Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/4549
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJagadeesh, A-
dc.contributor.authorVeerappan, G-
dc.contributor.authorSujatha Devi, P-
dc.contributor.authorUnni, K N N-
dc.contributor.authorSoman, S-
dc.date.accessioned2023-10-19T12:34:41Z-
dc.date.available2023-10-19T12:34:41Z-
dc.date.issued2023-
dc.identifier.citationJournal of Materials Chemistry A; 11(27):14748-14759en_US
dc.identifier.urihttps://pubs.rsc.org/en/content/articlelanding/2023/TA/D3TA02698A-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/4549-
dc.description.abstractHarnessing energy from the surrounding light using indoor photovoltaics has gained momentum to address the carbon footprint resulting from used and dead batteries. Dye-sensitized solar cells (DSCs) have emerged as one of the most efficient and sustainable indoor light harvesting alternatives which can significantly reduce the environmental impact of batteries. Energy harvesting and managing circuits in these devices demand higher open circuit potentials (VOC). Nevertheless, recombination losses frequently lower the open-circuit potential in DSCs, especially when illuminated indoors. We present an innovative TiO2/ZnO bilayer architecture capable of delivering higher VOC by carefully controlling the conduction band (CB) position and recombination losses. By sensitizing this innovative bilayer electrode with MS5 dye and a [Cu(dmp)2]1+/2+ redox mediator, we achieved a record VOC of 1.27 V from a single junction device under Air Mass 1.5 Global (AM 1.5G), 100 mW cm−2 solar irradiation and 1.295 V under higher intensity LED light (200 mW cm−2). These bilayer devices also demonstrated impressive VOC of 1.025 V under 1000 lux compact fluorescent light (CFL) and light emitting diode (LED) illumination and could autonomously power a temperature sensor using a single device of 0.24 cm2 active area. This work highlights the potential of modifying the semiconductor and device architecture to achieve higher VOC in DSCs, which is essential for integrating these photovoltaic devices with smart IoT devices making them autonomous and sustainable.en_US
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.titleSynergetic effect of TiO2/ZnO bilayer photoanodes realizing exceptionally high VOC for dye-sensitized solar cells under outdoor and indoor illuminationen_US
dc.typeArticleen_US
Appears in Collections:2023

Files in This Item:
File Description SizeFormat 
Synergetic effect of TiO2-ZnO bilayer photoanodes_JagadeeshA_Journal of Materials Chemistry A.pdf
  Restricted Access
3.85 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.