Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/2889
Title: Ultrafast Relaxation Dynamics of Photoexcited Heme Model Compounds: Observation of Multiple Electronic Spin States and Vibrational Cooling
Authors: Govind, C
Karunakaran, V
Issue Date: 13-Apr-2017
Publisher: American Chemical Society
Citation: The Journal of Physical Chemistry: B, 121(14):3111-3120
Abstract: Hemin is a unique model compound of heme proteins carrying out variable biological functions. Here, the excited state relaxation dynamics of heme model compounds in the ferric form are systematically investigated by changing the axial ligand (Cl/Br), the peripheral substituent (vinyl/ethyl−meso), and the solvent (methanol/DMSO) using femtosecond pump−probe spectroscopy upon excitation at 380 nm. The relaxation time constants of these model compounds are obtained by global analysis. Excited state deactivation pathway of the model compounds comprising the decay of the porphyrin excited state (S*) to ligand to metal charge transfer state (LMCT, τ1), back electron transfer from metal to ligand (MLCT, τ2), and relaxation to the ground state through different electronic spin states of iron (τ3 and τ4) are proposed along with the vibrational cooling processes. This is based on the excited state absorption spectral evolution, similarities between the transient absorption spectra of the ferric form and steady state absorption spectra of the low-spin ferrous form, and the data analysis. The observation of an increase of all the relaxation time constants in DMSO compared to the methanol reflects the stabilization of intermediate states involved in the electronic relaxation. The transient absorption spectra of met-myoglobin are also measured for comparison. Thus, the transient absorption spectra of these model compounds reveal the involvement of multiple iron spin states in the electronic relaxation dynamics, which could be an alternative pathway to the ground state beside the vibrational cooling processes and associated with the inherent features of the heme b type.
URI: http://hdl.handle.net/123456789/2889
Appears in Collections:2017

Files in This Item:
File Description SizeFormat 
Ultrafast Relaxation Dynamics - Govind C - The Journal of Physical Chemistry B.pdf
  Restricted Access
2.24 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.