Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/3095
Title: Transforming a C3‑Symmetrical Liquid Crystal to a π‑Gelator by Alkoxy Chain Variation
Authors: Sandeep, A
Praveen, V K
Rao, D S S
Krishna Prasad, S
Ajayaghosh, A
Issue Date: 20-Apr-2018
Publisher: American Chemical Society
Citation: ACS Omega, 3(4):4392-4399
Abstract: Rational understanding of the structural features involving different noncovalent interactions is necessary to design a liquid crystal (LC) or an organogelator. Herein, we report the effect of the number and positions of alkoxy chains on the self-assembly induced physical properties of a few π-conjugated molecules. For this purpose, wedesigned and synthesized three C3-symmetrical molecules based on oligo(phenylenevinylene), C3OPV1−3. The selfassembly properties of these molecules are studied in the solid and solution states. All of the three molecules follow the isodesmic self-assembly pathway. Upon cooling from isotropic melt, C3OPV1 having nine alkoxy chains (−OC12H25) formed a columnar phase with two-dimensional rectangular lattice and retained the LC phase even at room temperature. Interestingly, when one of the −OC12H25 groups from each of the end benzene rings is knocked out, the resultant molecule, C3OPV2 lost the LC property, however, transformed as a gelator in toluene and n-decane. Surprisingly, when the −OC12H25 group from the middle position is removed, the resultant molecule C3OPV3 failed to form either the LC or the gel phases.
URI: http://10.10.100.66:8080/xmlui/handle/123456789/3095
Appears in Collections:2018

Files in This Item:
File Description SizeFormat 
Transforming a C3‑Symm-SANDEEP (A)-ACS Omega.pdf
  Restricted Access
5.63 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.