Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/3427
Title: Chiral Plasmons: Au Nanoparticle Assemblies on Thermoresponsive Organic Templates
Authors: George, J
Kar, S
Anupriya, E S
Somasundaran, S M
Anjali Devi, D
Sissa, C
Painelli, A
Thomas, K G
Keywords: chirality
electronic circular dichroism
Au nanoparticle assembly
surface plasmon resonance
thermoresponsive template
plasmon coupling
Issue Date: 27-Mar-2019
Publisher: American Chemical Society
Citation: ACS Nano; 13(4):4392-4401
Abstract: Template-assisted strategies are widely used to fabricate nanostructured materials. By taking these strategies a step forward, herein we report the design of two chiral plasmonic nanostructures based on Au nanoparticle (NP) assemblies organized in clockwise and anticlockwise directions, having opposite response to circularly polarized light. The chiral plasmonic nanostructures are obtained by growing Au NPs on chiral templates based on D- and L-forms of alanine functionalized phenyleneethynylenes. Interestingly, Au NP assemblies show mirror symmetrical electronic circular dichroism (ECD) bands at their surface plasmon frequency originating through their asymmetric organization. Upon increasing the temperature, the chiral templates dissociate as evident from the disappearance of their ECD signal. The profound advantage of the thermoresponsive nature of the templates is employed to obtain free-standing chiral plasmonic nanostructures. The tilt angle high-resolution transmission electron microscopic measurements indicate that the NP assemblies, grown on a template based on the D-isomer, organize in clockwise direction (P-form) and on Lisomer in anticlockwise direction (M-form). The inherent chirality prevailing on the surface of the template drives the helical growth of the Au NPs in opposite directions. Experimental results are rationalized by a model which accounts for the large polarizability of Au NPs. The large polarizability leads to large oscillating dipole moments whose effects become prominent when interparticle distances are comparable to the particle size.
URI: https://pubs.acs.org/doi/10.1021/acsnano.8b09624
http://10.10.100.66:8080/xmlui/handle/123456789/3427
Appears in Collections:2019

Files in This Item:
File Description SizeFormat 
Chiral Plasmons-JinoGeorge-ACS Nano.pdf
  Restricted Access
5.27 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.