Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/1411
Title: Investigations on the liquid crystalline phases of cation-induced condensed DNA
Authors: Pillai, C K S
Neethu Sundaresan
Radhakrishnan Pillai, M
Thomas, T
Thomas, T J
Keywords: Liquid crystalline DNA
Alkali metal ions
DNA condensation
Nanostructured DNA
Issue Date: 2005
Publisher: Indian Academy of Sciences
Citation: Pramana-Journal of Physics 65(4):723-729;Oct 2005
Abstract: Viral and nonviral condensing agents are used in gene therapy to compact oligonucleotides and plasmid DNA into nanostructures for their efficient transport through the cell membranes. Whereas viral vectors are best by the toxic effects on the immune system, most of the nonviral delivery vehicles are not effective for use in clinical system. Recent investigations indicate that the supramolecular organization of DNA in the condensed state is liquid crystalline. The present level of understanding of the liquid crystalline phase of DNA is inadequate and a thorough investigation is required to understand the nature, stability, texture and the influence of various environmental conditions on the structure of the phase. The present study is mainly concerned with the physicochemical investigations on the liquid crystalline transitions during compaction of DNA by cationic species such as polyamines and metallic cations. As a preliminaxy to the above investigation, studies were conducted on the evolution of mesophase transitions of DNA with various cationic counterion species using polarized light microscopy. These studies indicated significant variations in the phase behaviour of DNA in the presence of Li and other ions. Apart from the neutralization of the charges on the DNA molecule, these ions are found to influence selectively the hydration sphere of DNA that in turn influences the induction and stabilization of the LC phases. The higher stability observed with the liquid crystalline phases of Li-DNA system could be useful in the production of nanostructured DNA. In the case of the polyamine, a structural specificity effect depending on the nature, charge and structure of the polyamine used has been found to be favoured in the crystallization of DNA.
URI: http://ir.niist.res.in:8080/jspui/handle/123456789/1411
ISSN: 0304-4289
Appears in Collections:2005

Files in This Item:
File Description SizeFormat 
2005_0052.pdf
  Restricted Access
305.85 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.