Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/4043
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLakshmi, N M-
dc.contributor.authorBinod, P-
dc.contributor.authorSindhu, R-
dc.contributor.authorAwasthi, M K-
dc.contributor.authorPandey, A-
dc.date.accessioned2022-07-28T09:55:15Z-
dc.date.available2022-07-28T09:55:15Z-
dc.date.issued2022-12-20-
dc.identifier.citationBioengineered; 12(2):12308-12321en_US
dc.identifier.urihttps://www.tandfonline.com/doi/full/10.1080/21655979.2021.1978189-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/4043-
dc.description.abstractFermentation-derived alcohols have gained much attention as an alternate fuel due to its minimal effects on atmosphere. Besides its application as biofuel it is also used as raw material for coating resins, deicing fluid, additives in polishes, etc. Among the liquid alcohol type of fuels, isobutanol has more advantage than ethanol. Isobutanol production is reported in native yeast strains, but the production titer is very low which is about 200 mg/L. In order to improve the production, several genetic and metabolic engineering approaches have been carried out. Genetically engineered organism has been reported to produce maximum of 50 g/L of isobutanol which is far more than the native strain without any modification. In bacteria mostly last two steps in Ehrlich pathway, catalyzed by enzymes ketoisovalerate decarboxylase and alcohol dehydrogenase, are heterologously expressed to improve the production. Native Saccharomyces cerevisiae can produce isobutanol in negligible amount since it possesses the pathway for its production through valine degradation pathway. Further modifications in the existing pathways made the improvement in isobutanol production in many microbial strains. Fermentation using cost-effective lignocellulosic biomass and an efficient downstream process can yield isobutanol in environment friendly and sustainable manner. The present review describes the various genetic and metabolic engineering practices adopted to improve the isobutanol production in microbial strains and its downstream processing.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Onlineen_US
dc.subjectisobutanolen_US
dc.subjectconsolidated bioprocessingen_US
dc.subjectcell free systemen_US
dc.subjectdownstream processen_US
dc.titleMicrobial Engineering for the Production of Isobutanol: Current Status and Future Directionsen_US
dc.typeArticleen_US
Appears in Collections:2021

Files in This Item:
File Description SizeFormat 
Microbial engineering for the production of isobutanol_LakshmiNM_Bioengineered.pdf
  Restricted Access
2.52 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.