Please use this identifier to cite or link to this item:
http://localhost:8080/xmlui/handle/123456789/3803
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Makebe, C W | - |
dc.contributor.author | Desobgo, Z S C | - |
dc.contributor.author | Ambindei, W A | - |
dc.contributor.author | Billu, A | - |
dc.contributor.author | Nso, EJ | - |
dc.contributor.author | Nisha, P | - |
dc.date.accessioned | 2021-06-07T05:47:08Z | - |
dc.date.available | 2021-06-07T05:47:08Z | - |
dc.date.issued | 2020-12 | - |
dc.identifier.citation | Journal of the Science of Food and Agriculture;100(15):5487-5497 | en_US |
dc.identifier.uri | https://doi.org/10.1002/jsfa.10600 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/3803 | - |
dc.description.abstract | BACKGROUND: Soursop (Annona muricata L.) is an underutilized tropical and subtropical fruit with high nutritional and therapeutic benefits. This fruit is faced with enormous post-harvest losses due to its high perishability. This work was aimed to optimize the pectinase-assisted extraction conditions of soursop juice using Doehlert design and to study the effect of pectinase on its pectin structure. RESULTS: The predicted models were validated for all the responses studied and the regression coefficients ranged from 0.905 to 0.987 (P ≤ 0.05). An incubation time of 172 min, enzyme concentration of 0.04% (w/w) and incubation temperature at 42.9 °C were found to be the optimal conditions for soursop juice extraction, which resulted in 75.20%, 3.74, 7.35 °Brix, 87.06%T, and 0.44% MAE for soursop juice yield (%), pH, total soluble solids (TSS) (°Brix), clarity (%T) and titratable acidity (% malic acid equivalent, MAE), respectively. Morphologically, untreated soursop pulp presented a non-uniform spherical surface; enzyme hydrolyzed soursop exhibited ruptured and wrinkled surface; meanwhile for the different pectin obtained, untreated soursop pectin depicted porous surface and enzyme hydrolyzed soursop pectin showed whirling rough surface. Fourier-transform infrared (FTIR) confirmed the presence of similar chemical group stretching and vibrations in commercial pectin and soursop pectin. CONCLUSION: Under the optimum conditions, the numerical predictions were similar to the experimental data obtained, thus confirming the validity of the models. Application of enzyme treatment caused the breakdown of pectin structure as illustrated by scanning electron microscopy (SEM) and FTIR analyses. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.subject | annona muricata L. | en_US |
dc.subject | juice | en_US |
dc.subject | pectinase | en_US |
dc.subject | optimization | en_US |
dc.subject | liquefaction | en_US |
dc.subject | pectin | en_US |
dc.title | Optimization of Pectinase-Assisted Extraction of Annona Muricata L. Juice and the Effect of Liquefaction on its Pectin Structure | en_US |
dc.type | Article | en_US |
Appears in Collections: | 2020 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Optimization of Pectinase‐assisted Extraction of Annona Muricata L. Juice_MakebeCW_Journal of the Science of Food _ Agriculture.pdf Restricted Access | 1.23 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.