Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/657
Title: Effect of ion-implantation on surface characteristics of nickel titanium and titanium molybdenum alloy arch wires
Authors: Manu Krishnan
Seema Saraswathy
Sukumaran, K
Abraham, K M
Keywords: Optical profilometry
Frictional forces
Root mean square roughness
Issue Date: 2013
Publisher: Medknow Publications
Citation: Indian Journal of Dental Research 24(4):411-417;2013
Abstract: Aim: To evaluate the changes in surface roughness and frictional features of ‘ion-implanted nickel titanium (NiTi) and titanium molybdenum alloy (TMA) arch wires’ from its conventional types in an in-vitro laboratory set up. Materials and Methods: ‘Ion-implanted NiTi and low friction TMA arch wires’ were assessed for surface roughness with scanning electron microscopy (SEM) and 3 dimensional (3D) optical profilometry. Frictional forces were studied in a universal testing machine. Surface roughness of arch wires were determined as Root Mean Square (RMS) values in nanometers and Frictional Forces (FF) in grams. Statistical Analysis Used: Mean values of RMS and FF were compared by Student’s ‘t’ test and one way analysis of variance (ANOVA). Results: SEM images showed a smooth topography for ion-implanted versions. 3D optical profilometry demonstrated reduction of RMS values by 58.43% for ion-implanted NiTi (795.95 to 330.87 nm) and 48.90% for TMA groups (463.28 to 236.35 nm) from controls. Nonetheless, the corresponding decrease in FF was only 29.18% for NiTi and 22.04% for TMA, suggesting partial correction of surface roughness and disproportionate reduction in frictional forces with ion-implantation. Though the reductions were highly significant at P < 0.001, relations between surface roughness and frictional forces remained non conclusive even after ion-implantation. Conclusion: The study proved that ion-implantation can significantly reduce the surface roughness of NiTi and TMA wires but could not make a similar reduction in frictional forces. This can be attributed to the inherent differences in stiffness and surface reactivity of NiTi and TMA wires when used in combination with stainless steel brackets, which needs further investigations.
URI: http://hdl.handle.net/123456789/657
Appears in Collections:2013

Files in This Item:
File Description SizeFormat 
2013 _0120.pdf
  Restricted Access
4.95 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.