Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/4771
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMahesh, K V-
dc.contributor.authorRashada, R-
dc.contributor.authorKiran, M-
dc.contributor.authorMohamed, A P-
dc.contributor.authorAnanthakumar, S-
dc.date.accessioned2024-02-27T09:59:34Z-
dc.date.available2024-02-27T09:59:34Z-
dc.date.issued2015-
dc.identifier.citationRSC Advances;5,51242–51247en_US
dc.identifier.urihttps://doi.org/10.1039/c5ra07756g-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/4771-
dc.description.abstractHerein, we report the synthesis of ultrathin 2D Ti3SiC2 (MAXene) nanosheets via a facile shear induced micromechanical cleavage strategy. The very high dispersion stability, the UV absorption properties, high electrical conductivity and castability into thin films make the newly derived Ti3SiC2 nanosheets an ideal candidate for many functional applications.en_US
dc.language.isoenen_US
dc.publisherRoyal society of chemistryen_US
dc.subjectTi3SiC2en_US
dc.subjectMAXene nanosheetsen_US
dc.titleShear Induced Micromechanical Synthesis of Ti3SiC2 MAXene Nanosheets for Functional Applicationsen_US
dc.typeArticleen_US
Appears in Collections:2015

Files in This Item:
File Description SizeFormat 
Shear induced micromechanical synthesis_Mahesh_RSC Advances.pdf
  Restricted Access
571.12 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.