Please use this identifier to cite or link to this item:
http://localhost:8080/xmlui/handle/123456789/4043
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lakshmi, N M | - |
dc.contributor.author | Binod, P | - |
dc.contributor.author | Sindhu, R | - |
dc.contributor.author | Awasthi, M K | - |
dc.contributor.author | Pandey, A | - |
dc.date.accessioned | 2022-07-28T09:55:15Z | - |
dc.date.available | 2022-07-28T09:55:15Z | - |
dc.date.issued | 2022-12-20 | - |
dc.identifier.citation | Bioengineered; 12(2):12308-12321 | en_US |
dc.identifier.uri | https://www.tandfonline.com/doi/full/10.1080/21655979.2021.1978189 | - |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/4043 | - |
dc.description.abstract | Fermentation-derived alcohols have gained much attention as an alternate fuel due to its minimal effects on atmosphere. Besides its application as biofuel it is also used as raw material for coating resins, deicing fluid, additives in polishes, etc. Among the liquid alcohol type of fuels, isobutanol has more advantage than ethanol. Isobutanol production is reported in native yeast strains, but the production titer is very low which is about 200 mg/L. In order to improve the production, several genetic and metabolic engineering approaches have been carried out. Genetically engineered organism has been reported to produce maximum of 50 g/L of isobutanol which is far more than the native strain without any modification. In bacteria mostly last two steps in Ehrlich pathway, catalyzed by enzymes ketoisovalerate decarboxylase and alcohol dehydrogenase, are heterologously expressed to improve the production. Native Saccharomyces cerevisiae can produce isobutanol in negligible amount since it possesses the pathway for its production through valine degradation pathway. Further modifications in the existing pathways made the improvement in isobutanol production in many microbial strains. Fermentation using cost-effective lignocellulosic biomass and an efficient downstream process can yield isobutanol in environment friendly and sustainable manner. The present review describes the various genetic and metabolic engineering practices adopted to improve the isobutanol production in microbial strains and its downstream processing. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis Online | en_US |
dc.subject | isobutanol | en_US |
dc.subject | consolidated bioprocessing | en_US |
dc.subject | cell free system | en_US |
dc.subject | downstream process | en_US |
dc.title | Microbial Engineering for the Production of Isobutanol: Current Status and Future Directions | en_US |
dc.type | Article | en_US |
Appears in Collections: | 2021 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Microbial engineering for the production of isobutanol_LakshmiNM_Bioengineered.pdf Restricted Access | 2.52 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.