluorescent [10] and TADF
dopants [11]. Suitable exciplex combinations with novel
design strategies can provide new routes for efficient
white OLEDs (WOLEDs) without the need for compli-
cated tandem structures. However, establishing a general
criterion for the selection of conjugate pairs for efficient
exciplex emission remains a complex issue. Exciplex
emission can occur via electrical as well as optical exci-
tation. The basic criterion for the selection of materi-
als is to have a moderate offset [12] between the highest
occupied molecular orbital (HOMO) energies of the HTM
and ETM. Lowest unoccupied molecular orbital (LUMO)
energies are also expected to have a similar offset. Exci-
plex emission, previously thought of as a less efficient
process, has, since 2000, regained a role in OLEDs as an
emitter as well as a host [13]. Most of the reported high
efficiency exciplex OLEDs have utilized the exciplex as
a host rather than as an emitter. Although the quantum
yield for exciplex emission is quite low, proper selec-
tion of conjugate pairs can provide adequate intensity of
emission.

In this work, we have addressed the issue of lack of
blue emitters in OLEDs by utilizing an intermolecular
excited state formed at the interface of charge transport-
ing materials; NPB and TAZ. This exciplex was used
as a blue emitter as well as a host material for a yel-
low emitting phosphorescent dopant (PO-01) OLEDs.
An external quantum efficiency (EQE) of (6.9 +£0.27) %
@ 1000 cd/m? was obtained for the yellow OLED. Fur-
thermore, white emission with CIE coordinates (0.36,
0.39) was achieved by employing tetracene as a spacer in

@ Springer

conjunction with blue exciplex host and yellow emitting
phosphorescent dopant.

2 Methods

The molecular structures of NPB, and TAZ are shown in
Fig. la. Solid-state photophysical measurements were per-
formed on thin films deposited on fused silica substrates.
Substrates were cleaned with acetone and isopropanol fol-
lowed by UV-ozone to remove organic impurities. Photolu-
minescence (PL) spectra were measured using a FS5 fluo-
rescence spectrometer (Edinburgh Instruments). Absolute
photoluminescence quantum yields (PLQYSs) for thin film
samples were measured using the same spectrometer with
calibrated integrating sphere. PLQY/PL spectra of NPB and
NPB:TAZ blend films were measured by exciting at 350 nm,
while neat films of TAZ were excited at 300 nm. Emission
lifetime was measured with the same spectrometer, and sam-
ples were excited at 375 nm using a laser diode with an
instrument response function (IRF) of 150 ps.

Devices were fabricated in a nitrogen glove box-inte-
grated thermal evaporation system (Angstrom Inc.) and the
film thickness was measured using Dektak XT profilom-
eter. Indium tin oxide (ITO) substrates were purchased from
Kintec Company, Hong Kong, China and organic materi-
als were purchased from Luminescence Technology Corp.
(Lumtec), Taiwan, China. The substrates were cleaned by
using a liquid detergent followed by sequential sonication in
isopropanol and de-ionized water for 15 min each. After dry-
ing, the UV-ozone treated (Novascan) substrates were loaded
in thermal evaporation chamber. All the layers (materials)
of the device were deposited on the substrate by thermal
evaporation under high vacuum (= 107 torr) conditions.
After the evaporation, the devices were encapsulated inside
the nitrogen filled glovebox by using a UV-curable epoxy
(Epoxy Technology Inc.). The OLED characterization sys-
tem consists of a SpectraScan PR-655 spectroradiometer
integrated with a Keithely 2400 sourcemeter.

3 Results and discussion

3.1 Device fabrication and characterization

3.1.1 Blue OLEDs by combining NPB and TAZ

Here we combined NPB with TAZ to create a blue emitting
unit. Devices fabricated by combining NPB with TAZ could
yield: excitonic emission of NPB; energy transfer between

the ETL and NPB; or exciplex emission at the NPB/ETL
interface. We performed spectroscopic studies of the thin
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films to confirm the dominant emission mechanism in pho-
toluminescence (PL). However, it was also critical to deter-
mine the dominant mechanism in electroluminescence and
further improve the overall efficiency. The HOMO-LUMO
offset values at the NPB/TAZ interface were also compared
(see Fig. 1b) [14, 15]. The exciplex emission is usually
favored for HOMO-HOMO/LUMO-LUMO gap>0.4 eV
[16]. For the NPB:TAZ combination, the offset values
are below 0.4 eV. Hence, a bilayer NPB/TAZ device (B,)
was fabricated with a device architecture of ITO/HAT-
CN (5 nm)/NPB (60 nm)/TAZ (40 nm)/Alq; (20 nm)/LiF
(1 nm)/Al (100 nm) as shown in Fig. 2a, where HAT-CN
is 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile. A thin
layer of HAT-CN (5 nm) was deposited prior to NPB to
improve the hole injection into NPB. To balance the hole
injection into TAZ, Alq; was incorporated in the structure,
as an electron transport layer (ETL). To get better insights
into energy transfer in the process of electroluminescence,
we further fabricated devices (B, and B;) with NPB:TAZ
as the EML sandwiched by the pristine NPB and TAZ lay-
ers. The NPB and TAZ layers on both sides provided better
charge transport and carrier confinement. Specifically, EML
consists of the co-deposited layer of NPB:TAZ at 1:1 and 1:3
for devices B, and Bj;, respectively, with total thickness of
15 nm. However, the doping ratio of NPB in TAZ in device
B; was reduced by three times compared to B,.

The electroluminescence of the OLEDs with NPB/TAZ
bilayer and blend layer (NPB:TAZ) were analyzed via device
characteristics as shown in Fig. 2b, c, d. Interestingly, the
current density of the bilayer device increased compared to
blend devices at higher voltages as can be seen from Fig. 2b.
In the bilayer device, the energy barrier for hole injection
from NPB to TAZ was 0.8 eV. At higher voltages this barrier

¥
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N7

N
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N

was overcome and the increased hole injection and subse-
quent recombination (radiative or nonradiative) may have
caused the current. It may be noted that the blend device
was nothing but a device where a 15 nm blend layer had
been added in between the pristine NPB and TAZ layers of
the bilayer device. At higher voltages, injection to the blend
was increased but charges may have become trapped in the
blend layer. In bilayer, this does not happen as the charges
recombine either radiatively or non-radiatively at the inter-
face. However, the trapping of carriers in the blend may
have helped the exciplex formation. To study this, we looked
at the luminanace (L) vs current density (J) plots of these
devices as shown in Fig. S1 in the Supplementary Informa-
tion (SI) and found out that compared to the blend devices,
bilayer device had a much higher J value for the same L
value. We believe that the radiative recombination even in
the thin layer of blend layer was much more efficient than
the bilayer device. However overall J, which is the sum of
radiative and nonradiative currents could have been higher
for the bilayer device, particularly at higher voltages.

The current density—voltage and current efficiency—volt-
age plots of the devices were compared. From the device
characteristics, the luminance was seen to be enhanced when
NPB:TAZ layer was incorporated. As shown in Fig. 2c,
the current efficiency of B, and B; devices increased to
0.7 cd/A compared to that of bilayer NPB/TAZ B, devices,
an enhancement by a factor of 2 for the NPB:TAZ blend
devices. Given that exciton recombination could occur
within NPB or at the NPB/TAZ interface, the effect of TAZ
at the interface of NPB was investigated in detail through
photophysical studies of the thin films of individual materi-
als and their co-evaporated films, which was essential to
understand the origin of PL. Hence, spectroscopic studies

NPB
O —2.4eV TAZ
O -2.7eV

/

—-5.5eV

(b) —-6.3¢eV

Fig. 1 a Molecular structures of NPB and TAZ. b Comparison of energy level (in eV) diagrams and mechanism of exciplex formation
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Fig.2 a OLED architectures of NPB/TAZ bilayer (B;) and NPB:TAZ (1:1 and 1:3) blend devices (for B, and B;, respectively). b Current den-

sity vs voltage plot. ¢ Current efficiency vs voltage plot. d Luminance vs voltage plot; e Comparison of photoluminescence and electrolumines-
cence of NPB/TAZ bilayer OLED B, devices

were carried out to investigate whether the emission was ~ The UV-Visible absorption spectra, as well as the emis-
due to energy transfer or exciplex emission in the mixed  sion spectra of the films of TAZ, NPB and NPB:TAZ (1:1,
layer of NPB/TAZ. The steady-state absorption and emission 1:3), are shown in Fig. S2a and b in the SI. The compari-
spectra of the molecules were studied in the thin film state. ~ son of PL of neat films with the EL spectra of the bilayer
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device is shown in Fig. 2e. The emission from TAZ can be
completely ruled out as its emission spectrum was signifi-
cantly different from the EL spectra. The emission spectra
of NPB and blend films were not identical. The full width
at half maximum (FWHM) of the PL peaks of the films of
NPB, TAZ, and NPB:TAZ were 52, 54, and 63 nm, respec-
tively. The fluorescence decay parameters of NPB, TAZ and
NPB:TAZ films are shown in Table S1 in the SI. A slight
red shifted emission with increase in FWHM was observed
for the blend films but was not observed for the neat films.
Exciplex usually leads to the red shifted emission and broad-
ened spectrum compared to those of the individual acceptor
or donor molecule. Hence, this broadness of emission in
the blend films can be attributed to the exciplex formation.
However, considering the absorption spectrum of NPB and
photoluminescence spectrum of TAZ, energy transfer also
seems likely, as there is sufficient overlap between the emis-
sion and absorption spectra of neat films of TAZ and NPB,
respectively. As is shown, Fig. S2b in the SI indicates a pos-
sibility of Forster resonance energy transfer (FRET) from
TAZ to NPB. We compared the PL of the NPB:TAZ blend
films at two different ratios 1:1 and 1:3. The PL of TAZ was
completely quenched in both 1:1 and 1:3 blend films. The
PLQYs of the 1:1 and 1:3 blend films were found to be 38%
and 44%, respectively. A slight enhancement in PLQY's for
the 1:3 blend films again showed the possibility of energy
transfer from TAZ to NPB. The transient emission proper-
ties of the blend films were found similar to that of NPB’s
PL as shown in Fig. S3a in the SI, with the values compared
in Table S2 in the SI. Therefore, the results suggest that
the energy transfer from TAZ to NPB resulted in the blue
excitonic emission from NPB under optical excitation. To
confirm this, we needed to rule out the chances for exciplex
formation; we further studied the transient PL of the blend
films by comparing them under N, and O, atmospheres as
shown in Fig. S3b in the SI, with their transient decay times
tabulated in Table S2. We could not detect any kind of triplet
quenching in the films; hence no delayed component was
observed in the transient kinetics even under N, atmosphere.
Coupled with the almost similar PL characteristics (except
for a 6% enhancement in PLQY's for 1:3 blend films), this
supported the energy transfer hypothesis. The device perfor-
mances are compared and summarized in Table 1.

Table 1 Device performances of the blue OLEDs

From the spectroscopic studies of the thin-films, we
could say that we have evidence for both exciplex formation
and energy transfer from TAZ to NPB. The redshifted and
slightly broader spectra of the blend film, compared to the
spectra for the neat films, could be evidence for exciplex for-
mation. At the same time, favorable spectral overlap between
emission of TAZ and absorption of NPB and the improved
PLQY of the blend film with lower concentration of NPB
can be cited as supporting evidence for energy transfer from
TAZ to NPB. However, the lack of delayed emission for the
blend film compared to the neat films could be evidence
of no exciplex formation. Hence, it appears that there is a
complex mix of different mechanisms.

From the performance of blue devices, it is clear that
blend devices exhibit better performance compared to the
bilayer device, which may be supporting the argument in
favor of exciplex formation. Bulk exciplexes are reported
to be more stable than interface exciplex as more intermo-
lecular exciplexes can be formed in the bulk, compared to
the interface [17]. Also, in this study, the device with 1:1
ratio between NPB and TAZ worked better than the device
with 1:3 ratio. In general, exciplexes work best with 1:1
ratio [11]. This also supports the formation of an exciplex
between NPB and TAZ. However, we do not completely rule
out energy transfer, though NPB is a weak emitter. In fact,
both mechanisms may co-exist also.

3.1.2 Yellow and white OLEDs using phosphorescent
dopant in the NPB:TAZ exciplex host

The core idea of this work was to develop novel device
design strategies to improve the quality of white light in
OLEDs using cost-effective solutions. A mixed host sys-
tem can effectively transfer its energy to the dopants via
Forster or Dexter energy transfer mechanisms. Therefore,
a dopant was selected based on the spectral overlap of the
emission of blend films of NPB:TAZ and the absorption
of the dopant. Hence, a yellow phosphorescent dopant,
PO-01, was studied as the emitter with our NPB:TAZ host
as the yellow OLEDs. Figure 3a shows the spectral overlap
of PO-01 and NPB:TAZ films and Fig. 3b depicts the yel-
low OLED device architecture, consisting of a co-evapo-
ration of PO-01, NPB and TAZ as the EML, sandwiched

Device EML Luminance at Current density at EL peak/nm Turn-on Maximum lumi- Maximum current Maximum power
10 V/(cd-m™?) 10 V/(mA-cm™?) voltage/V nance/(cd-m~2) efficiency/(cd-A™")  efficiency/(Im-W™")
B, NPB/ 1102 303 440 3.5 1419 0.4 0.16
TAZ(60 nm/40 nm)
B, NPB:TAZ(1:1,15nm) 1703 246 440 3.6 1941 0.75 0.36
B, NPB:TAZ(1:3, 15 nm) 642 93 440 3.8 984 0.73 0.35
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Fig.3 a Spectral overlap between emission of NPB and TAZ with absorption of dopant (PO-01), with the chemical structure of PO-01 shown
inset). b Device architecture (NPB:TAZ doped with PO-01 at 2.5%, 5% and 10%, respectively). ¢ Energy level diagram showing the mechanism

responsible for the yellow emission

by NPB and TAZ layers. The emissive layer consisted
of a mixed layer NPB:TAZ (1:1, 10 nm) followed by the
emissive layer of NPB:TAZ:PO-01 (1:1, x%, 5 nm), where
x=2.5%, 5% and 10% for devices, Y, s¢, Y5q and Y,
respectively. The energy level diagram is shown in Fig. 3c.
It was found that device Y5, showed the best performance
with maximum brightness of 13,070 cd/m? and an EQE
of (6.9+0.27)% @ 1000 cd/m? (Fig. 4). The current effi-
ciency vs voltage and J-V-L plots for the yellow devices
are shown in Fig. 4a, b. Figure 4c compares the EL spectra
of the devices, dominated by a yellow emission at around
560 nm, in addition to a blue emission at around 444 nm.
The yellow emission is likely due to an energy transfer
from the exciplex to PO-01. When the dopant concentra-
tion was decreased to 2.5%, the relative contribution of the
exciplex slightly enhanced to give a warm white emission
with CIE coordinates (0.43, 0.46) with a blue to yellow
emission ratio of 12%. The summary of device perfor-
mance of yellow OLEDs is tabulated in Tables 2 and 3
and Table S4 in the SI (with error bars). This device is
more promising regarding white emission, but the blue
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emission is weak. To further enhance the blue contribu-
tion, we increased the thickness of the NPB:TAZ layer to
25 nm. Hence, a new device Y, 54, with 25 nm blue EML
as NPB:TAZ (1:1, 25 nm)/NPB:TAZ:PO-01(1:1,2.5%,
5 nm) was fabricated. It has been reported that the excitons
in charge transfer (CT) states in D-A blends can diffuse
much more than Frenkel excitons [18]. However, the ratio
of blue to yellow emission remained at 7% with the total
brightness falling compared to the device Y, s5¢. To further
study the thickness dependence of blue layer, we again
increased the blue EML from 25 to 30 nm. The white qual-
ity improved but the device efficiency drastically reduced.
The comparison of the current efficiency values with volt-
ages and comparison of EL plots are given in Fig. S4a and
b in the SI.

The energy level diagram in Fig. 3c shows the emission
mechanisms in the yellow and blue emitting units in detail.
The yellow emitting unit consists of the yellow dopant mole-
cule in the NPB:TAZ matrix. The spectral overlap shows the
chances for energy transfer from NPB:TAZ, NPB or TAZ to
PO-01, yielding the yellow emission. In contrast, for charge
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Table 2 Summary of device performance of yellow OLEDs

Device EML Luminance at  cd/A (@ Turn-on Maximum lumi- Maximum current Maximum power Maximum
11 V/(edm™2) 1000 cd- voltage/V nance/(cd-m~2) efficiency/(cd-A™")  efficiency/(Im-W~") EQE/%
m~?)

Y, 59 NPB:TAZ(10 nm)/ 6090 9.8 4.1 6164 13 8 4
NPB:TAZ:PO-01(1:1,2.5%,
5 nm)

Ysq NPB:TAZ(10 nm)/ 7750 20 43 13,070 22 8.7 7
NPB:TAZ:PO-01(1:1,5%,
5 nm)

Y109 NPB:TAZ(10 nm)/ 4240 5.47 4.8 4244 55 2.5 1.7
NPB:TAZ:PO-01(1:1,10%,
5 nm)

Yys50.250m  NPB:TAZ(25 nm)/ 5024 13.9 59 7913 14 5.5 45

NPB:TAZ:PO-01(1:1,2.5%,
5 nm)
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Table 3 Summary of emission parameters of yellow OLEDs

Device EML EL peak wavelength/nm Ratio of blue
to yellow/%
Yellow Blue

Y; 59 NPB:TAZ(10 nm)/NPB:TAZ:PO-01 560 440 12
(1:1,2.5%, 5 nm)

Ysq, NPB:TAZ(10 nm)/NPB:TAZ:PO-01 560 440 4
(1:1,5%, 5 nm)

Yio% NPB:TAZ (10 nm)/NPB:TAZ: 560 440 3
PO-01(1:1,10%, 5 nm)

Y5 59 25 om NPB:TAZ(25 nm)/NPB:TAZ:PO-01 560 444 7

(1:1,2.5%, 5 nm)

injection, the holes and electrons should reach both NPB
and TAZ for the yellow emission. However, given that there
is a high energy barrier for transfer of holes from NPB to
TAZ (0.8 eV) in the blend; the migration of holes toward the
HOMO of NPB in the NPB:TAZ:PO-01 layer could have
been hindered due to the presence of TAZ in the NPB:TAZ
layer. Hence, NPB and TAZ in the NPB:TAZ:PO-O1 layer
cannot be individually electrically excited easily.

To rule out the possibility of energy transfer from NPB
to PO-01, we fabricated an equivalent device without TAZ
where NPB was used as a host. The current efficiency vs
voltage plots for devices with NPB and NPB:TAZ as host
with 10% of PO-01 is shown in Fig. 4d. The device only
showed green emission of Alqs instead of yellow emission
This indicates that energy transfer from NPB to the dopant
is unlikely. This also showed the direct excitation of PO-01
is unlikely in the current device structure, leaving next possi-
bility of energy transfer from exciplex to PO-01. This indeed
happened while the proposed exciplex in the NPB:TAZ layer
was responsible for the blue emission.

As mentioned earlier, increasing the thickness of the
NPB:TAZ layer to 25 and 30 nm to further enhance the
blue contribution did not yield the expected results. The
slow migration of holes from the NPB alone layer toward
NPB:TAZ:PO-01 layer could have been an impediment.
The low J value of the device shows that the increased
thickness of the layer resulted only in increasing the
device resistance instead of enhancing the blue emission.

The weak intensity of blue emission is primarily due
to the difference in hole and electron mobilities of the
component molecules. Due to the high hole mobility of
NPB, more holes get accumulated at the HOMO of NPB
in the NPB:TAZ layer. The comparatively lower electron
mobility of TAZ and the longer path for electrons from
cathode to reach this layer can delay electrons migration
to the LUMO of TAZ in the NPB:TAZ layer. This loss
of carriers can lead to decreased blue exciton forma-
tion and subsequent emission in the NPB:TAZ layer. A
similar issue can be expected for exciplex formation in

@ Springer

the NPB:TAZ:PO-01 layer as well. But here the effect
of longer path for holes from anode and low mobility
of electrons in TAZ can create a balance and hence a
promising white emission is to be expected. The device
architecture comprises of two emissive units with co-
deposited film of NPB and TAZ. Hence there will be
possibility of uncontrolled flow of carriers through the
co-deposited layers. This can reduce the charge balance
factor and the formation of excitons. The unbalanced flow
of carriers to the NPB:TAZ layer might be a reason for
reduction in blue emission among the white devices. To
study the problem of carrier imbalance in the device, we
fabricated the hole-only and electron only devices. The
device architecture was as follows: ITO/HAT-CN(5 nm)/
NPB(60 nm)/NPB:TAZ(50 nm)/Ag(100 nm) for the
hole-only device and Al(100 nm)/LiF(1 nm)/BCP(5 nm)/
NPB:TAZ(50 nm)/TAZ(40 nm)/Alq;(20 nm)/LiF(1 nm)/
Al(100 nm) for the electron-only device. The comparison
of the J-V characteristics of the devices are shown in Fig.
S5 in the SI. The hole-only devices showed much higher
current density compared to electron only devices; this
observation is evidence for the charge imbalance in the
NPB:TAZ mixed layer.

3.1.3 White OLEDs using charge generation layer
and tetracene spacer

To further improve the quality of white emission, it is criti-
cal to balance the blue and yellow emission This can be
done by adjusting the flow of holes and electrons toward
the respective layers by incorporating a charge generation
layer (CGL) between the two emitting units. A suitable CGL
would provide adequate flow of electrons and holes toward
the respective units. We have therefore selected a typical
fullerene (Cq,)/pentacene organic heterojunction as the CGL
[19]. The high electron mobility of Cg, [20] and high hole
mobility of pentacene [21] can make this p—n junction an
efficient CGL [22]. The balanced flow of electrons from
Cg toward the NPB:TAZ layer can be expected to enhance
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the blue emission. Also, the availability of holes in the
NPB:TAZ:PO-01 layer is ensured by pentacene. The EML of
devices with CGL has the structure, NPB:TAZ (1:1, 10 nm)/
Cgpo (15 or 10 nm)/pentacene (10 or 5 nm)/NPB:TAZ:PO-01
(5 nm, 2.5% PO-01). The device architecture and the energy
level diagram are given in Figs. S6a and b in the SI.

The thickness of Cg, was kept slightly higher than that
of pentacene to compensate the high hole mobility of pen-
tacene [21] compared to the electron mobility of Cg,. How-
ever, the device performance was drastically diminished
upon the incorporation of the CGL. The device J-V-L and
EL characteristics of the devices are shown in Fig. S6c and
d in the SI. Hence, unlike in a normal tandem WOLED,
the CGL here functioned more like a barrier. The increase
in total device thickness might also have contributed to
the poor performance. However, the percentage of blue
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emission slightly improved in these devices compared to
the same percentages without a CGL. This implies the need
of a separation layer other than CGL for balanced flow of
carriers between the NPB:TAZ:PO-01 and NPB:TAZ units
of exciplex, which can be called as a spacer layer. In this
context, it was further proposed that an ambipolar spacer
material would be a better choice than a p—n junction. The
energy levels of the spacer material should be conducive
to not completely blocking electrons and holes. We, there-
fore, selected tetracene as the spacer layer as it met the
above requirements. A thin layer of tetracene was used as
a spacer layer between the NPB:TAZ (blue emitter) and
NPB:TAZ:PO-01 (yellow emitter) layers. The energy level
diagram of the emissive units for the modified device archi-
tecture for WOLED is shown in Fig. 5a. The devices with
tetracene blocking layer indeed resulted in a higher intensity
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Fig.5 a Energy level diagram of white OLEDs with spacer. b J-V-L characteristics. ¢ EL characteristics (photograph of the white OLED (W,)

with its CIE coordinates is shown as inset). d CIE diagram
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Table 4 Summary of device performances of the WOLEDs

Device EML Luminance at cd/A (@ Turn-on  Maximum lumi- Maximum current Maximum power Maxi-
11 V/(cdm™) 1000 cd-m™2) voltage/V nance/(cd-m™2) efﬁciency/(ch") efﬁciency/(lmW’l) mum
EQE/%
W, NPB:TAZ(10 nm)/ 6090 9.8 4.1 6164 13 8 4
NPB:TAZ:PO-01
(1:1,2.5%, 5 nm)
W, NPB:TAZ(10 nm)/Tet- 4040 4.6 4 4043 6 38 2
racene(5 nm)NPB:TAZ:
PO-01(1:1,2.5%, 5 nm)
W NPB:TAZ(10 nm)/ 4240 1.7 4 2675 2 1 0.6
Tetracene(10 nm)
NPB:TAZ:

PO-01(1:1,2.5%, 5 nm)

of blue emission compared to the CGL devices. The weak
peak at about 484 nm could be the monomer emission of
tetracene [23]. The electroluminescence of tetracene film
was around 530 nm [24], which was absent in the EL spec-
tra. Hence, the possibility of emission from the spacer layer
can be ruled out. We took the device Y, 5 as the reference
device for white emission, and this device is now designated
as W,. The EML of device W, had the structure NPB:TAZ
(1:1, 10 nm)/tetracene (5 nm)/NPB:TAZ:PO-01 (5 nm,
2.5% PO-01). Increasing the thickness of tetracene layer to
10 nm (Device W;) did not improve the performance. How-
ever, tetracene devices showed a better performance com-
pared to performances with CGL. The poor performance of
the 10 nm spacer layer compared to that of the 5 nm shows
the impact of resistance in the devices. We have earlier
seen that the CGL devices also fared poorly after the total
device thickness increased after the insertion of the CGL.
The J-V-L and EL characteristics are shown in Fig. 5b,
c and the device performances for WOLEDs with spacer
layer are summarized in Table 4. We achieved a white emis-
sion with CIE coordinates of (0.36, 0.39), when 5 nm of
tetracene was employed. The CIE diagram for WOLEDs is
shown in Fig. 5d. The ratios of intensities of blue and yel-
low emissions were compared. The intensity of blue emis-
sion was increased from 12% to 23%, when the spacer layer
was employed. This could be attributed to the balanced flow
of carriers to NPB:TAZ layer due to the ambipolar nature
of tetracene layer. The increase in current density after the
addition of tetracene layer is evidence for the role of tet-
racene in the charge transport mechanism in the device.
Unlike in CGL, a single layer can provide improved white
light as well as device performance. The efficiency compar-
ison of the WOLEDs with CGL and spacer layer is shown in
Table S3 in the SI. Hence, device architecture with a spacer
layer can be considered as an alternative to complicated tan-
dem structures. A balanced white OLED combining yellow
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emission from dopant and blue emission from exciplex was
achieved with an ambipolar thin spacer layer.

4 Conclusion

A novel blue emitting exciplex system, utilizing commonly
used charge transporting materials, NPB and TAZ, is pre-
sented. This intermolecular exciplex used as a blue emitter
as well as a host for a yellow dopant to afford white light.
Yellow OLEDs were fabricated by using a mixed host with
a phosphorescent dopant (PO-01). An EQE of (6.9+0.27)%
@ 1000 cd/m? was obtained for the yellow OLED, with 5%
of PO-01 doped into the NPB:TAZ matrix. White emission
with CIE coordinates (0.36, 0.39) and color temperature
of 4643 K was achieved by using a novel device design,
employing tetracene as a spacer, to balance the carrier trans-
port. The strategy presented here may be utilized for creating
tailor-made molecules to realize stable and efficient blue
emission, with device designs other than complicated tan-
dem structures for obtaining white emission.
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