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PREFACE 

 

  Arsenic trioxide (ATO) is among the first-line chemotherapeutic drugs used in 

oncological practice. It has shown substantial efficacy in treating patients with relapsed 

or refractory acute promyelocytic leukaemia (APL). Unfortunately, the clinical use of 

ATO is hampered due to cardiotoxicity including QT prolongation, torsades de pointes 

(TdP) and sudden cardiac death. Due to these limitations, some patients are precluded 

from receiving this highly effective treatment. An alternative to this would be to use any 

drug that can ameliorate the cardiotoxic effects and allow exploiting the full therapeutic 

potential of ATO, with considerable impact on cancer therapy. Generation of reactive 

oxygen species (ROS) is involved in a wide range of human diseases, including cancer, 

cardiovascular, pulmonary and neurological disorders. Hence, agents with the ability to 

protect against these reactive species may be therapeutically useful. In this context, 

nutraceuticals are emerging as attractive alternative for the prevention and management 

of cardiovascular diseases because of their antioxidant properties as observed by various 

clinical, experimental and epidemiological studies. Phloretin is a dihydrochalcone, 

phenolic compound found mainly in apples. Studies have revealed that apples exert 

antioxidative activities, attributed to phytochemicals such as quercetin, catechin, 

phloretin, phloridzin and chlorogenic acid, all of which are strong antioxidants present 

mostly in the skin. However, scientific validation of phloretin with respect to its 

cardioprotective potential against anticancer drugs is unavailable. Thus, the objective of 

the present study was to analyze the protective effects of phloretin against cardiotoxicity 

induced by the anticancer drug ATO in H9c2 cardiomyoblasts.   

The thesis is divided into 6 chapters including summary and conclusion. Chapter 

1 contains general introduction regarding the chemotherapeutic property of ATO, its 

adverse effect such as cardiotoxicity, patho-physiology of the disease and the reported 

biological activities of phloretin along with aims and objectives of the study. Chapter 2 

contains materials and methods employed for the study. Chapter 3 entitled, ‘The effect 

of phloretin in ATO induced alterations in innate antioxidant status, organelles and 

cardiac specific genes in H9c2 cardiomyoblasts’, deals with the analysis of alterations in 

innate antioxidant defence system, effects on cell organelles like sarcoplasmic 

reticulum, lysosome and cytoskeleton actin, and major cardiac specific genes such as 



 

troponin, desmin and caveolin-3 to observe their behaviour during ATO intoxication 

and phloretin co-treatment.  

Chapter 4 explains the effect of phloretin against alterations in mitochondrial 

functions and calcium homeostasis in ATO toxicity in H9c2 cardiomyoblasts. Various 

parameters relevant to mitochondrial function like transmembrane potential, integrity of 

mitochondrial permeability transition pore, mitochondrial swelling, activities of electron 

transport chain complexes, oxygen consumption rate, ATP content, protein level 

expression of HSPs and calcium overload were analyzed in H9c2 cardiomyoblasts. 

Chapter 5 deals with the anti-inflammatory and anti-apoptotic potential of phloretin 

against ATO induced cardiotoxicity. Inflammation in control and treated cells were 

studied by analysing alterations in various parameters like interleukins, MCP-1, IFN-γ, 

TNF-α and NF-κB. Apoptosis was studied using imaging and flow cytometric methods, 

DNA fragmentation, activity of caspase-3, Bcl-2 expression, expression of mRNA and 

proteins involved in apoptosis such as AKT, ERK1/2, JNK, RAF1 and p38 MAPK.   

Chapter 6 describes the overall summary and conclusion of the study. Bioactive 

phloretin is found to be effective in in vitro system to protect against ATO induced 

toxicity in H9c2 cardiomyoblast cell line. This study gives an insight into the protective 

efficacy of phloretin and its potential as a nutraceutical for the prevention and 

management of cardiotoxicity due to cancer chemotherapy and other associated 

disorders. 
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CHAPTER 1 

 

1. INTRODUCTION 

 

1.1. Human exposure to arsenic and its health effects 

Arsenic is a naturally occurring metalloid that exists in practically all 

environmental media, such as air, soil and water. It exists in inorganic and organic 

forms and in different oxidation states (-3, 0, +3, +5). In the case of environmental 

exposure, toxicologists are primarily concerned with arsenic in the trivalent (As(III)) 

and pentavalent (As(V)) oxidation state (Hughes et al., 2011) with the trivalent 

exhibiting more toxic effects than the pentavalent compound (Cervantes et al., 1994). 

There are various sources of ingested arsenic, such as food (mainly in fish and seafood, 

algae and cereals), air (coal-fired power generation and smelting), and water (EFSA, 

2009). Arsenical species tend to remain in solution even at high concentrations (tens of 

μg/l) at near-neutral pH (Smedley, 2002). As a result, arsenic exposure through drinking 

water and inhalation of particulate matter is considered the cause of the largest mass 

poisoning worldwide (Lantz and Hays, 2006; Schuhmacher-Wolz et al., 2009). 

Exposures of human populations to arsenic-contaminated drinking water can 

cause anaemia, neuropathies, hyper-pigmentation, and irritations of the skin, mucous 

membranes and gastrointestinal tract (Fig. 1.1.a.). Chronic exposures can lead to 

hyperkeratosis and loss of skin pigmentation (WHO, 1983; NRC, 1999; Chen et al., 

1985; IARC, 1980). Given its daily and widespread consumption, occurrence of arsenic 

in drinking water has been recognized as a major public health concern in several 

regions of the world (Argos et al., 2010; Nordstrom, 2002; IARC, 2004). Drinking of 

groundwater contaminated with naturally occurring inorganic arsenic in Bangladesh 

represents one of the largest mass poisoning of a population in history (Smith et al., 

2000). Worldwide, an estimated 160 million people live in regions with naturally 

elevated levels of arsenic in drinking water, due to the presence of arsenic-rich 

geological formations (IARC, 2004). Within the past two decades, the World Health 

Organization (WHO), as well as the United States Environmental Protection Agency 

(EPA), reduced the allowable arsenic concentration in drinking water from 50 ppb to 10 

ppb (WHO, 1993; EPA, 2001). Fig. 1.1.b. depicts the estimated risk of arsenic in 

drinking water worldwide (Schwarzenbach et al., 2010). 
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Fig. 1.1.a.                                   b. 

 

 

Fig. 1.1. Water pollution and human health. Source: a. Alliance to end childhood lead poisoning 

and news wires, b. Schwarzenbach et al. (2010) 

 

Arsenic compounds are used for agricultural applications, such as insecticides, 

fertilizers and fungicides (Murgo, 2001). Arsenic trioxide (ATO) is a form of inorganic 

arsenite found in nature and a common byproduct of copper smelting. In addition, ATO 

is commonly used as a raw material for manufacturing other arsenic compounds used as 

wood preservatives, insecticides, and herbicides (Shibata et al., 2007). 

Long-term exposure to low doses of inorganic arsenic compounds has been 

associated with the increased incidence of several cancer types including skin, lung, 

liver, bladder, kidney and prostate cancers (Smith et al., 1992). Arsenic potently inhibits 

the transcription of the reverse transcriptase subunit of the human telomerase gene 

(hTERT). Telomerase is an enzyme that maintains the length of chromosomal ends or 

telomeres, which otherwise would progressively shorten after each cell division 

(Greider, 1996). Interestingly, cells lacking telomerase are prone to genomic instability 

and carcinogenesis (Chou et al., 2001). Paradoxically, telomerase activity is frequently 

found in advanced cancer cells and is important for continuous cancer cell proliferation 

(Bryan et al., 1995). The metabolic toxicity of ATO may also be attributed to the 

exquisite sensitivity of accessible thiol groups in key enzymes or to enzymes such as 

pyruvate dehydrogenase, which uses the dithiol lipoic acid as a cofactor (Gallagher, 

1998). 
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1.2. Ethnic medicinal use of arsenic  

While arsenic compounds are regarded as potent toxin and carcinogen, they have 

also been medically used for over 2000 years in diverse treatments (e.g. leukemia, 

leishmaniosis, trypanosomiasis) (Shim et al., 2002; Florea, 2005; Griffin et al., 2005). 

Arsenic was used as a “healing agent” by Greek physicians such as Hippocrates. Later 

on, Fowler’s solution, a 1% potassium arsenite (KAsO2) preparation, was widely used 

during the 19
th

 century. The indications were: leukemia, skin conditions (psoriasis, 

dermatitis herpetiformis and eczema), stomatitis and gingivitis in infants and Vincent’s 

anginas, as well as a health tonic. Long-term use of Fowler’s solution caused 

haemangiosarcoma, angiosarcoma of the liver and nasopharyngeal carcinoma. Arsenic 

was the primary treatment for syphilis until World War II; (arsphenamine, 

neoarsphenamine- 30%) and some protozoan infections (Florea and Büsselberg, 2006; 

Ratnaike, 2003).  

Arsenic also has a rich history as a cancer chemotherapeutic. As reported by 

Antman (2001), pharmacology texts from the 1880s described the use of arsenical 

pastes for the treatment of skin and breast cancer. In 1878, it was found that Fowler’s 

solution could be effective in lowering the white blood cell count in leukemia patients 

(Antman, 2001). Also in traditional Chinese medicine, ATO was often used to treat 

tooth marrow disease (devitalizing agent), malaria, psoriasis, syphilis and rheumatosis 

(Chen et al., 1995; Ratnaike, 2003).  

 

1.3. Arsenic as a chemotherapeutic agent 

ATO is among the first-line chemotherapeutic drugs used in oncological practice 

(Tallman, 2007; Platanias, 2009). It has shown substantial efficacy in treating patients 

with relapsed or refractory acute promyelocytic leukemia (APL) (Iland and Seymour, 

2013; Mi, 2011). It is also found to be effective in certain other hematologic 

malignancies, such as myelodysplastic syndrome, multiple myeloma and non-

Hodgkin’s lymphoma and some solid tumors, such as esophageal, gastric, lung, colon, 

hepatic, breast, gallbladder carcinoma and neuroblastoma (Baj et al., 2002; Platanias, 

2009) in a dose-dependent way. ATO is available in injectable form and is widely 

known by the tradename Arsenox™ or Trisenox™ (Fig. 1.2.). 
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Fig. 1.2. 

    

Fig. 1.2. ATO injection Arsenox™, Trisenox™ 

 

1.4. Physical properties of ATO 

Molecular weight  : 197.84 Da 

Boiling point (760 mm Hg) : 869 ºF (465 ºC) 

Sublimes at    : 379 ºF (193 ºC) 

Melting point   : 594 ºF (312 ºC) 

Vapour pressure  : 66.1 mm Hg at 594 ºF (312 ºC) 

Density (solid)   : 3.74 (water = 1.00) 

Water solubility  : Low solubility in water (37 g/L at 20 ºC, 115 g/L at   

100 ºC); slightly soluble in alcohol; soluble in dilute HCl 

solutions. 

Flammability : not flammable, but emits highly toxic arsine gas and 

oxides of arsenic fumes when burned. 

 

1.5. Mechanism of action of ATO on APL cell 

APL is characterized by a chromosomal translocation involving the retinoic acid 

receptor-alpha (RARα) gene on chromosome 17. In 95% of cases of APL, RARα gene 

on chromosome 17 is involved in a reciprocal translocation with the promyelocytic 

leukemia (PML) gene on chromosome 15, a translocation denoted as t(15;17). The RAR 

receptor is dependent on retinoic acid for regulation of transcription. The fusion of PML 

and RARα genes result in the expression of a hybrid protein (PML-RARα oncoprotein) 

with altered functions (de The et al., 1990; Borrow et al., 1990). This fusion protein 

http://en.wikipedia.org/wiki/Retinoic_acid_receptor-alpha
http://en.wikipedia.org/wiki/Retinoic_acid_receptor-alpha
http://en.wikipedia.org/wiki/Chromosome_17
http://en.wikipedia.org/wiki/Chromosome_17
http://en.wikipedia.org/wiki/Promyelocytic_leukemia_gene
http://en.wikipedia.org/wiki/Promyelocytic_leukemia_gene
http://en.wikipedia.org/wiki/Chromosome_15
http://en.wikipedia.org/wiki/Retinoic_acid
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binds with enhanced affinity to sites on the cell's DNA, blocking transcription and 

differentiation of granulocytes arresting maturation at the promyelocytic stage of 

myeloid development causing accumulation of PML cells. It does so by enhancing 

interaction of nuclear co-repressor molecule and histone deacetylase. Phosphatidyl 

inositol 3 kinase (PI3K)/Akt signalling is frequently activated in blast cells in AML 

patients, that contributes strongly to the proliferation, survival and drug resistance of 

these cells. The endogenous PML protein in normal cells has shown to be localized to a 

novel macromolecular structure in the nucleus, the nuclear body. Expression of the 

PML-RARα fusion protein in leukemic cells disrupts the nuclear bodies, and the PML 

protein is dispersed into smaller fragments of these structures (Dyck et al., 1994; Mu et 

al., 1994; Chang et al., 1995). 

Down-regulation of the PML-RARα oncoprotein by ATO overcomes the 

maturation blockade. ATO induces apoptosis and partial differentiation of APL cells 

(Shao et al., 1998; Soignet et al., 1998). ATO triggers a cellular protein called SUMO to 

'tag' the fusion protein, earmarking it for destruction (Zhang et al., 2010). Arsenic binds 

to zinc finger region of the PML moiety of PML-RARα which is rich in cysteine 

residues and initiate the degradation of PML-RARα in a proteasome-dependent way 

leading to activation of repressed genes (Fig. 1.3.). Studies report that the binding of 

arsenic to this region causes several protein molecules to join together as an oligomer 

through cross-linking and conformational changes. ATO facilitates the clearance of 

leukemia initiating cells (LIC) of APL (Mi et al., 2012). The new research has shown 

that when ATO is added to cell extracts containing the fusion protein, the protein 

becomes insoluble and the arsenic is associated with the insoluble fraction. 

Fig. 1.3. 

 

Fig. 1.3. Mechanism of ATO on APL cells (Mi et al., 2012) 
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In the 1970s, ATO was introduced into the treatment of APL and showed 

immense success in China. The clinical complete remission rate with ATO treatment 

(10 mg/dl, intravenous infusion for 28 to 60 days) was in the range from 65.6% to 84% 

(Sun et al., 1992; Zhang et al., 1999; Zhang, 1999). ATO is now widely used to induce 

remission in patients with APL based on its mechanism of induction of apoptosis 

specifically in tumour cells (Shen et al., 1997; Bergstrom et al., 1998; Soignet et al., 

2001; Soignet et al., 1998; Fenaux et al., 2001; Zhu et al., 2002). Chen et al. determined 

that, at low concentrations, ATO promotes differentiation of APL cells and, at higher 

concentrations, triggers apoptosis and down-regulates Bcl-2 expression (Chen et al., 

1996). 

 

1.6. Proposed mechanism of ATO on other cancer cells 

Although several hypotheses have been proposed, the exact role that ATO plays 

in the sequence of reactions leading to the death of the cancer cells has not yet been 

clearly defined. Observations of the clinical utility of ATO in APL have prompted 

investigations into the mechanisms of action by which arsenic produces clinical benefit. 

Considerable preclinical evidence supports the potential of ATO against a number of 

different malignancies.  

The proposed major mechanisms by which ATO induces apoptosis in cancer 

cells include generation of reactive oxidative species (ROS), chromosomal damage, 

perturbation of DNA methylation patterns, inhibition of DNA repair, modulation of 

signal transduction pathways and gene expression, interactions with growth factors or 

cell proliferation (Schoen et al., 2004; Singh et al., 2011), inhibition of nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB), caspase activation (Miller et 

al., 2002) and down-regulation of hTERT transcription (Chou et al., 2001). Signalling 

pathways include mitogen-activated protein kinases (MAPK) (Lau et al., 2004), RAS 

signalling activation (Benbrahim-Tallaa et al., 2007), c-Myc overexpression (Chen et 

al., 2001) and acquisition of androgen independence (Benbrahim-Tallaa et al., 2005). It 

could also determine promotion/progression of gene amplification, suppression of p53, 

as well as global DNA hypomethylation or malignant transformation (Kitchin, 2001; 

Zhao et al., 1997). Malignant transformation of human urothelial cells by arsenic is 

associated with epigenetic changes in histone acetylation and DNA methylation in gene 
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promoter regions (Jensen et al., 2008). ATO has also been shown to suppress the action 

of estrogen through regulation of estrogen receptor-α expression in breast cancer cell 

lines (Chow et al., 2004; Chen et al., 2002; Stoica et al., 2000). ATO could also cause 

apoptosis in proliferating layers of human umbilical vein endothelial cells and prevent 

capillary tubule and branch formation under in vivo and in vitro assay conditions 

(Roboz et al., 2000), raising the possibility of inhibiting metastasis. However, 

significant induction of apoptosis in cell systems other than APL sometimes require 

high concentration ATO (5-10 µM), a dose difficult to be achieved in vivo. Arsenic 

compounds have the ability to replace physiological metals (e.g. zinc, selenium) from 

their binding sites in molecules and therefore, interferes with many physiological 

processes (Qian et al., 2003). The pathological mechanisms involved in arsenic induced 

carcinogenicity have been represented diagrammatically below (Fig. 1.4.). 

 

Fig. 1.4. 

 

Fig. 1.4. Pathological mechanism in arsenic-induced carcinogenicity (Singh et al., 2011) 

 

1.7. Cardiotoxicity due to cancer therapy 

Unfortunately, the clinical use of ATO is hampered by side effects in healthy 

tissue, most notably in the form of cardiotoxicity and subsequent decline of cardiac 

function (Miller et al., 2002). Cardiotoxicity including QT prolongation, torsades de 
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pointes (TdP) and sudden cardiac death, has been reported with ATO treatment (Barbey 

and Soignet, 2001; Westervelt et al., 2001; Sun et al., 2006). Due to these limitations, 

some patients are precluded from receiving this highly effective treatment. Long-term 

biological safety is another issue that needs clarification in the future. 

New anticancer therapies have led to long life expectancy for many patients but 

treatment related co-morbidities have become an issue for cancer survivors. Cancer 

chemotherapy aims to induce rapid apoptosis or necrosis in proliferating cancer cells, 

often in union with growth deprivation, suppression of angiogenesis, or both. When 

these mechanisms are enacted in the heart, the result can be a terminally differentiated 

organ of limited proliferative potential, cell death, and organ dysfunction. 

In a U.S. National Health and Nutrition Examination survey of 1,807 cancer 

survivors followed for 7 years, 33% died of heart diseases and 51% of cancer 

(Fig.1.5.a.). Certain statistical studies report that in any patient, heart disease and cancer 

are likely to overlap (Fig.1.5.b.). 

 

Fig. 1.5.a.                                                         b. 

  

 

Fig.1.5. Statistics of cardiotoxicity. a. Cause of death in cancer survivors (Ning et al., 2012), b. 

Crude incidence of overall cancer and major cardiovascular disease by age (Driver et al., 2008) 

 

During cardiotoxicity, mild electrocardiograph (ECG) changes to serious 

arrhythmias, myocarditis, pericarditis and myocardial infarction may occur that may 

ultimately lead to heart failure. Thus, the heart muscle cannot pump with enough force 

to supply the body with blood containing essential O2 and nutrients. 

 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Barbey%20JT%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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Cardiotoxicity due to cancer drugs are of two types (Albini et al., 2010): 

 Acute or subacute cardiotoxicity - Alteration of ventricular repolarization phase, 

duration of QT, arrhythmias, ischemia, acute heart failure, myocarditis-pericarditis-

like syndrome 

 Chronic (early/ late) cardiotoxicity - Asymptomatic left ventricular dysfunction, 

systolic and/or diastolic dysfunction, severe form of dilated cardiomyopathy, 

cardiac death 

 

The factors influencing cardiotoxicity due to drug are (Bovelli et al., 2010): 

• Type of drug. 

• Dose administered during each cycle. 

• Electrolyte imbalance. 

• Combination of other cardiotoxic drugs. 

• Associated radiotherapy. 

• Patient’s age, presence of CV risk factors, previous CV disease 

 

1.8. QT prolongation     

The QT interval on the surface ECG is measured from the beginning of the QRS 

complex to the end of the T wave (Fig 1.6.). QT interval is the electrocardiographic 

manifestation of ventricular depolarization and repolarization. The electrical activity of 

the heart is mediated through channels and complex protein within the myocardial cell 

membrane that regulate the flow of ions in and out of cardiac cells. The rapid inflow of 

positively charged sodium (Na
+
) and calcium (Ca

2+
) ions results in normal myocardial 

depolarization. When this inflow is exceeded by outflow of potassium (K
+
) ions, 

myocardial repolarization occurs. Malfunction of ion channels, which can result from 

drugs, electrolyte abnormalities, or other factors, leads to an intracellular overload of 

positively charged ions by way of an inadequate outflow of K
+
 ions or excess inflow of 

Na
+
 ions. This intracellular excess of positively charged ions extends ventricular 

repolarization and results in QT-interval prolongation (Morganroth et al., 1991).  

 

 

 

http://jnci.oxfordjournals.org/search?author1=Adriana+Albini&sortspec=date&submit=Submit
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223992/figure/f1-can-3-130/
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Fig. 1.6.a.  

 
 

 

b. 

 
 

Fig. 1.6. ECG waveform in detail (adopted from http://ecgguru.com/ecg/ecg-waveform-

illustration) a. Action potential derived from different parts of the heart, b. Relationship 

between APD and ECG 

 

Normal QT interval range: 350 ms - 420 ms  

QT interval prolongation: >460 ms in women and >440 ms in men  

High risk patients : >500 ms  

QT prolongation is capable of causing polymorphic ventricular tachycardia, that 

is, TdP, and it is found that TdP is a trigger of ventricular fibrillation and sudden death 

in the worst case. It has been demonstrated that ATO prolongs the action potential 

duration (APD) of guinea pig ventricular myocytes via two independent molecular 

mechanisms. ATO increases cardiac Ca
2+

 currents, which regulate the plateau phase of 

the cardiac action potential and also reduces surface expression of the cardiac K
+
 

current human ether-a-go-go-related gene (hERG), which is crucial to later stages of 

cardiac repolarization (Ficker et al., 2004). The hERG encodes the alpha-subunit of the 

human K
+
 channels. The blockers of hERG channel are well known to prolong cardiac 
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APD and lead to long QT syndrome (Clancy et al., 2003). The mechanism of sudden 

death with hERG blockage has been diagrammatically illustrated below (Fig. 1.7.). 

Enhanced outward currents and accelerated deactivation kinetics have been reported as 

a result of hERG modulation by ROS (Taglialatela et al., 1997; Berube et al., 2001) and 

are compatible with the property of ATO to induce oxidative stress by increasing ROS.  

 

Fig. 1.7. 

 

 

Fig. 1.7.  Mechanisms of sudden death with hERG blockade. Drug blockade of the hERG 

channel (left) produces prolongation (blue) and an early after depolarization (EAD, red) in the 

cardiac action potential. These changes, which are heterogeneous across the ventricular wall, 

generate QT interval prolongation and, through torsade de pointes (right; upper panel). Source: 

Roden and Viswanathan, 2005.   

 

Drug-induced QT interval prolongation is one of the most common causes of the 

withdrawal of hundreds of drugs in the past decade (van Noord et al., 2010). Over 100 

marketed pharmaceutical agents cause interference in ventricular repolarization, and QT 

prolongation is mentioned in the US Food and drug administration (FDA) - approved 

labelling as a known action of the drug.  

 

Drugs causing QT prolongation are mentioned below; 

 Terfenadine (Seldane
®
) – antihistamine/removed in 1997 

Chlorpromazine (Thorazine
®
) – anti-psychotic 

Arsenic trioxide (Trisenox
®
) – anti-cancer/leukemia 

Erythromycin (Erythrocin
®
) – antibiotic 

Fluoxetine (Prozac
®

, Sarafem
®
) – anti-depressant  

Haloperidol (Haldol
®
) – anti-psychotic/schizophrenia  
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1.9. Patho-physiology of cardiotoxicity induced by ATO 

 

1.9.1. Generation of ROS 

Oxidative stress is the term referring to the imbalance between generation of 

ROS and the activity of the antioxidant defences (Poljsak et al., 2013). ROS are 

characterised by their high chemical reactivity and include radical species (with one or 

more unpaired electrons) such as superoxide (O2
•-
) and hydroxyl radicals (OH

-•
), and 

non-radical species such as hydrogen peroxide (H2O2), which cause damage to cellular 

components, including DNA, lipids, proteins and ultimately apoptosis (Ott, 2007; Rana, 

2008; Dalton et al., 1999). A free radical is any species capable of independent 

existence that contains one or more unpaired electrons occupying an atomic orbital by 

itself. This situation is energetically unstable making such species highly reactive and 

short-lived. Stability is achieved by the removal of electrons from (i.e., oxidation) or 

addition of electrons to (i.e., reduction) surrounding molecules to produce an electron 

pair. Under normal physiological conditions in cardiomyocytes, several types of ROS 

are formed inside the cells at very low concentrations which can be easily detoxified by 

normal cellular mechanisms. If the concentration of ROS is higher, they will escape 

from the cellular scavenging machineries and propagate by chain reaction leading to 

more than thousand fold increase in ROS concentration in the cells leading to oxidative 

stress (Young and Woodside, 2001). In case of antioxidant targets the resultant radical 

has low reactivity and the chain is broken.  

The endogenous ROS generation occurs by enzymatic or non-enzymatic means. 

 The former includes the biological processes like mitochondrial respiratory chain, 

phagocytosis, prostaglandin synthesis and detoxification by cytochrome P450 system 

(Willcox et al., 2004). The non enzymatic causes include the ionizing radiations that can 

form most of the ROS by the photolysis of water in the presence of oxygen (O2) (Fang, 

2002). In cardiac health, there is a balance between ROS generation and the activity of 

enzymatic and non-enzymatic antioxidant systems that scavenge or reduce ROS 

concentrations. Generation of ROS have been proved to be one of the major causes 

behind DNA damage induced by ATO (Shi et al., 2004; Li et al., 2002; Hirano et al., 

2003). 

 

http://www.hindawi.com/10517905/
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1.9.2. Role of mitochondria in ROS generation 

Although the mitochondrial electron transport chain (ETC) is a very efficient 

system, the very nature of the alternating one-electron oxidation-reduction reactions it 

catalyzes, predispose each electron carrier to side reactions with O2 (Hagen et al., 1998). 

Thus, for example, as ubiquinone within the ETC cycles between the quinone (fully 

oxidized) to semiquinone (one-electron reduction product) to quinol (fully reduced by 

two electrons) states, there is a tendency for an electron to pass to O2 directly 

(generating O2
•-
) instead of to the next electron carrier in the chain. Several iron-sulfur 

clusters within the respiratory chain are also subject to such toxic O2
•-
 generating side 

reactions with O2. It has been estimated that about 1-3% of O2 respired is converted to 

O2
•-
, a rate that increases during periods of increased energy metabolism (Bahorun et al., 

2006). Thus, mitochondrial generation of O2
•-
 represents the major intracellular source 

of oxygen radicals under physiological conditions. With estimates of 1-2% of the total 

daily O2 consumption going to mitochondrial O2
•-
 generation, a 60 kg woman would 

produce some 160-320 mmol of O2
•-
 each day from mitochondrial respiration alone 

(based on an O2 consumption of 6.4l/kg/day) and an 80 kg man would produce some 

215-430 mmol of O2
•-
 per day. 

O2
•-
 is produced by phagocytic cells (neutrophils, monocytes, macrophages, 

eosinophils) also and helps them to inactivate viruses and bacteria (Boveris and Chance, 

1973; Park et al., 2007; Ischiropoulos and Beckman, 2003; Mieyal et al., 2008). When 

these cells encounter a phagocytable particle, their O2 consumption increases 

tremendously (‘respiratory burst’) with the activation of a membrane-located enzyme 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (or Noxs) which 

catalyse the reduction of O2 into O2
•-
 (Anderson et al., 1995). Recent studies provide 

confirmatory evidence of the fundamental roles of Noxs in human disease 

(Spiekermann et al., 2003; Guzik et al., 2000; Guzik et al., 2002; Heymes et al., 2003). 

O2
•-
 participate in the production of very reactive chemical species such as OH

-•
, 

hypochlorite and chloramines. O2
•-
 is also generated by a variety of cytosolic and 

membrane-bound enzymes, including xanthine oxidase (XO), cytochrome P450 

complex and phospholipase A2 (Halliwell, 1994). 

In addition to these toxic ETC reactions of the inner mitochondrial membrane, 

the mitochondrial outer membrane enzyme monoamine oxidase catalyzes the oxidative 
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deamination of biogenic amines and is a quantitatively large source of H2O2 that 

contributes to an increase in the steady state concentrations of reactive species within 

both the mitochondrial matrix and cytosol. H2O2 is able to diffuse across biological 

membranes, whereas O2
•-
 does not. As well as arising from dismutation of O2

•-
, H2O2 is 

produced by the action of several oxidase enzymes in vivo, including amino acid 

oxidases and XO (Chance et al., 1979). The major by-product of these oxidases is H2O2, 

thus explaining the high level of catalase (CAT) present in peroxisomes which 

detoxifies H2O2 to H2O. Much of the toxicity of O2
•-
 and H2O2 involves formation of 

OH
-•
 which is the most reactive free radical in vivo. Various studies have revealed that 

mitochondrial dysfunctions play crucial roles in ATO-mediated cardiotoxicity via 

inducing excessive production of ROS (Li et al., 2002; Hwang et al., 2008). 

 

1.9.3. Innate antioxidant system 

Cellular redox homeostasis is carefully maintained by an elaborate endogenous 

antioxidant defence system, which includes endogenous antioxidant enzymes such as 

superoxide dismutase (SOD), CAT, glutathione peroxidase (GPx) and reduced 

glutathione (GSH) that are directly involved in the neutralization of ROS (Fig. 1.8., 

Gomes et al., 2012). The human antioxidant defence is complex. They minimize the 

levels of ROS while allowing useful roles of ROS to perform cell signalling and redox 

regulation (Halliwell, 2011). SOD is a cytoplasmic and mitochondrial enzyme, which 

accelerate the dismutation of O2
•-
. There are three forms of SOD: an extracellular and an 

intracellular copper/zinc (Cu/Zn) and a mitochondrial, manganese (Mn) SOD. All three 

forms catalyse the dismutation of O2
•-
 to H2O2. Because SOD enzymes generate H2O2, 

they work in collaboration with H2O2-removing enzymes. CAT, an exclusively 

peroxisomal enzyme in most tissues, converts H2O2 to water and O2. However, the most 

important H2O2-removing enzymes are the GPx enzymes which remove H2O2 by using 

it to oxidize GSH to oxidized glutathione (GSSG). GSH is a tripeptide composed of the 

amino acids cysteine, glycine and glutamic acid. It is the major antioxidant in the non-

lipid portion of cells (most of the cytoplasm). Glutathione reductase, a flavoprotein 

enzyme, regenerates GSH from GSSG, with NADPH as a source of reducing power. 

GPx also catalyse the reduction of unstable hydroperoxides at the expense of GSH 

http://www.hindawi.com/90386982/
http://www.benbest.com/nutrceut/NAC.html
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(Ursini et al., 1995). Excessive generation of ROS during ATO therapy leads to 

disruption of the endogenous antioxidant system (Vasdev et al., 2006). 

Fig. 1.8. 

 

Fig. 1.8. Endogenous antioxidant system 

 

1.9.4. Ca
2+

 signalling 

Ca
2+

 is a universal second messenger and its disruption can activate pathways 

that can lead to apoptosis (Brookes et al., 2004). Evidence demonstrates that Ca
2+

 

handling abnormalities play an important role in the patho-physiology of heart diseases, 

such as heart failure and cardiomyopathies (Yano et al., 2005). To survive, living cells 

need to maintain a tight control over intracellular calcium ([Ca
2+

]i) that ranges from 

basal levels of 100 nM to signalling levels up to millimolar concentrations (Mattson et 

al., 2000; Berridge et al., 2000; Orrenius et al., 2003). The Ca
2+

 signalling theory 

affirms that the increase in [Ca
2+

]i can be due to: (1) Ca
2+

 entry from the extracellular 

space, through channels in the plasma membrane or from (2) [Ca
2+

]i stores. Drugs could 

activate phospholipase C causing hydrolysis of phosphatidylinositol (4,5) biphosphate 

to release the signalling molecule inositol-1,4,5-trisphosphate (IP3) in cells. The 

receptor for IP3 located on the cell membrane and at the internal stores functions as a 

ligand-gated Ca
2+

 channel. Its activation by IP3 leads to the opening of Ca
2+

 conducting 

channels and thus an increase in [Ca
2+

]i (Mattson et al., 2000; Berridge et al., 2003; 

Orrenius et al., 2003). The return of [Ca
2+

]i to resting level is done by: (1) plasma 
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membrane pumps or exchangers or, through (2) re-entry to the Ca
2+

 stores 

(mitochondria, sarcoplasmic reticulum (SR)) via Ca
2+

-ATPases (Rizzuto et al., 1993). 

[Ca
2+

]i could also be bound by Ca
2+

-buffering proteins that can further modulate [Ca
2+

]i 

levels. One of the most important events resulting from the Ca
2+

 signalling is the 

activation of biological events that are modulated by binding of Ca
2+

 to Ca
2+

-sensor 

proteins (Mattson et al., 2000; Berridge et al., 2003; Orrenius et al., 2003). 

Abnormal Ca
2+

 signalling leading to cytoplasmic Ca
2+

 overload is thought to be 

critical and perhaps common mechanism underlying cardiac dysfunctioning. Carefully 

regulated Ca
2+

 cycling is critical for cardiac function, which depends on the Ca
2+

 

concentration surrounding the myofilaments rising and falling in a cyclic manner in 

response to membrane depolarization (Wang and Goldhaber, 2004). Insufficient Ca
2+

 

delivery to the myofilaments results in a weak contraction, whereas excessive Ca
2+

 

delivery carries the risk of contracture, activation of proteases and other maladaptive 

Ca
2+

-sensitive pathways that lead to cell death. A variety of ion channels, ATP-

dependent pumps, and transporter proteins serve as the major control points of Ca
2+

 

regulation in the heart (Sitsapesan and Williams, 2000; Bridge et al., 1990; Eisner et al., 

1998). 

A considerable amount of Ca
2+

 released from the SR has been taken by 

mitochondria and this helps to maintain the physiological level of Ca
2+

 in the heart. 

Regulation of [Ca
2+

]i level by mitochondria also regulates synthesis of ATP in the cell. 

During mitochondrial dysfunction, [Ca
2+

]i in the mitochondrial matrix increases. This 

promote opening of mitochondrial membrane permeability transition pore (mPTP) and 

thereby fatal arrhythmia and cell death (Halestrap, 2009; Gustafsson and Gottlieb, 

2008). 

 

1.9.5. Main signalling pathways affected by ATO interfering cardiac function 

Long-term exposure to inorganic arsenic may cause various cardiovascular 

disorders such as atherosclerosis, hypertension, ischemic heart diseases and ventricular 

arrhythmias (Hansen, 1990; Chen et al., 1995; Chen et al., 1996; Ohnishi et al., 2000). 

The cytotoxicity of ATO is mediated mainly through generation of ROS and oxidative 

stress (Yedjou and Tchouwou, 2007; Michel et al., 2003). Apoptosis induced by ATO is 

also associated with generation of ROS (Huang et al., 2002). ATO is found to be 
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genotoxic in human cells (Graham-Evans et al., 2004). In addition, a few studies have 

shown that exposure to arsenic increases the frequency of micronuclei, chromosome 

aberrations and sister chromatid exchanges both in humans and animals (Waclavicek et 

al., 2001). 

ATO induces gene expression of a number of stress response proteins, such as 

ubiquitin, that has resulted in alteration of the DNA repair mechanisms causing DNA 

damage (Bond and Schlesinger, 1985; Parag et al., 1987). GSH is known to provide 

good protection against xenobiotics and its depletion below a critical concentration 

allows enhancement of lipid peroxidation evoked by endogenous substances. ATO is 

reported to deplete cellular GSH levels and to induce oxidative stress leading to 

induction of ROS that play a key role in DNA damage (Matsui et al., 1999). This could 

result in induction of ROS affecting DNA repair mechanisms, leading to DNA damage 

(Alarifi et al., 2013). The presence of ATO in the body activates antioxidants, such as 

SOD and CAT, to metabolize the ROS (Nordenson and Beckman, 1991). 

Arsenite stimulates Noxs present in the plasma membrane of vascular 

endothelial cells and vascular smooth muscle cells (VSMC) increasing the generation of 

ROS such as O2
•-
 and H2O2 (Barchowsky et al., 1999; Smith et al., 2001). ROS 

generated during arsenite exposure couples with nitric oxide (NO) to form peroxynitrite, 

a strong oxidant implicated in the upregulation of inflammatory mediator such as 

cyclooxygenase-2 (Bunderson et al., 2002). It increases the expression of 

atherosclerosis related genes such as hemeoxygenase-1, monocyte chemo-attractant 

protein (MCP-1), and interleukin-6 (IL-6) and thus its exposure promotes the 

attachment, penetration and migration of monocytes in VSMC (Lee et al., 2005a). 

Arsenic alters focal adhesion proteins in VSMCs leading to their proliferation and 

migration (Pysher et al., 2008). 

Arsenic increases the synthesis of inflammatory mediators such as leukotriene 

E4 and prostacyclin, tumor necrosis factor-alpha (TNF-α) and NF-κB in vascular 

endothelial cells to induce the pathogenic process of atherosclerosis (Bunderson et al., 

2004; Tsai et al., 2001). Moreover, arsenic causes neurogenic inflammation of the blood 

vessel by increasing the release of substance P and endothelial neurokinin-1 (Chen et 

al., 2007). Furthermore, arsenic activates protein kinase C alpha, which causes 

phosphorylation of beta-catenin and thus reverses the association between vascular 
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endothelial cadherin and beta-catenin, along with the formation of actin stress fibers 

resulting in increased intercellular gap formation and permeability of the endothelium 

(Pereira et al., 2007). Arsenite has been reported to decrease the activity of endothelial 

nitric oxide synthase (eNOS) and Akt/protein kinase B, which subsequently decreases 

the bioavailability of NO that may lead to vascular endothelial dysfunction and 

associated cardiovascular complications (Tsou et al., 2005; Balakumar and Kaur, 2009). 

Arsenite mediates vasoconstriction of the blood vessels by phosphorylating myosin 

light chain kinase and increases Ca
2+

 sensitization leading to hypertension (Lee et al., 

2005b).  

ATO develops ventricular arrhythmia by inducing prolonged Q-T interval and 

action potential duration (Ohnishi et al., 2000; Raghu et al., 2009).  ATO interferes with 

hERG trafficking by inhibition of hERG-chaperone complexes and increases Ca
2+

 

currents by a faster cellular process. Ficker et al. proposed that an increase in cardiac 

Ca
2+

 current and reduced trafficking of hERG channels to the cell surface caused QT 

prolongation and TdP in patients treated with ATO and that Ca
2+

-channel antagonists 

may be useful in normalizing QT prolongation during ATO therapy (Ficker et al., 

2004).  

 

1.9.6. Cell death by ATO 

Studies have demonstrated that low doses of ATO induce apoptosis, whereas 

high doses lead to necrosis (Zhao et al., 2007). Apoptosis plays an important role in the 

progression of heart failure (Gill et al., 2002). Nerheim et al. also reported that 

apoptosis provided a potential pathogenetic mechanism of the cardiac rhythm (Nerheim 

et al., 2001). In addition, ATO increases LDH leakage from cytoplasm and 

consequently causes necrosis in cardiomyocytes (Gill et al., 2002). 

There are, however, studies which suggest that higher concentrations of arsenic 

cause oxidative stress (James, 1996; Best et al., 1999), increased ROS, inhibits enzyme 

and mitochondrial function and induces several stress genes (Jacobson, 1996). Finally, 

it alters cellular signal transduction, such as activation of transcription factors, changes 

of gene expression and induction of apoptosis (Orrenius et al., 2003). The inhibition of 

apoptosis by Ac-DEVD-CHO, a caspase-3 inhibitor, indicates that the caspase-3 

activation pathway is a major cause of ATO-induced H9c2 cell apoptosis. 
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Activation of caspase-3 is mediated by 2 different pathways, extrinsic pathway 

and intrinsic pathway. The intrinsic pathway is activated by intracellular stresses that 

cause mitochondrial membrane depolarization and cytochrome C release (Hei et al., 

1998). Mitochondria impairment has been reported to cause collapse of mitochondrial 

transmembrane potential (Ѱm) that leads to release of cytochrome C causing the 

activation of caspase-3 (Green and Read, 1998). It has been reported that oxidative 

stress leads to opening of mPTP and activates caspase-3 (Szeto, 2006). Taken together, 

these data suggest that ATO-induced cardiomyocyte apoptosis is mediated through ROS 

formation, increased [Ca
2+

] and then caspase-3 activation. The Bcl-2 family is major 

regulators of mitochondrial cytochrome C release and caspase-3 activation and play an 

important role in the regulation of cardiomyocyte apoptosis. The extrinsic pathway is 

triggered by extracellular stresses that cause the activation of caspase-3 (Szeto, 2006).  

 

1.10. Nutraceuticals and cardiovascular disorders 

An alternative to the adverse effects on cardiac functioning posed by ATO 

would be to use any drug that can ameliorate the cardiotoxic effects and allow 

exploiting the full therapeutic potential of ATO, with a considerable impact on cancer 

therapy. Generation of ROS is involved in a wide range of human diseases, including 

cancer, cardiovascular, pulmonary and neurological diseases (Gutteridge, 1993). Hence, 

agents with the ability to protect against these reactive species may be therapeutically 

useful such as any synthetic scavenger of ROS or an antioxidant. In this context, 

nutraceuticals are emerging as attractive alternative for the prevention and management 

of cardiovascular diseases because of their antioxidant properties. A “nutraceutical” is 

any nontoxic food or part of a food that has scientifically proven medical or health 

benefits for both the treatment and prevention of disease (Dillard and German, 2000). 

More than 50% of FDA approved drugs are from natural products and their derivatives 

(Gu et al., 2013). The search for novel phytomedicines is becoming more popular 

because they are easily available, cost effective, possess less adverse effects and have 

multifaceted activities (Nampoothiri et al., 2011). Various clinical, experimental and 

epidemiological studies revealed that nutraceuticals are effective in the management of 

cardiovascular diseases (Shukla et al., 2010). Reports suggest that consumption of diet 

rich in fruits and vegetables has been inversely associated with the risk of 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Hei%20TK%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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cardiovascular diseases due to the abundance of different bioactive compounds present 

in it (Wallace, 2011).  

 

1.11. Antioxidants 

Antioxidants are chemicals that interact with and neutralize free radicals, thus 

preventing them from causing damage. Antioxidants are also known as “free radical 

scavengers.” The body makes some of the antioxidants and uses it to neutralize free 

radicals. These antioxidants are called endogenous antioxidants. They play an important 

role in cellular homeostasis, mitosis, swelling, differentiation and signalling (Bouayed 

and Bohn, 2010). The damaging effects of ROS are reduced by antioxidants in normal 

physiological conditions. A series of defence mechanisms are developed on exposure to 

free radicals from a variety of sources. Defence mechanisms against free radical 

induced oxidative stress involve: (i) preventative mechanisms, (ii) repair mechanisms, 

(iii) physical defences, and (iv) antioxidant defences. However, the body relies on 

external (exogenous) sources, primarily the diet, to obtain the rest of the antioxidants it 

needs. These exogenous antioxidants are commonly called dietary antioxidants. Fruits, 

vegetables and grains are rich sources of dietary antioxidants. Some dietary antioxidants 

are also available as dietary supplements (Diplock et al., 1998; Bouayed and Bohn, 

2010). Examples of dietary antioxidants include beta-carotene, lycopene and vitamins 

A, C, and E.  

In recent years, we have seen an increasing interest in dietary compounds 

contained in food towards health benefits. The growing list of phytochemicals and their 

biological activities has become the focus of intensive research. Numerous studies have 

established the protective and preventive effects of phytochemicals (Howard and 

Kritchevsky, 1997; Middleton et al., 2000; Hu, 2003). The main underlying 

physiological mechanism is believed to be their antioxidative activities (Bors et al., 

1990).  

 

1.12. Flavonoids 

Flavonoids are a part of the more extended family of polyphenols, well known 

for their antioxidant activities due to the presence of phenolic rings in their structure. 

They exert antioxidant effects by scavenging ROS (Jovanovic and Simic, 2000), 

http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000043997&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044030&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044026&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000373932&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045328&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044909&version=Patient&language=English
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chelating transition metals (Mandel et al., 2006), and inhibiting enzymatic generation of 

ROS (Cos et al., 2004). They are distributed throughout the plant kingdom and are 

responsible for the colour of flower and fruit. They are abundantly present in green 

vegetables, fruits, olive and soybean oils, red wine, chocolate and tea (Hertog et al., 

1993).  

The basic structure of flavonoids includes two aromatic rings linked by a three-

carbon aliphatic chain which normally has been condensed to form a pyran or less 

commonly, a furan ring. The heterocycle in the flavonoid backbone are generally called 

ring A, B and C (Fig. 1.9.).  

 

Fig. 1.9. 

 

Fig. 1.9. Basic structure of a flavonoid ring 

 

Based on the molecular structure, flavonoids can be divided as follows: 

anthocyanidins, flavones, flavanones, flavonols, isoflavones and some minor flavonoids 

such as dihydrochalcones (Bohm, 1994). Within each category there is a variation in 

number and arrangement of hydroxyl moieties as well as sugar groups. The catechins 

and flavones are the most potent flavonoids for protecting the body against ROS. Free 

radicals get oxidized by flavonoids forming a more stable less reactive radical and 

deactivate the radicals due to the high activity of the OH
-
 group (Pietta, 2000). 

Dihydrochalcones category of flavonoids possess low toxicity and displays a broad 

spectrum of bioactivities such as anticancer, antifungal, antibacterial, antiviral, 

antiinflammatory, antihepatotoxic and antiulcer properties (Bors et al., 1990; Coleridge-

Smith et al., 1980).  

Administration of antioxidant phytochemicals such as curcumin (Reddy et al., 

2012), resveratrol (Zhao et al., 2008), α-lipoic acid (Kumazaki et al., 2013), salvianolic 

acid B (Wang et al., 2013) and arjunolic acid (Sinha et al., 2008) attenuated the ATO 

induced toxicity and the reported mechanisms for protection against cardiotoxicity was 
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via their antioxidant related effects. A large number of epidemiological studies suggest 

that flavonoids may reduce the incidence of cardiovascular diseases (Lissin and Cooke, 

2000; Hu, 2003). Phloretin is a flavonoid that possesses many biological and 

pharmacological properties, such as potent antioxidant activity in peroxynitrite 

scavenging and inhibition of lipid peroxidation (Rezk et al., 2002).  

  

1.13. Phloretin (C15H14O5) 

Phloretin [3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)propan-1-one] (Fig. 

1.10.a.) is a hydrophobic, dihydrochalcone, polyphenolic compound (MW 274.3 g/mol) 

that has been identified in apples and other natural sources including Pieris japonica, 

Kalmia latifolia, Loiseleuria procumbens and Hoveniae lignum (Remsberg et al., 2010).  

Fig. 1.10.a.                                             b. 

          

Fig. 1.10. a. Structure of phloretin, b. Apples 

  

Phloretin is present mainly in the peel of apples (80-420 mg/kg Reineta) but also 

in the pulp (16-20 mg/kg Reineta) and its concentration is highly dependent on the 

variety of apple (Escarpa and Gonzalez, 1998).  

 

1.14. Biological and pharmacological activities of phloretin 

Studies show that phloretin possess activities such as antithrombotic properties 

(Stangl et al., 2005), hepatoprotective properties (An et al., 2007), anti-osteoclastogenic 

activities (Kim et al., 2012), ability to modulate cytochrome P450 1A1 expression (Pohl 

et al., 2006) and inhibit MRP1-mediated drug transport (Nguyen et al., 2003). It inhibits 

protein kinase C and activates Ca
2+

-activated K
+
 channels in amphibian myelinated 
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nerve fibers at micromolar concentrations. It is an inhibitor of myo-inositol uptake and 

also inhibits L-type Ca
2+

 channel activity (Olson et al., 2007). It is a potent inhibitor of 

5’-iodo-thyronine deiodinase and antagonist of prostaglandin F2α receptors linked to 

phospholipase C in astrocytes.  

Apples containing large amounts of phloretin and phloridzin, have been 

correlated with numerous health benefits including reduced risk of cardiovascular 

disease, asthma, some cancers, and diabetes (Boyer and Liu, 2004). The latter effect 

may be mediated by phloridzin (glycosylated precursor of phloretin), which is a 

competitive inhibitor of the Na+-dependent glucose transporter (Alvarado and Crane, 

1964).  Olson et al. found that phloretin and phloridzin reduce the maximal velocity of 

Ca
2+

 uptake into the cardiac muscle SR (Olson et al., 2006). Phloretin has been also 

reported to block the growth of Molt-4 human leukemic cells in vitro (Devi and Das, 

1993) and Fisher bladder carcinoma and rat mammary adenocarcinoma cells in vivo 

(Trombino and Cassano, 2014) and induce apoptosis in B16 melanoma 4A5 cells 

(Nelson and Falk, 1993). Studies have revealed that apples exert antioxidative activities, 

attributed to phytochemicals such as quercetin, catechin, phloretin, phloridzin and 

chlorogenic acid, all of which are strong antioxidants, present mostly in the skin 

(Eberhardt et al., 2000). It is assumed that phloretin accounts in part for the beneficial 

property of apple peel (Lee et al., 2003).  

 

1.15. Relevance of cell culture in pharmacological studies 

For the preliminary screening of drugs in conventional drug discovery studies, 

appropriate animal models are used to find out the effect of drugs with specific 

biological properties. Introduction of animal cell culture for drug testing is of great 

relevance in pharmacological studies. It offers the possibility of observing the effect of 

drugs on cells without the interference of nervous, humoral and hormonal factors as in 

intact organism. Viability assessments in a cell culture system have been widely 

accepted even though differences exist between in vitro and in vivo systems. Some of 

the applications for animal cell cultures are,  

 Model systems for studying basic cell biology, interactions between disease causing 

agents and cells, effects of drugs on cells, process and triggering of aging and 

nutritional and metabolism studies. 

http://jpet.aspetjournals.org/content/321/3/921.full#ref-1
http://jpet.aspetjournals.org/content/321/3/921.full#ref-1
http://jpet.aspetjournals.org/content/321/3/921.full#ref-21
http://jpet.aspetjournals.org/content/321/3/921.full#ref-21
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 Drug screening and pharmacological testing 

 Tissue engineering strategies 

 Cancer research – Study the function of various chemicals, virus and radiation to 

convert normal cultured cells to cancerous cells 

 Virology 

 Gene therapy 

 Genetic Engineering – to synthesize valuable products from large scale cell 

cultures, including specific proteins or viruses that require animal cells for 

propagation. For example, therapeutic proteins can be synthesized in large quantities 

by growing genetically engineered cells in large-scale cultures. 

Even though animal studies are inevitable in pharmacological study, a 

preliminary investigation using cell culture and associated assay methods can provide 

more valuable reports. This can also give an initial idea about the dose and response of 

chemical on organ system (Schindler, 1969; Rowan and Goldberg, 1985).  

 

1.16. H9c2 cardiomyoblasts- in vitro model for cardiac muscle 

In this study commercially available myogenic cell line H9c2, derived from 

embryonic rat ventricular tissue (Kimes and Brandt, 1976), has been used as an in vitro 

model for cardiac muscle. H9c2 cells are very similar to primary cardiomyocytes, in 

terms of membrane morphology, biochemical properties, G-signalling protein 

expression and electrophysiological properties, including depolarization in response to 

acetylcholine and rapid activation of Ca
2+

 currents through L-Type channels (Hescheler 

et al., 1991; Mejia-Alvarez et al., 1994; Wang et al., 1999). Upon reduction of serum 

concentration this cell line differentiates from mononucleated myoblasts to myotubes. 

During the differentiation process, cells retain several elements of the electrical and 

hormonal signalling pathway of cardiac cells and have therefore become an accepted in 

vitro model pertaining to studies on molecular events of cardiomyocytes (Watkins et al., 

2011; Brostrom et al., 2000). H9c2 cells can be used to study free radical production 

making them a suitable system to study molecular responses to oxidative damage and 

various patho-physiological changes in the heart (L'Ecuyer et al., 2001).  
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1.17. Scope and objective of the present work  

ATO has been recommended as the front-line agent for treatment of relapsed or 

refractory APL, due to its substantial anticancer effect (Soignet et al., 1998; Fox et al., 

2008; Mathews et al., 2011). Numerous clinical reports have indicated that chronic 

exposure to a therapeutic dose of ATO could cause cardiotoxicity and evoke severe side 

effects such as ventricular arrhythmia resulting in sudden cardiac death in certain cases 

(Drolet et al., 2004; Mumford et al., 2007; Ducas et al., 2011). This has become 

increasingly relevant concern due to the extended survival time of APL patients, and 

increased likelihood of long-term exposure to ATO resulting in cardiovascular disease. 

Thus, a prophylactic treatment is required for managing the consequent cardiotoxicity in 

clinical applications of ATO. A better understanding of the potential mechanism by 

which ATO induces cardiotoxicity would be of great significance for developing 

specific and effective preventive measures. One of the main reasons that make 

cardiomyocytes more prone to oxidative stress is the enrichment of mitochondria 

compared to other cells (Gupta et al., 2007). Here comes the significance of natural, 

strong antioxidants that might be ideal drug candidates provided it does not compromise 

on the potential antitumor effects of ATO. The increasing interest in nutraceuticals 

reflects the fact that a huge population is aware about the epidemiological studies which 

indicate that a specific diet or component of the diet is associated with a lower risk for a 

certain disease. The major active nutraceutical ingredients in plants are flavonoids that 

can act as potent antioxidants and metal chelators. Phloretin is a flavonoid mainly seen 

in apples and has been reported to possess numerous biological properties.  

Till date, there are no much reports available regarding the scientific validation 

of phloretin with respect to its cardioprotective potential against ATO induced 

cardiotoxicity. The main objective of the present study was to elucidate the mechanisms 

underlying ATO induced cardiotoxicity and to evaluate the potential recovery with 

phloretin in H9c2 cardiomyoblasts emphasizing on: 

 Innate antioxidant status and organelle damage 

 Mitochondrial biology  

 Ca
2+

 homeostasis 

 Apoptotic and inflammatory pathway 
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2. MATERIALS AND METHODS 

 

2.1. Materials 

 

2.1.1. Chemicals 

ATO, phloretin, nicotinamide adenine dinucleotide reduced (NADH), 2-deoxy 

D-ribose, ethylene diamine tetraacetic acid (EDTA), 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide (MTT), dimethyl sulfoxide (DMSO), β′,7′ 

dichlorodihydrofluorescein diacetate (DCFH-DA), calcium chloride (CaCl2), 

magnesium chloride (MgCl2), sodium azide (NaN3), 1-amino 2-naphthol 4-sulphonic 

acid (ANSA), adenosine triphosphate (ATP),  phalloidin texas red, acridine orange 

(AO), ethidium bromide (EB), bovine serum albumin (BSA), DAB tablets, succinate, 

rotenone cytochrome C, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 

menadione, dichlorophenolindophenol (DCPIP), Tween-20, antimycin A, 

decylubiquinol, agarose, trizma, calcein-AM, protease inhibitor cocktail and 4',6-

diamidino-2-phenylindole (DAPI) were purchased from Sigma Aldrich (St. Louis, Mo, 

USA). Trichloro acetic acid (TCA), dipotassium phosphate (K2HPO4), potassium 

dihydrogen phosphate (KH2PO4), potassium phosphate (K2PO4), sodium 

pyrophospahte, methanol, hydrogen peroxide (H2O2), ammonium molybdate, neutral 

red (NR), phenazine methosulphate, nitroblue tetrazolium, glacial acetic acid, n-butanol, 

nicotinamide adenine dinucleotide phosphate (NADPH), SOD, sucrose, glycine and 

Triton-x100 were purchased from Merck specialities Pvt. Ltd. USA. Tris 

hydroxymethyl aminomethane hydrochloride (Tris HCl), potassium chloride, cobalt 

chloride (CoCl2) and paraformaldehyde was purchased from Sisco research laboratory, 

Mumbai, India. Fura β AM and MitoSOX™ red were purchased from Molecular 

probes, Life technologies, USA. TRIzol was from Biochem Life Science, India. 

Lysosome- green fluorescent protein (GFP) and endoplasmic reticulum- red fluorescent 

protein (ER- RFP) were purchased from Invitrogen, USA. Polyvinylidene difluoride 

(PVDF) membrane was from Bio-Rad Laboratories Pvt. Ltd, USA. Dulbecco’s 

modified Eagle’s medium (DMEM), Roswell Park Memorial Institute (RPMI) medium, 

Hank’s balanced salt solution (HBSS), Krebs’ ringer phosphate buffer, RIPA buffer, 

trypsin-EDTA, foetal bovine serum (FBS), and supplements were purchased from 

http://en.wikipedia.org/wiki/Dichlorophenolindophenol
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Himedia Pvt Ltd (Mumbai, India). All other chemicals and solvents used were of 

analytical grade. 

 

2.1.2. Diagnostic reagents and kits 

Lactate dehydrogenase (LDH) release, protein carbonyl, thiobarbituric acid 

reactive substances' (TBARS), total antioxidant, GSH, GPx, thioredoxin reductase 

(TrxR), Nuclear factor E2-related factor 2 (Nrf2), XO, aconitase, O2 consumption, Ca
2+

 

content, caspase-3, annexin V- fluorescein-isothiocyanate (FITC)/ propidium iodide 

(PI) and NF-КB (p65) expression cell based assay kits used were from Cayman chemical 

company, Ann Arbor, USA. B-type natriuretic peptide (BNP) ELISA kit was from 

AssayPro (St. Charles, MO, USA). Mitochondrial isolation kit, JC-1 mitochondria 

staining kit and cytochrome C oxidase assay kit were from Sigma-Aldrich, (St. Louis, 

MO, USA). BCA protein assay kit was from Pierce (Rockford, IL USA). ATP 

determination kit was from Molecular Probes Inc., Eugene, USA. ELISA kit for TNF α 

was from Millipore, USA. IL-6, interleukin-2 (IL-2), interleukin-10 (IL-10), MCP-1 and 

interferon-  (IFN- ) kit were from BD Biosciences, USA. DNA ladder detection kit was 

from Bioworld, USA. Primers for PCR were from Hysel India Pvt Ltd, India. 

Superscript III 1st strand synthesis system kit was from Life technologies, Bangalore, 

India. Antibodies for western blotting [primary antibodies for heat shock protein 60 

(HSP60), heat shock protein (HSP70), B-cell lymphoma-2 (Bcl-2), extracellular signal-

regulated kinase 1/2 (ERK1/2), phosphorylated ERK1/2 (pERK1/2), alpha 

serine/threonine-protein kinase (AKT), c-Jun NH2-terminal kinase (JNK), calcineurin, 

Nrf2, p38 MAPK, proto-oncogene serine/threonine-protein kinase (RAF1), 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH)] and horse radish peroxidase 

(HRP) conjugated secondary antibodies were from Santacruz, USA. 

 

2.1.3. Instruments  

The following instruments were used for the experiments: 

Carbon dioxide (CO2) Incubator (Sanyo, MCO-20AIC, Japan), Biohazard 

(Micro-filt, MFI BIO 6x2, India), Centrifuge (KUBOTA 7780, Japan and, Beckman 

Coulter, Allegra® X-12, USA), Phase contrast inverted microscope (Nikon Eclipse 

TS100, Japan), Multimode plate reader (Synergy 4, Biotek Instruments, Vermont, 
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USA), Tecan plate reader (Infinite 200Pro plate reader, Mannedorf, Switzerland), 

Spinning disk fluorescent microscope (BD Pathway™ Bioimager system, BD 

Biosciences, USA), Flow cytometer (FACS Aria II, BD Bioscience, San Jose, USA), 

Bio-rad CFX96™ Real-Time system (USA), Bio-Rad gel documentation system, Bio-

rad Molecular Imager Gel Doc XR Imaging system, USA, Bio-Rad Trans-Blot 

Turbo™, USA.  

 

2.1.4. H9c2 cells and culture conditions 

H9c2 cells derived from rat embryonic cardiomyocytes were obtained from 

American Type Culture Collection (ATCC), USA. Cells were cultured in DMEM 

supplemented with 10% FBS, 100 U penicillin/ml and 100 μg streptomycin/ml, and 

cultured in 5% CO2 at 37
 
ºC. Cells were passaged regularly and subcultured to 70% 

confluence before the experiments.  

 

2.2. Methods 

 

2.2.1. Cell treatment for H9c2 cardiomyoblasts 

Cardiotoxicity was induced in H9c2 cells with ATO (5 µM) for 24 h. The cells 

were co-treated with ATO and two different concentrations of phloretin (2.5 and 5 µM) 

for 24 h. Dose and duration of ATO treatment was optimized during our previous 

studies (Vineetha et al., 2013; Vineetha et al., 2014). ATO was dissolved in double 

distilled water by continuous stirring at 30 °C for 3 days. Phloretin was dissolved in 

DMSO and the final concentration of DMSO used was less than 0.1% (v/v) for each 

treatment. The same concentration of DMSO was used in control cells as vehicle.  

The cell seeding density were as follows: 96 well plate - 5000 cells/well, 24 well 

plate - 5 x 10
4
 cells/well, 6 well plate - 3 x 10

5
 cells/well and T25 flask - 0.5 x 10

6
 

cells/well. After 48 h, control and treated cells were subjected to various assays. The 

experimental group consist of (1) control cells; (2) cells treated with 5 µM ATO; (3) 

cells treated with 2.5 µM phloretin; (4) cells co-treated with 5 µM ATO and 2.5 µM 

phloretin; (5) cells treated with 5 µM phloretin; (6) cells co-treated with 5 µM ATO and 

5 µM phloretin. All experiments were carried out after 24 h of incubation unless 

http://en.wikipedia.org/wiki/Switzerland
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specified. After respective treatments, cells were analysed for various parameters 

relevant to cardiotoxicity. 

 

2.2.2. Morphological analysis 

H9c2 cells at the exponential growth phase were trypsinized and resuspended in 

the medium. Cells were seeded in 24-well plate. After 24 h of treatment, control and 

experimental groups were checked for morphological alterations under the phase-

contrast microscope at 10x magnification. 

 

2.2.3. Cell viability assay 

 

2.2.3.1. MTT assay 

Cells were plated in 24-well plate. After respective treatments, γ50 μl of MTT 

solution (5 mg MTT/ml DMEM) was added to each well and incubated for 3 h at 37 ºC. 

Viable cells with active metabolism convert MTT into a purple coloured formazan 

product with an absorbance maximum near 570 nm. When cells die, they lose the ability 

to convert MTT into formazan. The formazan crystals formed were thus dissolved in 

DMSO. The plate was read after 45 min of incubation at room temperature in a 

microplate reader at 570 nm (Wilson, 2000).  

 

2.2.3.2. LDH release assay 

LDH is a soluble enzyme located in the cytosol that is released into the 

surrounding culture medium upon cell damage or lysis processes. LDH activity in the 

culture medium can therefore be used as an indicator of cell membrane integrity and 

thus a measurement of cytotoxicity. The cells were cultured in 6-well plates. LDH 

release of the cells from all experimental groups was measured using LDH cytotoxicity 

assay kit following the manufacturer’s instructions. Briefly, 100 µl of supernatant was 

collected from cultured cells and is added with 100 µl of LDH reaction solution 

containing NAD+, lactic acid, iodonitrotetrazolium (INT) and diaphorase. The mixture 

was incubated with gentle shaking for 30 min at room temperature and the absorbance 

was taken at 490 nm.  
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2.2.3.3. NR uptake assay 

The NR uptake assay provides a quantitative estimation of the number of viable 

cells in culture (Repetto et al., 2008). It is based on the ability of viable cells to 

incorporate and bind to the supravital dye NR in the lysosomes, whereas non-viable 

cells will not take up the dye. The cells were incubated for 4 h with a medium 

containing 0.33% NR dye. Then cells were washed and the dye was extracted from each 

well. The absorbance was read using a multiwell plate reader at 540 nm. An increase or 

decrease in the number of cells or their physiological state results in a concomitant 

change in the amount of dye incorporated by the cells in the culture. 

 

2.2.4. Detection of intracellular ROS  

Intracellular  ROS  levels  were measured using a fluorescent probe β’, 7’ 

dichloro-dihydro-fluorescein  diacetate  (DCFH-DA)  as  probe  (Choi  et  al.,  2008). 

DCFH-DA  is  cleaved  intracellularly  by  non-specific  esterase  and  turn  to  high 

fluorescence  upon  oxidation  by  ROS.  After  respective  treatments,  cells  were  

washed with  phosphate  buffer  saline  (PBS,  pH  7.4)  and  then  incubated  with  

DCFH-DA  (20 µM) for 20 min at 37 °C in a humidified atmosphere of 5% CO2. After 

incubation, cells were washed with Krebs-Ringer-phosphate buffer (pH 7.4). DCF 

fluorescence imaging was done (Ex. 488 nm; Em. 525 nm) to detect the difference in 

the intensity of fluorescence emitted with spinning disk fluorescent microscope that was 

analyzed using ImageJ software. 

 

2.2.5. Protein carbonyl content estimation 

Protein carbonyl content was determined using a kit from Cayman chemical 

company as per manufacturer’s instructions. After respective treatments, cells were 

collected and homogenized on ice in 1-2 ml of cold buffer (50 mM phosphate buffer, 

pH 6.7 containing 1 mM EDTA). After the centrifugation of the homogenized samples 

at 10,000×g for 15 min at 4 °C, the supernatants were collected. 200 µl of the sample 

(supernatant) were transferred to two 2 ml plastic tubes. One tube served as sample and 

the other was control. 800 µl of DNPH was added to the sample tube and 800 µl of 2.5 

M HCl to the control tube. All the tubes were kept in the dark for 1 h. 1 ml of 20 % 

TCA was added in each tube and vortexed. The samples were centrifuged at 10,000×g 
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for 10 min at 4 °C and discarded the supernatant. The pellet was resuspended in 1 ml of 

60 % TCA. Then it was incubated on ice for 5 min and then centrifuged at 10,000×g for 

10 min at 4 °C. The supernatant was discarded and the pellet was resuspended in 1ml of 

(1:1) ethyl acetate/ethanol mixture. It was then vortexed well and centrifuged at 

10,000×g for 1 min at 4 °C. The protein pellet was resuspended in 500 µl of guanidine 

hydrochloride and vortexed. Again it was centrifuged at 10,000×g for 10 min at 4 °C to 

remove any leftover debris. 220 µl of supernatant was taken and the absorbance was 

read at 370 nm using a multimode plate reader. 

 

2.2.6. Estimation of TBARS  

Oxidative stress in the cellular environment results in the formation of highly 

reactive and unstable lipid hydroperoxides. Decomposition of the unstable peroxides 

derived from polyunsaturated fatty acids results in the formation of malondialdehyde 

(MDA), which is quantified. Lipid peroxidation was estimated for all experimental 

groups with TBARS assay kit. The absorbance of the colored product was measured at 

530 nm. After respective treatments the cells were collected along with culture medium 

and it was sonicated for 5 s. 100 µl of sample and 100 µl of standard were added to 

labelled tubes. To that 100 µl of SDS and 4 ml of colouring reagent were added. The 

tubes were boiled for 1 h and was placed in ice bath for 10 min to stop the reaction. 

After incubation it was centrifuged for 10 min at 1,600×g at 4 °C and incubated at room 

temperature for 30 min. From these 150 µl of samples were transferred to black well 

plate and absorbance was read at 530 nm in plate reader. 

 

2.2.7. Estimation of cellular antioxidant enzymes and oxidative stress markers 

The cells were cultured in 6-well plates. The total cellular antioxidant level, GPx 

activity, GSH content and TrxR activity of the cells from all experimental groups was 

detected as per the Cayman protocol.  

 

2.2.7.1. Total antioxidant assay (ABTS
*
 method) 

Total antioxidant activity of the samples was assayed as per Cayman protocol. 

This assay was based on the ability of antioxidants in the sample to inhibit the oxidation 

of ABTS
*
 (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) to reduced ABTS

**+
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by metmyoglobin. The amount of ABTS
**+

 produced was monitored by measuring the 

absorbance at 405 nm. For performing the assay after respective treatment the cells were 

collected by centrifugation (2000×g) for 10 min at 4 °C. The pellets were sonicated and 

centrifuged at 10,000×g for 15 min at 4 °C. For assay, 10 µl of the sample (supernatant) 

and 10 µl standard was added in two different wells. 10 µl metmyoglobin and 150 µl of 

chromogen were added to both wells. The reaction was initiated by adding H2O2. The 

wells were incubated for 5 min at room temperature and then absorbance was read at 

405 nm. 

 

2.2.7.2. GSH determination  

The glutathione assay kit utilizes an optimized enzymatic recycling method, 

using glutathione reductase for the quantification of GSH. The sulfhydryl group of GSH 

react with 5,5’-dithio-bis-2-(nitrobenzoic acid) (DTNB- Ellman’s reagent) and produces 

a yellow coloured 5-thio-2-nitrobenzoic acid (TNB). The mixed disulfide, GSTNB 

(between GSH and TNB) that is concomitantly produced, is reduced by glutathione 

reductase to recycle the GSH and produce more TNB. The rate of TNB production is 

directly proportional to this recycling reaction which is in turn proportional to the 

concentration of GSH in the sample. The absorbance of TNB was noted at 407 nm. For 

assay the cells after respective treatments were collected and centrifuged (2,000×g) for 

10 min at 4 °C. The cell pellets were homogenised in 2 ml of cold buffer and was 

centrifuged at 10,000×g for 15 min at 4 °C. After that the supernatant was 

deproteinized. 50 µl standard and sample were added to the designated wells and 

covered with the plate cover. The assay cocktail mixture containing MES buffer, 

reconstituted cofactor mixture, reconstituted enzyme mixture, water and reconstituted 

DTNB was prepared and 150 µl of assay cocktail mixture was added to each well 

containing sample and standard and incubated in dark on a shaker. The absorbance was 

measured at 407 nm at 5 min intervals for 30 min.   

 

2.2.7.3. Activity of GPx 

GPx activity was assayed spectrophotometrically using Cayman assay kit, which 

is based on the reduction of oxidized glutathione coupled to the oxidation of NADPH. 

The disappearance of NADPH was monitored at 340 nm. One unit of GPx activity was 
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defined as the amount of enzyme that can cause the oxidation of NADPH to NADP+ 

per min at 25 °C. For assay the cells after respective treatments were collected by 

centrifugation (2000×g) for 10 min at 4 °C. The cell pellets were homogenized in cold 

buffer (50 mM tris-HCl, pH 7.5, 5 mM EDTA and 1 mM DTT) and centrifuged 

(10,000× g) for 15 min at 4 °C. The supernatant was used for the assay. 100 µl of assay 

buffer, 50 µl of co-substrate mixture and 20 µl supernatant (samples) were added to the 

subsequent wells. Then 20 µl of cumene hydroperoxide were added to all wells for 

initiating the reaction. The absorbance was read once in every min at 340 nm to get 5 

time points using a plate reader. 

 

2.2.7.4. Activity of SOD 

The assay system for SOD was adopted from the method of Kakkar et al. 

(1984). The assay mixture contained 1.2 ml of sodium pyrophosphate buffer (pH 8.3, 

0.52 M), 0.1 ml (186 µM) phenazine methosulpahte, 0.3 ml (300 µM) nitroblue 

tetrazolium and 0.2 ml NADH (780 µM). This enzyme preparation was appropriately 

diluted with water to a total volume of 3 ml. The reaction was started by the addition of 

NADH. After incubation at 30 ºC for 90 s the reaction was stopped by the addition of 

0.1 ml glacial acetic acid. The reaction mixture was stirred vigorously and shaken with 

4 ml of n-butanol. The mixture was allowed to stand for 10 min, centrifuged and 

butanol layer was taken out. The colour intensity of chromogen in butanol was 

measured at 560 nm in multimode plate reader. 

 

2.2.7.5. CAT activity 

CAT activity was spectrophotometrically assayed by measuring the 

disappearance of H2O2 at 240 nm (Cohen et al., 1970). One unit of enzyme activity was 

defined as 1 µM of H2O2 decomposed per min at 25 ºC. The protein concentration was 

measured using Bradford method using BSA as standard (Bradford, 1976).  

 

2.2.7.6. Activity of TrxR   

The assay of TrxR enzyme was based on the reduction of DTNB with NADPH 

to TNB to produce a yellow product that was measured at 407 nm. Briefly, after 

respective treatments, cells were harvested using a cell scrapper and were collected by 
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centrifugation (2000×g) for 10 min at 4 °C. The pellet was homogenized in 5 ml of cold 

buffer (50 mM K2PO4, pH 7.4 containing 1 mM EDTA) and centrifuged at 10,000×g for 

15 min at 4 ºC. The supernatant was assayed for the activity of TrxR. For the assay, 140 

µl diluted assay buffer and 20 µl samples were added to wells. The reaction was 

initiated by adding 20 µl of NADPH and 20 µl of DTNB to all the wells and the plates 

were shaken for 10 s. The absorbance was read per min for 20 min at 407 nm. 

 

2.2.8. Nrf2 transcription factor assay  

Nrf2 assay was done with Cayman assay kit that employs a non-radioactive, 

colorimetric method for detecting specific transcription factor DNA binding activity in 

nuclear extracts. Nuclear extraction was done with Cayman nuclear extraction kit. Nrf2 

contained in nuclear extract samples were bound specifically to the Nrf2 response 

element immobilized in 96 well plate and was detected by addition of a specific Nrf2 

antibody and a secondary antibody conjugated to HRP. The absorbance was read at 450 

nm in Tecan plate reader. 

 

2.2.9. XO activity assay 

XO activity of the cells from all experimental groups was spectroflurimetrically 

estimated with Cayman kit. The assay was based on a multistep enzymatic reaction in 

which XO first produces H2O2 during oxidation of hypoxanthine. In the presence of 

HRP, the H2O2 reacts with 10-acetyl-3,7-dihydroxyphenoxazine (ADHP) in a 1:1 

stoichiometry to produce the highly fluorescent compound resorufin. Resorufin 

fluorescence was analyzed with an excitation wavelength of 520-550 nm and an 

emission wavelength of 585-595 nm. Cells were lysed in 100 mM Tris-HCl (pH 7.5) 

containing protease inhibitors and centrifuged at 10,000×g for 15 min at 4 °C. 

Supernatant was used for assay. 50 µl of sample and 50 µl of standard were added to 

designated wells. 50 µl assay cocktail mixture containing ADHP and HRP, was added 

to both sample and standard wells. It was then incubated at 37 °C for 45 min and read 

the fluorescence. The fluorescence was read at excitation wavelength of 520 nm and 

emission wavelength of 585 nm. 
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2.2.10. Determination of BNP  

Concentration of BNP released into the cell culture media was determined using 

ELISA kit. After respective treatments, cell culture media were centrifuged at 2000×g 

for 10 min to remove debris and the supernatant was used to detect the concentration of 

BNP. A polyclonal antibody specific for BNP was pre-coated on to a microplate. The 

BNP in standards and samples were sandwiched by the immobilized antibody and 

biotinylated polyclonal antibody specific for BNP, which is recognized by a 

streptavidin-peroxidase conjugate. All unbound materials were then washed away and a 

peroxidase enzyme substrate (peroxidase chromogen substrate tetramethylbenzidine) 

was added. The reaction was stopped by using 0.5 N HCl and the intensity of the color 

was measured using a microplate reader at 540 nm. 

 

2.2.11. Analysis of SR by imaging 

For fluorescent imaging of SR, the cells were stained with 1 µM ER- RFP in 

serum free medium and incubated for 16 h at 37 ºC, after 24 h of exposure to various 

treatments. The stain was washed off with PBS and cells were visualized in spinning 

disk microscope. 

 

2.2.12. Analysis of lysosome by imaging 

For fluorescent imaging of lysosomes, the cells were stained with 1 µM 

lysosome-GFP in serum free medium for 16 h at 37 ºC, after 24 h of exposure to various 

treatments. The stain was washed off with PBS and the samples were examined. 

 

2.2.13. Studies on cytoskeletal integrity 

The cells from all experimental groups were washed with PBS and fixed with 4 

% paraformaldehyde in PBS for 10 min, permeabilized and dehydrated with cold 100 % 

acetone for 3-5 min. Phalloidin texas red stain (in PBS) was added and kept at room 

temperature for 20 min. Nucleus was counterstained with DAPI and visualized in 

spinning disk fluorescent microscope. 

 

2.2.14. Determination of alteration in Ѱm   

Alteration in Ѱm was detected using a JC-1 mitochondria staining kit that uses 



Chapter 2 

 

   36 

JC-1, a cationic fluorescent dye. Briefly, the cells were seeded in 96-well black plate. 

After 48 h of treatment, the cells were incubated with JC-1 stain and incubated for 20 

min. For imaging of JC-1 monomers, the live cell bioimager was set at 490 nm 

excitation and 530 nm emission wavelengths, and for J-aggregates, the wavelengths 

were set at 525 nm excitation and 590 nm emission (Javadov et al., 2006). Valinomycin 

was used as positive control.  

 

2.2.15. Activity of aconitase  

Activity of aconitase was determined using Cayman kit protocol. After 

respective treatments, cells were washed with cold PBS (pH 7.4). Then fresh PBS was 

added to cover the cells and centrifuged the cells at 800×g for 10 min at 4 °C. Then 

supernatant was discarded and the cell pellet was resuspended in 1 ml of 

homogenization buffer. The cell suspension was sonicated for 5 s and centrifuged at 

20,000×g for 10 min at 4 °C. This supernatant was used for the assay of aconitase. 50 µl 

of the sample was added with 5 µl of assay buffer, 50 µl NADP+ reagent, 50 µl of 

isocitric dehydrogenase and 50 µl of aconitase substrate solution and incubated for 15 

min at 37 °C. The absorbance was taken once in every min at 340 nm for 10 min.    

 

2.2.16. Fluorescence study of mitochondrial O2
•-
 production 

Changes in mitochondrial O2
•-
 production were monitored using MitoSOX™ red 

(Mukhopadhyay et al., 2007). The cells were seeded in 96-well plate. The medium was 

removed after β4 h treatment. A solution of MitoSOX™ red (5 μM) mitochondrial O2
•-
 

indicator in HBSS was added to all the experimental groups and incubated at 37 °C for 

15 min. Cells were then washed with PBS. Fluorescent images were captured with 

spinning disk fluorescent microscope with excitation/emission range 514/580 nm and 

analyzed using Micro-Manager 1.4.14- ImageJ software.  

 

2.2.17. Activity of Noxs  

Noxs-dependent O2
•-
 production was measured by SOD-inhibitable cytochrome 

C reduction as described by Quin et al. (2006). H9c2 cell homogenates (final 

concentration 1 mg/ml) were distributed in 96-well flat-bottom culture plates (final 

volume β00 μl/well). Cytochrome C (500 μmol/l) and NADPH (100 μmol/l) were added 
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in the presence or absence of SOD (200 U/ml) and incubated at room temperature for 30 

min. Cytochrome C reduction was measured by reading absorbance at 550 nm on a 

microplate reader. O2
•-
 production in nM/mg of protein was calculated from the 

difference between absorbance with and without SOD and extinction coefficient for 

change of ferricytochrome C to ferrocytochrome C, i.e., 21.0 mmol/l/cm. 

 

2.2.18. Determination of mitochondrial swelling 

For the determination of mitochondrial swelling, mitochondria were isolated 

using a mitochondrial isolation kit from Sigma-Aldrich. Mitochondrial swelling was 

determined as per previously described method (Kristal et al., 1996). In brief, 

mitochondria (1 mg/ml) were incubated in a total volume of 1.8 ml of respiratory buffer 

(125 mM sucrose, 50 mM KCl, 5 mM HEPES, 2 mM KH2PO4 and 1 mM MgCl2 at pH 

7.2) in the presence of 6 mM succinate at 25 ºC. Rotenone (2 mM) was added to the 

buffer just before the experiment. CaCl2 (100 mM) was used as swelling agent. The 

change in absorbance was measured at 540 nm and the decrease in absorbance indicates 

the increase in mitochondrial swelling. 

 

2.2.19. Determination of integrity of mPTP 

To examine the mPTP opening, the cells were loaded with calcein-AM (0.25 

mM) in the presence of 8 mM CoCl2 for 30 min to quench cytosolic and nuclear calcein 

fluorescence (Javadov et al., 2006). The calcein fluorescence is then compartmentalized 

within mitochondria until mPTP opening permits the distribution of cobalt inside 

mitochondria, which results in the quenching of calcein fluorescence in the 

mitochondrial matrix. The mPTP opening thus leads to the decompartmentalization of 

calcein fluorescence. Images of cells were taken at 488 nm excitation and 525 nm 

emissions. 

 

2.2.20. Determination of the activity of mitochondrial respiratory complexes  

After respective treatments, mitochondria were isolated using mitochondrial 

isolation kit and suspended in 50 mM phosphate buffer (pH 7.0). Then it was frozen and 

thawed 3-5 times to release the enzymes.  
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2.2.20.1. The effect of phloretin on complex I-mediated electron transfer (NADH 

dehydrogenase) was studied using NADH as the substrate and menadione as electron 

acceptor. The reaction mixture containing 200 µM menadione and 150 µM NADH was 

prepared in phosphate buffer (0.1 M, pH 8.0). To this mitochondria (100 µg) was added, 

mixed immediately and observed quickly for change in the absorbance at 340 nm for 30 

min at 5 min interval (Paul et al., 2008). 

 

2.2.20.2. Complex II mediated activity (succinate dehydrogenase) was measured 

spectrophotometrically at 600 nm using DCPIP as an artificial electron acceptor and 

succinate as substrate. The extent of decrease in absorbance (ΔOD) was considered as 

the measure of the electron transfer activity of complex II (Paul et al., 2008). The 

reaction mixture was prepared in 0.1 M phosphate buffer (pH 7.4) containing 10 mM 

EDTA, 50 µM DCPIP, 20 mM succinate and mitochondria (50 µg). The change in 

absorbance was observed immediately for 30 min at 5 min interval.  

 

2.2.20.3. Complex III (decylubiquinol cytochrome C oxidoreductase) activity was 

determined as per the method described previously (Spinazzi et al., 2012). In brief, 

mitochondrial protein (50 µg) was mixed with 7γ0 µl distilled water, 50 μl of K2PO4 

buffer (0.5 M, pH 7.5), 75 μl of oxidized cytochrome C, 50 μl of KCN (10 mM), β0 μl 

of EDTA (5 mM, pH 7.5), 10 μl of Tween-20 in a final volume of 1 ml. A parallel well 

was run with same quantity of reagents and 10 μl of 1 mg/ml of antimycin A. The 

reaction was started by adding 10 μl of 10 mM decylubiquinol, mixed rapidly and then 

the increase in absorbance at 550 nm for 2 min was observed. Activity of complex III 

was calculated by subtracting total complex III activity (without antimycin A) and 

antimycin A-resistant activity (with antimycin A) and expressed as nmol/min/mg of 

total proteins. 

 

2.2.20.4. Activity of complex IV (cytochrome C oxidase) was determined in control 

and treated cells as per manufacturer’s protocol obtained from Sigma assay kit. Briefly, 

950 µl of 1x assay buffer was added to a cuvette and then 10 µg of mitochondrial 

suspension was added and brought the reaction volume to 1.05 ml with 1x enzyme 

dilution buffer. The reaction was initiated by the addition of 50 µl of ferrocytochrome C 
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substrate solution. Absorbance was read at 550 nm/min. The activity of the sample was 

expressed in U/ml. 

 

2.2.21. ATP determination  

ATP content in the cells was determined by using a kit from Molecular Probes. 

The kit provides a bioluminescence assay for the quantitative determination of ATP 

with recombinant firefly luciferase and its substrate D-luciferin. The assay is based on 

luciferaseʼs requirement for ATP in producing light (emission maximum ~560 nm). 

Briefly, after respective treatments, cells were lysed with buffer (pH 7.8) containing 100 

mM potassium phosphate, 2 mM EDTA, 1mM dithiothreitol (DTT) and 1% triton X-

100. 100 µl of the sample is added to standard reaction mixture which contains 

deionized water, 20x reaction buffer, 0.1 ml of 0.1 M DTT, 0.5 ml of 10 mM D-

luciferin and 2.5 µl of luciferase (5 mg/ml) and the luminescence was recorded using 

Tecan microplate reader  

 

2.2.22. Oxygen consumption assay 

Oxygen consumption rate (OCR) in control and treated cells were assayed using 

Cayman’s cell based oxygen consumption rate assay kit using antimycin A as standard 

inhibitor. The kit utilizes a phosphorescent/fluorescent oxygen probe, MitoXpress to 

measure OCR in living cells. In order to measure OCR in living cells, cells were seeded 

in black clear bottom 96 well cell culture plates in 200 µl culture medium. After 

treatment period, wells were loaded with fresh culture medium. Well containing culture 

medium alone served as blank wells. Then MitoXpress®-Xtra solution was added to all 

the wells except blank wells. Then mineral oil was dispensed to overlay each well and 

the fluorescence was measured for 3 h at 3 min interval.  

 

2.2.23. Studies on Ca
2+

 homeostasis 

 

2.2.23.1. Evaluation of [Ca
2+

]i overload   

[Ca
2+

]i overload was detected by staining the cells with Fura-2AM (Robinson et 

al., 2004). After respective treatments, cells were incubated with Fura-2AM (5 µM) at 

37 °C for 30 min. After incubation, cells were washed three times with HBSS and the 
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images were visualized using spinning disk microscope. The dye was excited at 340/380 

nm and the emission range was 510 nm.  

 

2.2.23.2. Estimation of Ca
2+

 content  

Total Ca
2+

 content in cell was assayed as per manufacturer’s protocol provided 

with Cayman assay kit. The assay utilizes an optimized o-Cresolphthalein-calcium 

reaction in which a vivid purple complex is formed in the presence of Ca
2+

 that absorbs 

between 560 nm and 590 nm. The intensity of the colour is directly proportional to the 

concentration of Ca
2+

 in the sample. 

 

2.2.23.3. Activity of Ca
 2+

-ATPase 

Activity Ca
2+

-ATPase activity was evaluated as per the method of Rorive and 

Kleinzeller (1974). In this assay, 0.1 ml of cell lysate was added to the reaction mixture 

composed of 0.4 M Tris HCl, 15 mM NaN3, 0.2 mM EDTA, 120 mM CaCl2, 20 mM 

MgCl2 to all the tubes. Then 0.2 ml of ATP (3 mM) was added to the test tubes. All the 

tubes were incubated for 30 min in a water bath at 37 ºC and the enzyme activity was 

stopped by adding 2 ml of 10% TCA. All the tubes were then centrifuged at 2,500 rpm 

for 10 min to collect supernatant. The protein-free supernatant was then analyzed for 

inorganic phosphate. For that 3 ml of the supernatant was treated with 1 ml of 

ammonium molybdate and 0.4 ml of ANSA and then absorbance was read at 680 nm 

after 20 min. 

 

2.2.23.4. Molecular docking study  

Docking studies was done using Autodock 4.2 and IGEMDOCK v2.1 (Morris et 

al., 2009; Mahindroo et al., 2006; Hsu et al., 2011). The 3D model of protein was 

retrieved from the Brookhaven Protein Data Bank (PDB) (http:// www.rcsb.org/pdb/) 

calcineurin (PDB ID: IMF8). The structure of phloretin (ChemSpider ID: 4624) was 

downloaded from Chemspider (http://www.chemspider.com/) and converted to PDB 

file using Chem3D Pro 10. Phloretin was made to bind to calcineurin (PDB ID: IMF8) 

to find the free energy binding. 
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2.2.24. ELISA analysis for inflammatory cytokines  

After respective treatments inflammatory cytokines TNF-α, IL-2, IL-6, IL-10, 

MCP-1 and IFN-  were estimated using respective ELISA kits. For performing the 

assay 100 µl diluted capture antibody was added to the wells and incubated overnight at 

4 °C. After incubation the supernatants were aspirated and the wells were washed 3 

times with 300 µl wash buffer. 200 µl assay diluents were added to all wells for 

blocking and were incubated for 1 h at room temperature. The assay diluents were 

aspirated and the wells were washed 3 times. 100 µl of samples were added to the wells 

and incubated for 2 h at room temperature and the washing step was repeated. 100 µl 

working detector was added to all the wells and incubated for 1 h at room temperature 

and repeated the washing step with wash buffer. 100 µl of substrate solution was added 

and incubated for 30 min in dark followed by 50 µl stop solution to all the wells and the 

absorbance was read at 450 nm. This procedure was common for MCP-1, IL-2, IL-6, 

IL-10 and IFN- .  

For performing TNF-α ELISA, the wells were washed with γ00 µl wash buffer 

and after that 50 µl sample was added to the wells. The plate was incubated for 2 h at 

room temperature with shaking at 200 rpm. The content of the plate was discarded and 

the plate was washed with 1x wash buffer. 100 µl of TNF-α detection antibody were 

added to the wells and incubated the plates for 1 h at room temperature. Again the plates 

were washed with wash buffer. After washing, 100 µl of Avidin-HRP solution was 

added to all wells and the plates were incubated for 30 min at room temperature. The 

content of the plate was discarded and the plates were washed with wash buffer. 100 µl 

substrate solutions were added to all the wells and incubated in dark for 15 min. After 

15 min, 100 µl stop solution was added to all the wells and the absorbance was read at 

450 nm.  

 

2.2.25. NF-КB (p65) transcription factor assay 

NF-КB (p65) transcription factor assay is a non-radioactive sensitive method for 

detecting specific transcription factor DNA binding activity in nuclear extracts. NF-КB 

in the nuclear extract, binds specifically to the NF-КB response element. After 

respective treatments the cells were collected by centrifugation and Cayman’s nuclear 

extraction kit was used for extraction of nuclear proteins. This was followed by the 
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detection of NF-КB (p65) expression level. 10 µl samples containing NF-КB was added 

to the wells and incubated overnight at 4 °C. After that all the wells were washed with 

200 µl Ix wash buffer. Then to the all wells except blank, 100 µl NF-КB (p65) primary 

antibody was added and incubated for 1 h at room temperature. The washing step was 

repeated with wash buffer. To all the wells except blank 100 µl diluted goat anti-rabbit 

secondary antibody was added and incubated for 1 h at room temperature and washed 

with wash buffer. Then, to all wells 100 µl developing solution was added and 

incubated for 30 min with gentle agitation. After that 100 µl of stop solution was added 

to all the wells and the absorbance was read at 450 nm in Tecan plate reader. 

 

2.2.26. AO/EB staining for DNA integrity detection  

Morphological changes in cells due to apoptosis were studied by AO/EB double 

staining. AO is a cell-permeable dye that intercalates into DNA, resulting in a green 

colour change. EB enters cells with disrupted membranes and intercalates into RNA and 

double-stranded DNA to appear orange. Thus, differential uptake and binding of these 

dyes allows to identify cells in the early and late stages of apoptosis and necrosis. 

Briefly the cells from all experimental groups were labelled with AO/EB to detect 

apoptosis and processed for fluorescent imaging to see alteration with various 

treatments. The working stain (100 µg/ml AO and 100 µg/ml EB in PBS) was added to 

cells and incubated for 20 min at 37 °C in a humidified atmosphere of 5% CO2 

incubator. It was then washed with PBS and examined under spinning disk fluorescent 

microscope.  

For flow cytometric analysis, after incubation with AO stain the cells were 

trypsinized and suspended in PBS. For each measurement, data from 5000 single cell 

events were collected using a flow cytometer.  

 

2.2.27. Flow cytometric analysis with annexin V/PI 

Apoptotic cells were quantified by flow cytometry. Briefly, the cells were 

trypsinized and resuspended in serum free medium. The cells were fixed in 1% 

paraformaldehyde for 5 min followed by permeabilization with triton-x100 for 1 min. 

The cell suspension was stained with annexin V for 20 min followed by counter staining 

with PI for 5 min at room temperature in dark, respectively. Apoptotic analysis was 
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immediately performed on flow cytometer. The population was separated mainly into 

two groups: live cells showing only a low level of fluorescence (Q3); apoptotic cells 

showing a higher level of both green and red fluorescence (Q2). 

 

2.2.28. Analysis of DNA fragmentation 

The cells from various experimental groups were washed in PBS and 

centrifuged to obtain pellet. The pellet was transferred to a 1.5 ml micro-centrifuge tube. 

The DNA of H9c2 was extracted using the apoptosis DNA ladder detection kit. The 

DNA fragmentation was assayed by electrophoresis on a 1% agarose gel containing 0.5 

µg/ml EB at 70 V for 2 h and its pattern was examined on the images obtained under 

ultraviolet illumination in Bio-rad Molecular Imager Gel Doc XR Imaging system. 

 

2.2.29. Caspase-3 activity assay 

Caspase-3 activity was spectrofluorimetrically estimated using a Cayman assay 

kit. The active caspase-3 cleaves the caspase-3 substrate (N-Ac-DEVD-N’-MC-R110) 

that generates a highly fluorescent product that can be measured using excitation and 

emission wavelengths of 485 nm and 535 nm, respectively. After respective treatments 

200 µl of caspase-3 assay buffer was added to each well and the plates were centrifuged 

for 800xg for 5 min. The supernatant was removed after centrifugation and 100 µl of 

lysis buffer was added and incubated for 30 min at room temperature followed by 

centrifugation at 800xg for 10 min. 90 µl of the supernatant was transferred from each 

well to a new black well plate. To that 10 µl of caspase-3 assay buffer and 100 µl of 

caspase-3 substrate solution was added and the plate was incubated at 37 °C for 30 min. 

The fluorescent intensity of each well was read in multiwell plate reader.   

 

2.2.30. Quantitative real time polymerase chain reaction (qRT-PCR)  

Cellular expression of certain mRNA was examined by RT-PCR. Total RNA 

was isolated from various cells using TRIzol. Subsequently, superscript III 1st strand 

synthesis kit was utilised for the reverse transcription (RT) of the samples. The samples 

were incubated in a Bio-rad Real-Time system, at 25 °C for 10 min, 50 °C for 50 min, 

85 °C for 5 min and then at 4 °C for 5 min. The specific PCR primers (mentioned 

below) were synthesized based on nucleotides. The mRNA of GAPDH was used as an 
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internal reference. The amplification included the following reaction stages: stage I 

(initial denaturation), which involved an incubation at 94 °C for 3 min; stage II (30 

cycles of PCR amplification), which involved 30 cycles of incubation at 94 °C for 10 s, 

55 °C for 30 s, and 72 °C for 45 s; and stage III (melting curve analysis), which 

involved an incubation at 72 °C for 5 min followed by an incubation at 16 °C for 10 

min. The primers for various genes were designed using the Primer 3, a free online tool 

to design and analyze primers for PCR and real time PCR experiments. In particular, the 

following specific primers were synthesised:  

 

GAPDH,      F: 5′-AGACAGCCGCATCTTCTTGG-γ′  

         R: 5′-TTGAGGTCAATGAAGGGGTC-γ′  

Cardiac troponin,     F: 5′-CACCAGGGACACCCTTCTAA-γ′  

R: 5′-TTCTGGAGGCGGAGATCTTA-γ′  

GATA binding protein 4 (GATA-4),   F: 5′-CTTTGTGATCCTAGAGTGGC-γ′  

          R: 5′-GAGTCAGATCAGGTATGGGA-γ′  

Desmin,      F: 5′-CTTTGTGACCTCTGGCTTAG-γ′  

R: 5′-GAGGCTTCATTCTGTCTCTG-γ′  

Caveolin-3,      F: 5′-GCAAGGAGATAGACTTGGTG-γ′  

R: 5′-GTACTTGGAGACGGTGAAAG-γ′ 

Insulin-like growth factor 1 (Igf1),   F: 5′-CTACAAAGTCAGCTCGTTCC-γ′  

R: 5′-CTGTAGGTCTTGTTTCCTGC-γ′  

Akt,       F: 5’-ACTCATTCCAGACCCACGAC-γ’  

R: 5’-CCGGTACACCACGTTCTTCT-γ’  

Erk1,       F: 5′-TCCAAGGGCTACACCAAATC-γ′  

R: 5′-AGGTAGTTTCGGGCCTTCAT-γ′ 

Erk2,       F: 5′-GAAGTTGAACAGGCTCTGGC-γ′  

R: 5′-ACGGCTCAAAGGAGTCAAGA-3 

Raf1,       F: 5′-GGACATGCAGTTGGGAACTT- γ′ 

R: 5′-TGGAAGACAGATTCAGCGTG-γ′  

Jnk,       F: 5’-CGGAACACCTTGTCCTGAAT-γ’  

R:5’-GAGTCAGCTGGGAAAAGCAC-γ’  
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Based on the amplification results, the comparative CT method (∆∆CT) was 

used to calculate the relative multiple of the starting copy number that existed in the 

template from each experimental group.  

Fold change = 2
-∆(∆CT)

 

where ∆CT = CT (target) - CT ( -actin) and  

∆∆CT = ∆CT (stimulated) - ∆CT (control) 

CT (threshold cycle) is the intersection between an amplification curve and a threshold 

line.  

CT-value was defined as the cycle number at which the fluorescent signal was recorded 

above background and the normalized gene expression was calculated.   

 

2.2.31. Western blotting for protein expression 

Immunoblotting was used to analyze the presence of NRF2, HSP60, HSP70, 

calcineurin, Bcl-2, AKT, ERK1/2, JNK, RAF1 and p38 MAPK protein expression. 

Cells were seeded in a T25 flask containing 5 ml of DMEM medium and treatments 

were carried out. At the end of the treatments, the cells were harvested and lysed with 

ice-cold cell lysis solution (RIPA buffer containing a protease inhibitor cocktail) and the 

homogenate was centrifuged at 10,000xg for 15 min at 4 °C. Total protein in the 

supernatant was quantified using a BCA protein assay kit. Total protein (40 μg) from 

each sample was separated by 10 % SDS-PAGE at 55 V. 25 µl of experimental samples 

was loaded in each wells. The protein in the gel was transferred into PVDF membrane 

using Trans-Blot Turbo™. The membrane was blocked with BSA in Tris buffered 

saline-Tween 20 (TBST) for 1 h at room temperature, and then incubated with the 

specific primary antibodies (1:500), and GAPDH (1:500) in 1% BSA in TBST with 

gentle agitation at 4 °C overnight. The incubation was followed by 3 times wash with 

TBST for 10 min in a shaker, followed by addition of HRP-conjugated secondary 

antibodies (1:1000) in 0.25% BSA in TBST for 60 min at room temperature with 

shaking. After three washes with TBST, the membranes were developed using DAB 

tablets and the relative intensity of bands were quantified using Bio-Rad Quantity One 

version 4.5 software in a Bio-Rad gel documentation system. The quantity of NRF2, 

HSP60, HSP70, calcineurin, Bcl-2, ERK1/2, AKT, JNK, RAF1 and p38 MAPK protein 

in cell lysate was normalized with the content of GAPDH. 
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2.2.33. Statistical analysis 

All experiments were performed in sextuplicates (n = 6) unless specified. Data 

are reported as mean ± SD of control and treated cells. The data were subjected to one-

way analysis of variance (ANOVA) followed by the Bonferroni test to calculate the 

statistical difference among the groups using SPSS for Windows, standard version 17.0 

(SPSS, Inc.), and significance was accepted at P ≤ 0.05. 
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3.  EFFECT OF PHLORETIN IN ATO INDUCED ALTERATIONS IN INNATE 

ANTIOXIDANT STATUS, ORGANELLES AND CARDIAC SPECIFIC 

GENES IN H9C2 CARDIOMYOBLASTS 

 

3.1. Introduction 

Oxidative stress is a potential factor leading to cell injury. It also leads to 

alterations in structure and function of sub cellular organelles such as SR (Auner et al., 

2010), mitochondria (Costantini et al., 2000; Halestrap and Pasdois, 2009; Kinnally et 

al., 2011), lysosomes (Berry and Galle, 1994; Brunk and Terman, 2002) and 

cytoskeletal material (Grzanka et al., 2003; Grzanka et al., 2010; Zitterbart and 

Veselská, 2001) that would eventually trigger apoptosis. The reports on cardiotoxicity 

of ATO by various studies suggest the significant role that it plays in the generation of 

oxidative stress during intoxication (Zhao et al., 2008). So, oxidative stress and related 

biochemical pathways are vital in cardiotoxicity. Herein, detailed investigations have 

been conducted in this respect taking alteration in innate antioxidant defence system like 

total antioxidants, SOD, CAT, GSH, GPx and TrxR into account. In addition, the effects 

on cell organelles like SR, lysosome and cytoskeleton actin have been studied to 

comprehend the influence of oxidative stress on these organelles. A detailed 

investigation on mitochondria has been included in the forthcoming Chapter (Chapter 

4). Studies were also extended to major cardiac specific genes to observe their 

behaviour during ATO intoxication. These efforts are expected to generate data for a 

better understanding of the potential mechanism by which ATO induces its 

cardiotoxicity and for developing specific and effective preventive measures. The 

flavonoid phloretin being a rich source of antioxidants was studied for its beneficial 

properties against ATO induced toxicity.  

The initial segment of the present chapter deals with the effect of phloretin on 

anticancer potential of ATO on various cancer cell lines so as to exclude the possibility 

of compromising with the toxic effect of ATO on cancer cells.  
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3.2. Methods 

Studies carried out in this chapter include the following:  

▪ The effect of phloretin on anticancer potential of ATO was checked with various 

cancer cell lines such as pancreatic cancer cell line (BxPC3), breast cancer cell line 

(MCF7) and colon cancer cell line (SW480). 

▪ The effects of phloretin against ATO induced toxicity in H9c2 cardiomyoblasts was 

assayed for 

▪  Cell viability (MTT, LDH release and NR uptake assay) (details 2.2.3.) 

▪   Intracellular ROS generation (details 2.2.4.) 

▪  Protein oxidation and lipid peroxidation (details 2.2.5., 2.2.6.) 

▪  Activities of endogenous antioxidant enzymes (details 2.2.7.) 

▪   Expression of transcription factor Nrf2 (details 2.2.8.) 

▪   Activity of XO (details 2.2.9.) 

▪  Concentration of cardiotoxicity marker BNP (details 2.2.10.) 

▪   Studies on organelle (SR, lysosome and cytoskeleton) damage by microscopic 

evaluation (details 2.2.11., 2.2.12., 2.2.13.) 

▪   Expression of cardiac specific genes (troponin, desmin, caveolin-3 and GATA-

4) (details 2.2.30.) 

 

3.3. Cancer cells and culture conditions 

BxPC3 cell line was a gift from Rajiv Gandhi Centre for Biotechnology 

(RGCB), Kerala, India. MCF7 and SW480 cell lines were obtained from ATCC, USA. 

BxPC3 cells were cultured in RPMI medium supplemented with 10% FBS, 100 U 

penicillin/ml, and 100 μg streptomycin/ml and cultured in 5% CO2 at 37 ºC. Cells were 

passaged regularly and subcultured before the experiments. MCF7 and SW480 cells 

were cultured in DMEM supplemented with 10% FBS, 100 U penicillin/ml, and 100 μg 

streptomycin/ml and cultured in 5% CO2 at 37 ºC. Cells were passaged regularly and 

subcultured before the experiments.  
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3.4. Treatments on cancer cell lines 

The cancer cells were co-treated with ATO (5 µM) and two different 

concentrations of phloretin (2.5 and 5 µM) for 24 h. Dose and duration of ATO 

treatment was same as that used for H9c2 cardiomyoblasts (details 2.2.1.). After 24 h, 

control and treated cells were subjected to various assays. The experimental group 

consist of (1) control cells; (2) cells treated with 5 µM ATO; (3) cells treated with 2.5 

µM phloretin; (4) cells co-treated with 5 µM ATO and 2.5 µM phloretin; (5) cells 

treated with 5 µM phloretin; (6) cells co-treated with 5 µM ATO and 5 µM phloretin.  

All experiments were carried out after 24 h of incubation unless specified. After 

respective treatments, cells were subjected to microscopic evaluation and analysed for 

various parameters relevant to cell toxicity such as MTT assay, LDH release assay and 

GSH assay.  

 

3.5. Results  

 

3.5.1. Effect of ATO and phloretin on cancer cell lines 

 

3.5.1.1. Morphological alteration with ATO and phloretin 

The morphological evaluation showed that cancer cells had undergone marked 

changes such as shrinkage, rounding up, detachment from the plate and membrane 

blebbing on treatment with ATO (Fig. 3.1.1.b; 3.1.2.b; 3.1.3.b) compared to that of 

control group (Fig. 3.1.1.a; 3.1.2.a; 3.1.3.a). Phloretin alone at both concentrations (2.5 

and 5 µM) did not show any significant morphological change (Fig. 3.1.1.c, e; 3.1.2.c, 

e; 3.1.3.c, e) compared to control group; whereas ATO co-treatment with both 

concentrations of phloretin (Fig. 3.1.1.d, f; 3.1.2.d, f; 3.1.3.d, f) showed similar 

morphological alterations as that of ATO alone treated group in all the 3 cancer cell 

lines studied. 
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Fig. 3.1.1.  

   

   

 

Fig. 3.1.2. 

   

   

 

Fig. 3.1.3. 

   

   
  

 

 

 

Fig. 3.1. Alterations in morphology of cancer cell lines with ATO and phloretin. 

Representative microscopic images of: 1. BxPC3 cells, 2. MCF7 cells, and 3. SW480 cells 

(Original magnification ×10). a: control cells; b: cells treated with ATO; c: cells treated with 2.5 

µM phloretin; d: cells treated with 5 µM ATO and 2.5 µM  phloretin; e: cells treated with 5 µM 

phloretin; f: cells treated with 5 µM ATO and 5 µM  phloretin.  
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3.5.1.2. Cancer cell death assays 

ATO caused severe cell death in cancer cell lines (BxPC3 - 69.54%, MCF7 - 

60.22%, SW480 - 57.35%) that was statistically significant (P < 0.05) compared to the 

control group. Phloretin alone was found to be non-cytotoxic at both the concentrations 

in all the 3 cancer cell lines studied. Phloretin co-treated with ATO showed a significant 

increase in cell death (2.5 µM, BxPC3 - 66.50%, MCF7 - 58.95%, SW480 - 59.72% and 

5 µM, BxPC3 - 70.88%, MCF7 - 59.79%, SW480 - 58.28%) similar to that of the ATO 

group (Fig. 3.2.a.). 

 

Fig. 3.2.a. 

  

Fig. 3.2.a. MTT assay. Values are means, with standard deviations represented by vertical bars 

(n = 6). * Mean value was significantly different from the control cells (P < 0·05). # Mean value 

was significantly different from the 2.5phl group (P < 0·05). $ Mean value was significantly 

different from the 5phl group (P < 0·05). 

 

Likewise, the cancer cells showed a significant increase (P < 0.05) in LDH 

release to the medium in ATO treated group (BxPC3 - 469.61%, MCF7 - 527.48%, 

SW480 - 718.38%) compared to the control group (Fig. 3.2.b.). Phloretin alone treated 

group did not show any significant alteration in LDH release compared to that of 

control group, whereas phloretin at both concentrations when co-treated with ATO 

showed a significant (P < 0.05) increase in LDH release at 2.5 µM (BxPC3 - 479.20%, 

MCF7 - 722.18%, SW480 - 743.36%) and 5 µM (BxPC3 - 490.07%, MCF7 - 816.22%, 

SW480 - 765.79%) concentrations in comparison to control group. The results indicate 

that phloretin potentiated the toxic effect of ATO (Fig. 3.2.b.). 
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Fig. 3.2.b. 

 

Fig. 3.2.b. LDH release. Values are means, with standard deviations represented by vertical 

bars (n = 6). * Mean value was significantly different from the control cells (P < 0·05). # Mean 

value was significantly different from the 2.5phl group (P < 0·05). $ Mean value was 

significantly different from the 5phl group (P < 0·05). 

 

3.5.1.3. GSH level in cancer cells 

There was a significant drop in the level of GSH in the cancer cell lines studied 

on treatment with ATO (BxPC3 - 73.03%, MCF7 - 57.89%, SW480 - 67.16%) 

compared to that of control group (Fig. 3.3.). Phloretin alone treated groups at both the 

concentration did not show any significant alteration in the level of GSH compared to 

that of control group whereas phloretin co-treatment at both the concentrations with 

ATO showed a significant decrease at 2.5 µM (BxPC3 - 80.53%, MCF7 - 84.21%, 

SW480 - 88.05%) and 5 µM (BxPC3 - 79.64%, MCF7 - 84.21%, SW480 - 85.07%) 

concentrations in the level of GSH compared to that of control group. The decrease in 

the level of GSH was more in combination therapy compared to that of ATO alone 

treated group in cancer cell lines. 
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Fig. 3.3. 
 

 
 

Fig. 3.3. GSH level in cancer cells on treatment with ATO and phloretin. Values are means, 

with standard deviations represented by vertical bars (n = 6). * Mean value was significantly 

different from the control cells (P < 0·05). # Mean value was significantly different from the 

2.5phl group (P < 0·05). $ Mean value was significantly different from the 5phl group (P < 

0·05). 

 

3.5.2. Effect of ATO and phloretin on H9c2 cardiomyoblasts 

 

3.5.2.1. Cell viability assay 

ATO caused 18.67% of cell death that was statistically significant (P < 0.05) 

compared to the control. Phloretin alone was found to be non-cytotoxic at both the 

concentrations on H9c2 cells. 2.5 and 5 µM doses of phloretin co-treated with ATO 

significantly protected the cell death (18% recovery with 2.5 and 15.97% recovery with 

5µM; P < 0.05) compared to that of the ATO (Table 3.1.). 

LDH release to the medium was significantly increased (P < 0.05) in ATO 

treated group (36.52%) compared to the control group. Phloretin co-treatment reduced 

LDH release significantly (P < 0.05) at 2.5 µM (33.45% recovery) and 5 µM (31.07% 

recovery) concentrations in comparison to ATO group. The results indicate that 

phloretin have the potential to maintain the plasma membrane integrity in ATO treated 

cells (Table 3.1.). 
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As illustrated in Table 3.1 a decline in cell viability was observed after 24 h of 

ATO treatment, based on the NR uptake by the cells. ATO treatment showed 58.24 % 

decrease in dye uptake when compared to the control group indicating reduction in cell 

viability. Phloretin was effective (P < 0.05) in protecting the cells from the toxic effects 

of ATO at both 2.5 and 5 µM concentrations as seen by the increased uptake of the 

supravital dye (Table 3.1.) . 

 

Table 3.1. 

 Control ATO 2.5phl 5phl ATO+2.5phl ATO+5phl 

MTT (% cell 

viability) 

100 81.33*±1.22 103.12±1.41 101.31±2.36  99.19$±1.29 96.79$±1.16 

LDH release 

(µU/ml) 

134.7±2.21 183.9*±5.52 135.40±1.84 134.76±2.01 137.8$±2.55 140.3$±3.28 

Neutral red (% 

uptake) 

25.17±0.55 10.51*± 0.64 25.92±0.80 25.13±0.45 21.90*±1.06 22.83*±0.65 

 

Table 3.1. Effect of phloretin and ATO on cell viability of H9c2 cells. Arsenic trioxide 

(ATO) alone treated group and phloretin (phl) treated group were compared with control group. 

The ATO+phl group was compared with ATO group. Each value represents mean ± SD (n = 6). 

* Mean value was significantly different from the control cells (P < 0·05). $ Mean values were 

significantly different from the ATO treated cells (P < 0·05). 

 

3.5.2.2. Effect on ROS with ATO and phloretin 

Significant DCF fluorescence was seen in cells treated with ATO (Fig. 3.4.b) 

compared to control group (Fig. 3.4.a). Phloretin co-treatment at both the concentrations 

with ATO (Fig. 3.4.d; 3.4.f) showed a considerable decrease in the level of green 

fluorescence emission compared to that of ATO alone treated group (Fig. 3.4.b). 

Fluorometric analysis showed a 180% increase in ROS generation in H9c2 

cardiomyoblasts on treatment with ATO when compared to that of control group (Fig. 

3.4.g). Co-treatment with phloretin (2.5 and 5 µM) was effective in reducing the ROS 

significantly (P < 0.05) from that of ATO group (Fig. 3.4.g.).  
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Fig. 3.4. 

  

  

  

 

g. 
 

 
 

Fig. 3.4. ROS generation in H9c2 cells treated with ATO and phloretin. Representative 

microscopic images (Original magnification ×10). a: control cells; b: cells treated with ATO; c: 

cells treated with 2.5 µM phloretin; d: cells treated with 2.5 µM  phloretin and 5 µM ATO; e: 

cells treated with 5 µM phloretin; f: cells treated with 5 µM  phloretin and 5 µM ATO; g. 

intensity histogram. Values are means, with standard deviations represented by vertical bars (n 

= 6). * Mean value was significantly different from the control cells (P < 0·05). $ Mean values 

were significantly different from the ATO treated cells (P < 0·05). 
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3.5.2.3. Effect of ATO and phloretin on protein oxidation and lipid peroxidation 

Oxidative stress is also associated with protein oxidation and lipid peroxidation. 

Protein carbonyls are the products of protein oxidation and are one of the most 

commonly used markers of protein oxidation. The concentration of protein carbonyl 

was significantly higher (325.78 %) in cells treated with ATO (Fig. 3.5.a.). Phloretin co-

treatment significantly reduced the concentration of protein carbonyls when compared 

to ATO treated cells. The TBARS assay is the most commonly used method for 

measuring lipid peroxidation. This assay measures MDA present in the sample which is 

one of several low-molecular-weight end products of decomposition of lipid 

peroxidation. Concentration of TBARS was higher (200.66%) in ATO treated cells 

when compared to control cells (Fig. 3.5.b.). An increased level of protein carbonyls 

and TBARS in the ATO treated cells showed oxidative damage during cardiotoxicity. 

Phloretin-ATO co-treatment at both the concentrations of phloretin prevented the 

increase in protein oxidation and lipid peroxidation compared with ATO group (P < 

0.05).  

 

Fig. 3.5.a. 

 

 
Fig. 3.5.a. Protein carbonyl in H9c2 cells treated with ATO and phloretin. Values are 

means, with standard deviations represented by vertical bars (n = 6). * Mean value was 

significantly different from the control cells (P < 0·05). $ Mean values were significantly 

different from the ATO treated cells (P < 0·05). 
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Fig. 3.5.b. 

 

 
Fig. 3.5.b. TBARS in H9c2 cells treated with ATO and phloretin. Values are means, with 

standard deviations represented by vertical bars (n = 6). * Mean value was significantly 

different from the control cells (P < 0·05). $ Mean values were significantly different from the 

ATO treated cells (P < 0·05). 

 

3.5.2.4. Endogenous antioxidant and Nrf2 status with ATO and phloretin 

Evaluation of endogenous antioxidant status during cardiotoxicity provides an 

indication of oxidative damage to the cells. Total antioxidants, SOD, CAT, GSH and 

GPx activity (Table 3.2.) were significantly decreased (P < 0.05) from basal level in 

ATO treated cells (64.51%, 23.77%, 37.31%, 52.94% and 30.47% respectively) and 

phloretin co-treatments at 2.5 and 5 µM concentrations were effective in reverting the 

enzyme activity considerably from that of ATO treated group. TrxR system controls the 

redox state of proteins in the cells along with GSH system. The TrxR enzyme also 

showed a significant decrease (P < 0.05) in ATO (37.5%) treated group and phloretin 

was effective in reverting its level near to the basal level (Table 3.2.). This validates 

strong antioxidant potential of phloretin in H9c2 cells. 
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Table 3.2. 

 Control ATO 2.5phl 5phl ATO+2.5phl ATO+5phl 

Total antioxidant 

(mM)  

0.031±0.001  0.011*±0.001  0.032±0.003  0.032±0.003  0.029$±0.002  0.026$± 0.003  

SOD (Units/mg 

protein)  

0.143±0.021  0.109*±0.013  0.143±0.013  0.142±0.023  0.140$±0.033  0.137$±0.026  

CAT (Units/mg 

protein)  

0.268±0.027  0.168*±0.035  0.268±0.072  0.265±0.047  0.261$±0.059  0.255$±0.039  

GSH (µM)  0.170±0.013  0.080*±0.002  0.170±0.003  0.169±0.002  0.167$± 0.007  0.165$± 0.004  

GPx 

(nmol/min/ml)  

0.397±0.007  0.276*±0.011  0.397±0.004  0.398±0.006  0.388$±0.006  0.382$±0.011  

TrxR 

(µmol/min/ml)  

0.0128±0.0003  0.0080*±0.0002  0.0129±0.0012  0.0127±0.0006  0.0123$±0.004  0.0116$±0.003  

 

Table 3.2. Effect on the antioxidant status of H9c2 cells with various treatments. Arsenic 

trioxide (ATO) alone treated group and phloretin (phl) treated group were compared with 

control group. The ATO+phl group was compared with ATO group. Each value represents 

mean ± SD (n = 6). * Mean value was significantly different from the control cells (P < 0·05). $ 

Mean values were significantly different from the ATO treated cells (P < 0·05). 

 

The level of transcription factor Nrf2 was increased significantly (P < 0.05) in 

ATO alone (117.36%) treated cells when compared to the control group (Fig. 3.6.). 

Phloretin alone did not show any alterations in the expression of Nrf2 on H9c2 cells. 

Phloretin co-treatment at both the concentrations with ATO were significantly effective 

in decreasing the Nrf2 level from that of ATO treated group as observed with ELISA 

assay (Fig. 3.6.a.), as well as western blotting assay (Fig. 3.6.b.). 
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Fig. 3.6.  
 

a.  

 
 

b.  

 
 

Fig. 3.6. Nrf2 activation in H9c2 cells treated with ATO and phloretin. a. ELISA assay, 

values are means, with standard deviations represented by vertical bars (n = 6). * Mean value 

was significantly different from the control cells (P < 0·05). $ Mean values were significantly 

different from the ATO treated cells (P < 0·05). b. Representative western blot image of 

expression of NRF2. 

 

3.5.2.5. Effect on XO activity  

XO plays a significant role in cardiovascular pathology. It catalyses the 

oxidation of hypoxanthine to xanthine, and xanthine to uric acid; oxygen is 

simultaneously reduced both to O2
-• and H2O2. Inhibition of XO is reported to enhance 

mechanical efficiency and improve cardiac remodelling. XO activity underwent a 

significant increase upon ATO exposure (48±2 µU/ml) compared to control group 

(22±1 µU/ml). ATO co-treated with phloretin at both concentrations were effective in 

reducing (2.5 µM = 28±2 µU/ml and 5 µM = 29±1 µU/ml) the XO activity when 

compared to ATO group (Fig. 3.7.).  
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Fig. 3.7. 

 

Fig. 3.7. XO in H9c2 cells treated with ATO and phloretin. Values are means, with standard 

deviations represented by vertical bars (n = 6). * Mean value was significantly different from 

the control cells (P < 0·05). $ Mean values were significantly different from the ATO treated 

cells (P < 0·05). 

 

3.5.2.6. Effect of ATO and phloretin on cardiotoxicity marker BNP 

Measurement of BNP levels in cancer patients receiving chemotherapy can 

predict the treatment's risk of cardiotoxicity (Lenihan et al., 2007). BNP reading >100 

pg/ml signal an 18-fold increase in risk of heart failure, arrhythmias, or other 

cardiovascular complications. The risk is much steeper if levels exceeded >200 pg/ml. 

ATO treatment enhanced BNP level significantly (177.14%) compared to control cells 

(Fig. 3.8.). But phloretin co-treatment with ATO significantly reduced BNP level (2.5 

µM = 57.73%, 5 µM = 56.70%) from that of ATO group (P < 0.05). 

Fig. 3.8. 

 

Fig. 3.8. BNP level in H9c2 cells treated with ATO and phloretin. Values are means, with 

standard deviations represented by vertical bars (n = 6). * Mean value was significantly 

different from the control cells (P < 0·05). $ Mean values were significantly different from the 

ATO treated cells (P < 0·05). 
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3.5.2.7. Effect of phloretin against ATO induced SR stress  

The SR of H9c2 cells treated with ATO (Fig. 3.9.b) differed in their appearance 

from that of the control cells (Fig. 3.9.a). The SR of ATO treated group were less 

compact than those of the control group and appeared more rounded up, diffused and 

even collapsed. It was also found that SR had accumulated around the nuclei in ATO 

treated group (Fig. 3.9.b). Phloretin co-treatment was effective in maintaining the 

network-like structural integrity of SR (Fig. 3.9.d, f). 

Fig. 3.9. 

  

  

  

g. 

 
 

Fig. 3.9. Alteration in SR with ATO and phloretin. Representative fluorescent microscopic 

images of H9c2 cells stained with ER-RFP (Original magnification ×20). a: control cells; b: 

cells treated with ATO; c: cells treated with 2.5 µM phloretin; d: cells treated with 2.5 µM  

phloretin and 5 µM ATO; e: cells treated with 5 µM phloretin; f: cells treated with 5 µM  

phloretin and 5 µM ATO; g.: intensity histogram. 
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3.5.2.8. ATO induced alterations in lysosomes  

Staining of the lysosomes with lysosome-GFP probe (Fig. 3.10.) revealed a 

number of aberrations in the lysosomes of cells with ATO. An increase in the number 

and size of the lysosomes were noted in H9c2 cells exposed to ATO (Fig. 3.10.b). ATO-

phloretin co-treatment (Fig. 3.10.d, f) was able to retain size as well as number of 

lysosome more or less same to that of control group (Fig. 3.10.a). 

 

Fig. 3.10. 

  

  

  
 

Fig. 3.10. Alteration in lysosome with ATO and phloretin. Representative fluorescent 

microscopic images of H9c2 cells stained with lysosome-GFP (Original magnification ×20). a: 

control cells; b: cells treated with ATO; c: cells treated with 2.5 µM phloretin; d: cells treated 

with 2.5 µM  phloretin and 5 µM ATO; e: cells treated with 5 µM phloretin; f: cells treated with 

5 µM  phloretin and 5 µM ATO. 
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3.5.2.9. Phloretin against ATO induced alterations in contractile protein  

Staining of F-actin with phalloidin revealed the alteration of contractile protein. 

The cytoskeleton of control cells (Fig. 3.11.a) had an intact filamentous network, while 

cells treated with ATO showed disruption of filamentous network (Fig. 3.11.b). 

Phloretin was significantly effective in holding intact the mesh-like architecture of the 

cells (Fig. 3.11.d).  

 

Fig. 3.11. 
 

  

  

Fig. 3.11. Alteration in integrity of cytoskeleton with ATO. Representative fluorescent 

microscopic images of H9c2 cells stained with phalloidin (Original magnification ×20). a: 

control cells; b: cells treated with ATO; c: cells treated with 2.5 µM phloretin; d: cells treated 

with 5 µM ATO phloretin and 2.5 µM. 

 

3.5.2.10. Genes involved in cardiotoxicity 

The expression levels of genes related to myocardial structure and functioning 

were detected in H9c2 cells treated with ATO. The genes detected in this study included 

troponin, desmin, caveolin-3 and GATA-4 (Fig. 3.12.). The expression of troponin and 

caveolin-3 were significantly up-regulated (P < 0.05) and desmin was significantly 

down-regulated (P < 0.05) in H9c2 cells with ATO intoxication when compared to that 
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of control group. While there was no significant change observed in GATA-4 mRNA 

expression. Phloretin co-treatment could considerably revert the adverse effect caused 

by ATO in H9c2 cells. 

 

Fig. 3.12. 

 

 

Fig. 3.12. Relative mRNA expression of cardiac specific genes in experimental groups. 

Values are means ± standard deviation of 3 values. * Mean value was significantly different 

from the control cells (P < 0·05). $ Mean values were significantly different from the ATO 

treated cells (P < 0·05). 

 

  

0

0.5

1

1.5

2

2.5

3

3.5

Troponin Desmin Caveolin-3 GATA4

R
e
la

ti
v
e
 m

R
N

A
 e

x
p

r
e
s
s
io

n
 

Control

ATO

2.5phl

5phl

ATO+2.5phl

ATO+5phl

$ 

$ 
$ 

$ $ 

$ 

* 



Chapter 3 

 

65 

 

3.6. Discussion 

The high prevalence of cardiovascular diseases among cancer patients on 

medication has made them a constant focus of medical research. There are reports on 

the adverse effects of ATO on cardiac tissue (Raghu et al., 2009), adult cardiac 

myocytes (Raghu and Cherian, 2009) and cardiac cell line (Vineetha et al., 2013) from 

our group as well as from various reports (Zhou et al., 2003). Oxidative stress and 

associated complications like inhibition of cardiac ion channels are reported to be the 

main pathological mechanisms responsible for cardiotoxicity. The evaluation in the 

alterations of innate antioxidant markers is thus very important to find the potency of 

antidotes. On the basis of literature (Eberhardt et al., 2000), and reports from our 

previous studies on apple peel, phloretin present in the apple peel is expected to play 

major role for its beneficial property against ATO cardiotoxicity. Therefore, we studied 

the effect of phloretin against ATO induced alterations in various endogenous 

antioxidant enzymes, organelles and expression of genes relevant to myocardial injury 

to evaluate the nutraceutical potential of phloretin.  

ROS play an important role in the development of cardiovascular diseases, 

including hypertension, atherosclerosis, cardiac hypertrophy, heart failure, ischemia-

reperfusion injury and stroke (Paravicini and Touyz, 2008; Prathapan et al., 2014; 

Sankar et al., 2013; Soumya et al., 2014). In addition to increased free radical 

production in the failing heart, there is evidence that decreased antioxidant reserves 

contribute to increased oxidative stress (Vasdev et al., 2006). Potential ROS sources 

include mitochondria, XO, Noxs, dysfunctional NO synthases, and infiltrating 

inflammatory cells. There are several antioxidant defences that a cell adopts to maintain 

their survival against oxidative stress and these mechanisms may be enzymatic or 

nonenzymatic. The major enzymatic antioxidants include SOD, CAT and GPx. Among 

these, GPx/GSH system is important in low-level oxidative stress. GSH synthesis is 

upregulated during oxidative stress and inflammation (Angel et al., 2011). GSH is 

essential for arsenic metabolism and acts as a substrate in other detoxifying enzymes 

against oxidative stress, such as GSH transferases (Aposhian and Aposhian, 2006). 

Moreover, GSH depletion only appears to be therapeutically effective when very low 

levels of this tripeptide can be achieved within the cancer cells (Estrela et al., 2006). 

Thus, achievement of selective tumor GSH depletion under in vivo conditions appears 
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as a pharmacological challenge (Angel et al., 2011). GSH, which is not synthesized by 

mitochondria but taken up from the cytosol through a multicomponent transport system 

(Meister, 1991; Circu and Aw, 2008), is involved in the defense against peroxides 

generated from the ETC (Arai et al., 1999) and is an important regulator of the 

mitochondrial permeability transition and mPTP opening (Obrador et al., 2001; Estrela 

et al., 2006; Kroemer and Reed, 2000; Fulda et al., 2010). 

CAT is an intracellular antioxidant enzyme that is very effective in high-level 

oxidative stress and protects cells from H2O2 produced within the cell. The enzyme is 

especially important in the case of limited GSH content or reduced GPx activity. TrxR 

is an antioxidant enzyme that participates in thiol-dependent cellular reductive 

processes. Keeping the high therapeutic importance of oxidative stress in heart 

pathology into account, detailed investigations had been conducted on alterations of 

these antioxidant parameters. Most of these enzymes, including SOD and CAT showed 

differential behaviour in activity which may be due to variation in their physiological 

environments between in vitro and in vivo study. Results revealed significant damage to 

innate antioxidant machinery with ATO and remarkable recovery with both doses of 

phloretin.  

Nrf2 is a transcription factor that plays a key role in maintaining redox 

homeostasis via its interaction with a cysteine-rich protein Kelch-like ECH-associated 

protein 1 (Keap1). In resting cells, Nrf2 and Keap1 form a tight complex, which is 

targeted for degradation by proteasomes (Fig. 3.13.). Under oxidative stress, Nrf2 is 

released from the Nrf2/Keap1 complex and translocates to the nucleus where it is able 

to induce the expression of a battery of genes encoding diverse cytoprotective proteins 

that includes antioxidative enzymes (Taguchi et al., 2011). ATO induced depletion of 

endogenous antioxidants with activation of cellular Nrf2 expression level. This is 

presumably to keep the expression of antioxidant enzymes in check to maintain the 

cellular defences active, or to rapidly restore induced enzymes to normal levels (Yin et 

al., 1998). The result obtained clearly indicated the activation of Nrf2 in ATO treated 

cells and the beneficial effect of phloretin with ATO. 
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Fig. 3.13. 

 

 

Fig. 3.13. Mechanism of Nrf2 

 

Protein oxidation and lipid peroxidation is also a serious contributor to various 

cardiac disorders. TBARS and protein carbonyls are the most commonly used markers 

of oxidative stress (Draper and Hadley, 1990; Dalle-Donne et al., 2003). An increased 

level of TBARS and protein carbonyls in the ATO treated cells showed oxidative 

damage via lipid peroxidation and protein oxidation during ATO toxicity. Phloretin was 

efficient in partly protecting the cell from oxidative stress.  

XO derived ROS production is well known to be important in cardiotoxicity. 

More recently, it has been shown that XO can be released into the circulation and bind 

to the luminal surface of endothelial cells, so that it can exert important effects even in 

tissues where it is not normally expressed. In particular, XO appears to play a role in the 

genesis of endothelial dysfunction in some settings. XO plays a significant role in the 

generation of ROS, including H2O2, O2
•- and OH-•, and byproducts of XO oxidation 

have been implicated in several abnormal physiological processes (Pacher et al., 2006), 

as the OH-• will cause lipid peroxidation and modify protein and nucleic acid resulting 

in apoptosis and cell death. XO inhibitors protect heart during pathological conditions 

(Pacher et al., 2006). We saw a significant depletion in the activity of XO in ATO cells 

co-treated with phloretin. 
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Alteration in SR with ATO has significant contribution in cardiotoxicity as SR is 

the centre of protein folding for synthesis of functional protein (Auner et al., 2010). The 

visual evaluation of SR in ATO treated group showed sign of initiation of SR stress. 

There are reports that SR chaperons during SR stress induce apoptosis. Based on this we 

speculate that this organelle may partially contribute in apoptosis. The intense 

lysosomal staining of ATO treated cells might reflect lysosomal membrane 

destabilization. This destabilization allows acidic lysosomal contents to be released into 

the intracellular microenvironment (Ollinger and Brunk, 1995). Alternatively, ATO 

treatment increased the total number as well as size of lysosomes within the cells that 

may increase the acidity of lysosomal bodies. Phloretin co-treatment was effective in 

decreasing the number and size of lysosomal bodies. 

Intact cytoskeleton is essential for keeping the integrity of cardiac myocytes. 

Disruption of cytoskeletal assembly can be due to any stress that can ultimately lead to 

cell death. We had previously reported disorganization of actin into fragmented and 

fragile form with ATO (Vineetha et al., 2013). This disorganization affects the 

contraction efficiency of heart by reducing the force of contraction of cardiac myocytes. 

In the current study, the reorganization of actin filaments after treatment of H9c2 cells 

with ATO-phloretin co-treatment was observed. Several studies show that actin 

cytoskeleton is a dynamic structure actively involved in the realization of cell death 

process (Grzanka et al., 2003; Grzanka et al., 2010; Zitterbart and Veselská, 2001). The 

rearrangement of F-actin accompanying apoptosis is well documented in many cell lines 

treated with various anticancer agents. Grzanka et al. suggested that there is a 

correlation between F-actin localization and apoptotic body formation during the 

apoptosis (Grzanka et al., 2003). Here, a high concentration of F-actin as aggregates at 

the periphery of shrunken cells was observed. Moreover, a few shrunken cells with 

condensed chromatin as well as depolymerization of actin cytoskeleton was also found. 

Based on the above cited studies and our own results, we suggest that remarkable actin 

cytoskeleton rearrangement has undergone in cells on treatment with ATO and these 

main morphological changes associated with apoptosis were reverted on treatment with 

phloretin. 

BNP is a biomarker with well-recognized diagnostic and independent prognostic 

implications in heart failure patients. BNP is secreted by the ventricles in response to 
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end-diastolic pressure and volume (Doust et al., 2004; Feola et al., 2011). Several 

studies have demonstrated increased plasma BNP levels during cancer therapy with 

anthracyclines, a group of widely prescribed chemotherpeutic agents with well-known 

cardiovascular toxicity (Feola et al., 2011; Pichon et al., 2005; Sherief et al., 2012). 

BNP has recently been reported to be the clinically relevant method for monitoring 

chemotherapy-related cardiac failure and death over left ventricular ejection fraction 

(LVEF) using multigated acquisition equilibrium radionuclide ventriculography 

(Skovgaard et al., 2014). In our study also we observed a marked hike in the level of 

BNP on treatment with ATO, and phloretin co-treatment could provide significant 

reversal to the level of BNP. 

Troponin I, as a biomarker of cardiotoxicity associated with chemotherapy. Its 

increase in the blood underlines the occurrence of irreversible myocardial cell injury. 

The troponin complex controls the interaction of thick and thin filaments of striated 

muscle in response to alterations in [Ca2+]i concentrations (Sasse et al., 1993). Desmin 

is a muscle cytoskeletal protein abundantly seen in heart muscle (2% of total protein) 

whose gene belongs to the family of intermediate filament proteins. Its expression is 

initiated in replicating myoblasts and accumulates to a high level as muscle cells 

differentiate (Li et al., 1993). It is a major component of Purkinje fibers, the specialized 

myocardial conduction system that enables the heart to contract in a coordinated 

fashion. Caveolin-3 is a cardiac muscle specific subtype of caveolin protein. It is an 

inhibitor of cell growth and proliferation. There are reports to show that caveolin-3 

mutations are present in long QT Syndrome, but they are rare and may not have any 

clinical consequence, despite an electrophysiology in vitro phenotype (Hedley et al., 

2013). Caveolin-3 is concentrated in the caveolae of myocytes, and modulates 

numerous metabolic processes including cardiomyocytes contraction. There are many 

proteins that associate with caveolin-3, including ion channels and exchangers. In 

cardiomyocytes, caveolin-3 negatively regulates ATP-dependent K+ channels (KATP) 

localized in caveolae (Garg et al., 2009). KATP channel opening decreases significantly 

when interacting with caveolin-3 (Garg et al., 2009). The present study showed up-

regulation of troponin and caveolin-3 and down-regulation of desmin during ATO 

intoxication indicating the influence on cell differentiation, growth and [Ca2+]i 

http://en.wikipedia.org/wiki/Caveolae
http://en.wikipedia.org/wiki/Myocytes,_cardiac
http://en.wikipedia.org/w/index.php?title=ATP-dependent_potassium_channels&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=ATP-dependent_potassium_channels&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=ATP-dependent_potassium_channels&action=edit&redlink=1
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concentration during ATO therapy. Phloretin co-treatment at both doses with ATO 

showed gene expression similar to that of control group.  

In conclusion, the results obtained in the present study have shown that phloretin 

protects H9c2 cardiomyoblasts against ATO induced cardiotoxicity. The possible 

beneficial effect of phloretin in reducing cardiotoxicity appears to be by down-

regulation of oxidative stress, organelle damage and alterations in cardiac specific gene 

expression (Fig. 3.14.). 

 

Fig. 3.14. 

 

 

Fig. 3.14. Schematic summary of the Chapter 



 

 

CHAPTER 4 

 

4. EFFECT OF PHLORETIN AGAINST ALTERATIONS IN 

MITOCHONDRIAL FUNCTIONS AND Ca2+ HOMEOSTASIS IN ATO 

TOXICITY IN H9C2 CARDIOMYOBLASTS 

 

4.1. Introduction 

Mitochondria have long been recognized to play critical roles in eukaryotic cell 

metabolism and energetics, but it was not until recent years that they have re-emerged 

as determinants of cell death or survival, with great relevance in cardiovascular 

pathophysiology (Meana et al., 2010). In the previous chapter we reported the various 

aspects of cardiotoxicity such as oxidative stress, organelle damage and expressional 

variation in cardiac specific genes with ATO and its possible reversal with phloretin. 

Since mitochondrial respiratory chain is a major source of ROS production in the cell, 

with 1-2% of the consumed molecular oxygen being converted to O2
•- that is 

subsequently converted to H2O2 (Brand et al., 2004), the second phase of our study was 

focussed on mitochondrial biology. Cardiomyocytes are rich in mitochondria and 

occupies nearly 30% of the cytoplasmic space (Hausenloy and Ruiz-Meana, 2010). 

This abundance of mitochondria in the heart ensures efficient supply of ATP to support 

different functions of the cell such as contraction, metabolism and ion homeostasis 

(Goffart et al., 2004; Andrienko et al., 2003). Enrichment of mitochondria in 

cardiomyocytes has perceptibly enhanced their susceptibility to oxidative damage due 

to increased formation of O2
•- compared to other cells (Gupta et al., 2007). 

A mild increase in oxidative stress acts as a cell signalling mechanism required 

to trigger several stress responses (Zima and Blatter, 2006) but the excessive insidious 

increase in free radical production may risk mitochondrial integrity and exacerbate cell 

damage during different processes, from ageing to ischemia - reperfusion (Brand et al., 

2004; Yoshida et al., 2000). Mitochondria have been recognized as organelles capable 

of accumulating large quantities of Ca2+ (Carafoli and Lehninger, 1964; Carafoli et al., 

1965). Mitochondrial Ca2+ controls the rate of energy production (McCormack et al., 

1990) and plays a pivotal role in cell apoptosis and necrosis (Scorrano et al., 2003; 

Nakayama et al., 2007; Halestrap, 2009). The opening of mitochondrial K+-ATP 

channels (Maack et al., 2009; Murata et al., 2001) or Ca2+-activated K+ channels (Xu et 
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al., 2002) has been shown to be beneficial for cell survival under certain stress 

conditions. The regulation of matrix volume is crucial for the correct functioning of 

mitochondria and is accomplished indirectly by a number of specific exchangers, 

uniporters, and ion channels present in both membranes (Garlid et al., 2003). Recently, 

many experimental observations have revealed that mitochondrial microstructural 

changes and dysfunctions might play crucial roles in ATO-mediated cardiotoxicity via 

inducing excessive production of ROS, and the subsequent increase in cell apoptosis 

(Li et al., 2002; Hirano et al., 2003; Hwang et al., 2008; Manna et al., 2008). In this 

background, our study was aimed on a detailed investigation on mitochondrial 

structure, biology and Ca2+ homeostasis with ATO and phloretin.  

 

4.2. Methods  

Experiments were conducted to see the alterations of following parameters 

which represent the imperative part of mitochondrial biology such as:   

 Alteration in Ѱm (details 2.2.14.) 

  Activity of aconitase (details 2.2.15.) 

 Mitochondrial O2
•- generation (details 2.2.16.) 

 Activity of Noxs (details 2.2.17.) 

 Mitochondrial swelling (details 2.2.18.) 

 Integrity of mPTP (details 2.2.19.) 

 Activities of mitochondrial respiratory complexes (complex I-IV) (details 2.2.20.) 

 ATP content and OCR (details 2.2.21., 2.2.22.) 

 Expression of HSP60 and HSP70 (details 2.2.31.) 

 [Ca2+]i overload, Ca2+ content and the activity of Ca2+-ATPase (details 2.2.23.) 

 Calcineurin expression (details 2.2.31.) 

 Molecular docking study of calcineurin with phloretin (details 2.2.23.4.) 

 

4.3. Results 

4.3.1. Effect on Ѱm with ATO and phloretin 

The JC-1 dye concentrates as red fluorescent aggregates in mitochondrial matrix 

in normal cells due to electrochemical potential gradient. Alteration of Ѱm prevents the 

accumulation of JC-1 in the mitochondria and is dispersed throughout the cell, leading 
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to a shift from red to green fluorescence of JC-1 monomers. ATO treated cells exhibited 

depolarized Ѱm as can be seen in Fig. 4.1.c, which had higher amount of green 

fluorescence compared to that of control group (Fig. 4.1.a). Phloretin alone treated 

groups (Fig. 4.1.d, f) exhibited red fluorescence similar to that of control group (Fig. 

4.1.a). Phloretin co-treatment with ATO prevented the alteration of Ѱm, which was 

clearly evident from the increased level of red fluorescence (Fig. 4.1.e, g). Fluorometric 

analysis also showed a similar trend in fluorescence intensity (Fig. 4.1.h.). 

Fig. 4.1. 

   

  

 

  

 

h. 

 
 

Fig. 4.1. Alteration in Ѱm in H9c2 cells with ATO and phloretin. Representative fluorescent 

microscopic images of H9c2 cells stained with JC1 dye (original magnification 20x). a: control 

cells; b: cells treated with valinomycin (positive control); c: cells treated with ATO; d: cells 

treated with 2.5 µM phloretin; e: cells co-treated with ATO and 2.5 µM phloretin; f: cells 

treated with 5 µM phloretin and g: cells co-treated with ATO and 5 µM phloretin; h.: intensity 
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4.3.2. Activity of aconitase 

 Activity of aconitase was considerably reduced in H9c2 cells on treatment with 

ATO (66.40%) compared to control group (Fig. 4.2.). Phloretin alone at both the 

concentrations did not show any significant alterations on the cells. On co-treatment 

with phloretin at both the concentrations showed significant effectiveness (P < 0.05) in 

reverting ATO induced alteration in the activity of aconitase (2.5 µM = 177.53%, 5 µM 

= 165.59%), thus decreasing the adverse consequence caused by ATO.  

 

Fig. 4.2. 

 
 

Fig. 4.2. Effect of ATO and phloretin on aconitase activity in H9c2 cells. Values are means, 

with standard deviations represented by vertical bars (n = 6). * Mean value was significantly 

different from the control cells (P < 0·05). $ Mean values were significantly different from the 

ATO treated cells (P < 0·05). 

 

4.3.3. Effect on mitochondrial O2
•- generation 

Significant red fluorescence of MitoSOX™ red indicating the surplus O2
•- 

production was found in ATO treated cells (Fig. 4.3.b) compared to control cells (Fig. 

4.3.a). The intensity of fluorescence emitted by cells treated with phloretin alone (Fig. 

4.3.c, e) was similar to that of control group. Phloretin was potent enough (Fig. 4.3.d, f) 

to reduce the excessive mitochondrial O2
•- production caused by ATO. Intensity 

histogram (Fig. 4.3.g.) also showed a similar pattern of fluorescence reading as obtained 

by the imaging data. Since mitochondrion is the main site of free radical production 

during stress condition in cell (Scott and Malcolm, 2008), the protective property of 
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phloretin against O2
•- generation may be mediated through its antioxidant activity in 

ATO challenged cells. 

 

Fig. 4.3. 

  

  

  

 

g. 

 
 

Fig. 4.3. Mitochondrial O2
-• production in H9c2 cells with ATO and phloretin. 

Representative fluorescent microscopic images of H9c2 cells stained with MitoSOX™ red 
indicator (original magnification 20x). a: control cells; b: cells treated with ATO; c: cells treated 

with 2.5 µM phloretin; d: cells co-treated with ATO and 2.5 µM phloretin; e: cells treated with 

5 µM phloretin; f: cells co-treated with ATO and 5 µM phloretin, and g.: intensity histogram. 
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4.3.4. Effect on Noxs 

Studies show that mitochondrial O2
•- production is mainly by H2O2 generated 

from Noxs (Pendyala and Natarajan, 2010). A significant elevation of Noxs activity was 

found in cells treated with ATO (4.47±0.309 nM/mg) compared to the control group 

(2.49±0.065 nM/mg). Phloretin alone treated groups did not show any significant 

alteration in the activity of Noxs when compared to control group. Combination 

treatment of cells considerably prevented the increase in Noxs activity at both 

concentrations of phloretin (2.5 µM = 2.90±0.08, 5 µM = 2.94±0.13 nM/mg 

respectively) from that of ATO treated group (Fig. 4.4.). 

 
Fig. 4.4. 
 

 
 

Fig. 4.4. Effect of ATO and phloretin on Noxs activity in H9c2 cells. Values are means, with 

standard deviations represented by vertical bars (n = 6). * Mean value was significantly 

different from the control cells (P < 0·05). $ Mean values were significantly different from the 

ATO treated cells (P < 0·05). 

 

4.3.5. Effect on mPTP and mitochondrial swelling 

Integrity of mPTP was determined by calcein-CoCl2 staining. In control cells 

(Fig. 4.5.a), calcein fluorescence was highly compartmentalized, corresponding to the 

mitochondrial space and showed punctiform fluorescence (Sankar et al., 2013). On 

ATO treatment, a de-compartmentalization of calcein fluorescence was observed, 

indicating mPTP opening (Fig. 4.5.b). Phloretin alone (Fig. 4.5.c, e) did not produce any 

change in the integrity of mPTP and was comparable with control group (Fig. 4.5.a). 
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However, in cells co-treated with phloretin (2.5 and 5 µM) and ATO (Fig. 4.5.d, f), no 

calcein de-compartmentalization was observed, and the cells appeared with punctiform 

fluorescence. This suggested that ATO provoked mPTP opening in H9c2 cells and 

phloretin at both the concentrations were effective in retaining the mPTP. 

 

Fig. 4.5. 

 

 

 
 

Fig. 4.5. mPTP opening in H9c2 cells with ATO and phloretin. Representative fluorescent 

microscopic images of H9c2 cells stained with calcein-AM (original magnification 20x). a: 

control cells; b: cells treated with ATO; c: cells treated with 2.5 µM phloretin; d: cells co-treated 

with ATO and 2.5 µM phloretin; e: cells treated with 5 µM phloretin, and f: cells co-treated 

with ATO and 5 µM phloretin 

 

H9c2 cells exposed to ATO showed increased mitochondrial swelling (66.66%) 

than control cells (Fig. 4.6.) showing the deterioration in mitochondrial membrane 

integrity whereas phloretin treatment reduced the swelling of mitochondria (2.5 µM - 

37.27%, 5 µM - 24.99%) significantly when compared with ATO treated cells (P < 

0.05). 
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Fig. 4.6. 

 

Fig. 4.6. Effect of ATO and phloretin on mitochondrial swelling. Values are means, with 

standard deviations represented by vertical bars (n = 6). * Mean value was significantly 

different from the control cells (P < 0·05). $ Mean values were significantly different from the 

ATO treated cells (P < 0·05). 

 

4.3.6. Alterations in mitochondrial complexes 

Fig. 4.7. shows the activities of mitochondrial respiratory complexes in control 

and treated cells. There was a significant (P < 0.05) decrease in the activities of 

respiratory chain complexes such as complexes I (40.96%, Fig. 4.7.a.), III (55.11%, Fig. 

4.7.c.) and IV (45.37%, Fig. 4.7.d.) in ATO treated group compared to control. 

Phloretin at both concentrations were able to significantly (P < 0.05) restore the 

activities of respiratory chain complexes in ATO challenged cells. There was no 

significant change in the levels of complex II (Fig. 4.7.b.) with ATO treatment.  

Fig. 4.7. 
a.                                                            b. 

Fig. 4.7.  Activity of mitochondrial complexes in H9c2 cells treated with ATO and phloretin. a. 

Activity of complex I, b. Activity of complex II. Values are means, with standard deviations 

represented by vertical bars (n = 6). * Mean value was significantly different from the control 

cells (P < 0·05). $ Mean values were significantly different from the ATO treated cells (P < 

0·05). 
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Fig. 4.7. 

c.                                                              d.                 

Fig. 4.7.  Activity of mitochondrial complexes in H9c2 cells treated with ATO and phloretin. c. 

Activity of complex III, d. Activity of complex IV. Values are means, with standard 

deviations represented by vertical bars (n = 6). * Mean value was significantly different from 

the control cells (P < 0·05). $ Mean values were significantly different from the ATO treated 

cells (P < 0·05). 

 

4.3.7. Alterations in ATP production and OCR  

Amount of ATP in H9c2 cells treated with ATO was decreased (6.5±2.1 pM) 

significantly (P < 0.05) compared to control group (17.5±2.1 pM). Phloretin at both 

concentrations (2.5 µM = 15.5±2.1 and 5 µM = 15.5±3.5 pM respectively) effectively 

maintained the ATP level (Fig. 4.8.) from that of ATO group. 

Fig. 4.8. 

 
 

Fig. 4.8. ATP determination in H9c2 cells treated with ATO and phloretin. Values are 

means, with standard deviations represented by vertical bars (n = 6). * Mean value was 

significantly different from the control cells (P < 0·05). $ Mean values were significantly 

different from the ATO treated cells (P < 0·05). 
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OCR in H9c2 cells were analyzed by using mitoXpress and the change in 

fluorescent signal over time (3 h) was noted (Fig. 4.9.a.). Lower the O2 consumption 

lesser is the metabolic status of the cell. ATO treated cells showed reduced OCR 

(67.08%) when compared to that of control and treatment with phloretin (2.5 µM = 

177.39%, 5 µM = 181%) reversed these changes to near normal (Fig. 4.9.b.).  

  

Fig. 4.9. 

a. 

 
 
b. 

 
 

Fig. 4.9.a. O2 consumption in H9c2 cells treated with ATO and phloretin (line graph); b. 

OCR. Values are means, with standard deviations represented by vertical bars (n = 6). * Mean 

value was significantly different from the control cells (P < 0·05). $ Mean values were 

significantly different from the ATO treated cells (P < 0·05). 
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4.3.8. Expression of HSP60 and HSP70 

The expression of both HSP60 (Fig. 4.10.A.) and HSP70 (Fig. 4.10.B.) were 

found to be up-regulated significantly (P < 0.05) in ATO treated group. Phloretin co-

treatment at both doses significantly (P < 0.05) reduced the chaperone expressions near 

normal compared to ATO treated group. 

 

Fig. 4.10. 

  A.                                                                    B. 

    

       

 

Fig. 4.10. Representative western blot image of the expression of a. HSP60; b. HSP70 and their 

corresponding densitometric analysis. Values are means, with standard deviations represented 

by vertical bars (n = 3). * Mean value was significantly different from the control cells (P < 

0·05). $ Mean values were significantly different from the ATO treated cells (P < 0·05). 

 

4.3.9. Effect on Ca2+ homeostasis 

 

4.3.9.1. [Ca2+]i overload 

ATO  could induced  [Ca2+]i  overload  in  H9c2  cells,  which  was  evident  

from increased blue fluorescence of Fura-2AM (Fig. 4.11.b) compared to control group 

(Fig. 4.11.a). Co-treatment with phloretin reduced [Ca2+]i overload (Fig. 4.11.d, f) 

compared to that of ATO treated group. The results suggest that phloretin positively 

modulated the Ca2+ homeostasis in ATO induced cardiomyoblasts. 
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Fig. 4.11.  

  

  

  

 

Fig. 4.11. [Ca2+]i overload in H9c2 cells with ATO and phloretin. Representative fluorescent 

microscopic images of H9c2 cells stained with Fura-2AM (original magnification 20x). a: 

control cells; b: cells treated with ATO; c: cells treated with 2.5 µM phloretin; d: cells co-treated 

with ATO and 2.5 µM phloretin; e: cells treated with 5 µM phloretin and; f: cells co-treated 

with ATO and 5 µM phloretin 

 

 4.3.9.2. Ca2+ content and activity of Ca2+-ATPase  

Ca2+ content in ATO treated cells were significantly high (65.34%) when 

compared to the control cells (Table 4.1.). Phloretin alone treated group did not show 

any alteration in Ca2+ content. Co-treatment of cells with ATO and phloretin at 2.5 and 

5 µM could revert the [Ca2+]i concentration significantly compared to that of the ATO 

treated group. Activity of Ca2+-ATPase was also reduced (59.35%) significantly (P < 

0.05) with ATO treatment (Table 4.1.) that could be reverted to basal level when co-

treated with phloretin at both the doses (2.5 µM = 126.31%, 5 µM = 102.63%).  
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Table 4.1. 

   Control ATO 2.5phl 5phl ATO+2.5phl ATO+5phl 

Ca2+ content 
(mg/dl)  

1.310±0.060 2.175*±0.082 1.310±0.079 1.311±0.082 1.328$±0.031  1.339$±0.071 

Ca2+-ATPase 
(µM iP 
liberated/mg 
protein)  

0.187±0.005 0.076*±0.0069  0.189±0.0082  0.179±0.0055 0.172$±0.0074 0.154$±0.0054 

 

Table 4.1. Effect on Ca2+ status. Arsenic trioxide (ATO) alone treated group and phloretin 

(phl) treated group were compared with control group. The ATO+phl group was compared with 

ATO group. Each value represents mean ± SD (n = 6). * Mean value was significantly different 

from the control cells (P < 0·05). $ Mean values were significantly different from the ATO 

treated cells (P < 0·05). 

 

4.3.9.3. Calcineurin expression 

 Several studies have reported that calcineurin can transduce cardiac disorders in 

vivo and in vitro and that inhibition of calcineurin activity in certain situations can block 

the cellular and molecular events associated with these disorders (Molkentin et al., 

1998; Olson and Molkentin, 1999). The expression of calcineurin was significantly 

increased on treatment with ATO compared to that of control group (Fig. 4.12.). 

Phloretin co-treatment at both the concentrations (2.5 and 5 µM) considerably reverted 

the protein expression level similar to that of control group (Fig. 4.12.). Molecular 

docking studies with Autodock 4.2 and IGEMDOCK v2.1 (Fig. 4.13.) showed very high 

binding affinity of phloretin to calcineurin (-93.1 kcal/mol). The fitness score and 

interaction table are given (Table 4.2.) for detailed information.  

Fig. 4.12. 
a.                                                             b. 

         
 

Fig. 4.12.a. Representative western blot image of calcineurin; b. Densitometric analysis. Values 

are means, with standard deviations represented by vertical bars (n = 3). * Mean value was 

significantly different from the control cells (P < 0·05). $ Mean values were significantly 

different from the ATO treated cells (P < 0·05).  

http://circres.ahajournals.org/search?author1=Eric+N.+Olson&sortspec=date&submit=Submit
http://circres.ahajournals.org/search?author1=Jeffery+D.+Molkentin&sortspec=date&submit=Submit
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 Fig. 4.13.a.                                                             b. 

  

Fig. 4.13. Docking of phloretin to calcineurin using Autodock 4.2. a. The first best 

conformation of phloretin to calcineurin; b. Best binding pose of phloretin to calcineurin 

 

Table 4.2. 

a. 

Compound Energy VDW 

Calcineurin-phloretin -93.1228 -93.1228 

 

b. 

Compound Calcineurin-phloretin-chem-1.pdb 

Energy -93.1228 

V-S-TRP-352 -16.1584 

V-S-PHE-356 -19.7446 

V-M-MET-118 -5.05525 

V-S-MET-118 -4.91263 

V-M-GLY-72 -4.09617 

 

Table 4.2. Fitness score and interaction table of calcineurin and phloretin from 

IGEMDOCK v2.1. a: Fitness table showing the binding energy (kcal/mol) and VDW-Vander 

Waals interaction; b: Interaction table depicting the pharmacological interactions of calcineurin 

and phloretin in the post screening analysis. 
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4.4. Discussion 

Mitochondria are known as Dr Jekyll and Mr Hyde of the cell (Halestrap and 

Pasdois, 2009; Baines, 2009), as they provide energy essential for the cellular survival 

and functions as well as act as cell death promotors. Mitochondria can quickly halt the 

energy supply under stress conditions and produce vast amount of ROS and release an 

array of death inducing proteins (Baines, 2009). Mitochondrial dysfunctions have been 

observed in the heart with anthracyclines but no detailed information is available with 

ATO therapy. We studied ATO induced alterations in mitochondrial function and its 

associated complication like defects in Ca2+ homeostasis as well as its possible reversal 

with phloretin. 

The mitochondrial-derived ROS are vital because the ROS produced in 

mitochondria can readily influence mitochondrial function without having to cope with 

long diffusion times from the cytosol (Li et al., 2003). Despite the existence of multiple 

sources of ROS generation, a large number of studies in the last decade indicate that a 

major ROS source involved in redox signalling is the Noxs family. Although long 

recognised as being essential for the microbicidal activity of neutrophils, these enzymes 

are in fact widely expressed in numerous non-phagocytic tissues. They have been 

shown to play fundamental roles in experimental hypertension, atherosclerosis, 

endothelial dysfunction and cardiac hypertrophy, claiming that different Nox isoforms 

may have distinct functions (Byrne et al., 2003). It has been reported the physiologic 

role of cytoplasmic aconitase is not confined to catalyzing isomerization of citrate to 

isocitrate. A reduction in its activity is an indicator of increased mitochondrial O2
•- 

production (Correa et al., 2013). We saw a clear-cut increase in mitochondrial 

superoxide production as well as Noxs activity and a decrease in aconitase activity on 

treatment with ATO which was considerably reverted with phloretin. 

Various pro-apoptotic signals converge on the mitochondria and trigger 

progressive disruption of Ѱm by modulating the mPTP complex, a multiprotein 

complex which interacts with the apoptosis-regulating protein Bcl-2/Bax family 

(Kroemer and de The, 1999; Costantini et al., 2000). These data support that mPTP 

complex may be an important target of ATO. It is presumed that ATO-induced Ѱm 

collapse and apoptosis are associated with dithiol oxidation or cross-linking, which has 

been shown to be associated with a higher probability of mPTP complex opening (Zhu 
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et al., 1999; Dai et al., 1999; Jing et al., 1999; Cai et al., 2000). A recent report showed 

that ATO could not cause the oxidation of a critical cysteine residue (Cys 56) of 

purified adenine nucleotide translocator which is an important component of mPTP 

complex and contains the vicinal thiol group (Costantini et al., 2000). ATO treatment 

resulted in an alteration in Ѱm and mPTP opening whereas, phloretin recovered the 

alterations in cardiotoxicity induced cells. 

ATO is a potent mitochondrial toxin capable of inducing ROS production that 

mainly originates in the intracellular mitochondrial respiratory chain and further toxic 

byproducts subsequently produced could lead to mitochondrial damage. In addition, 

excessive ROS production acts as key mediator of the apoptotic-signalling pathway. 

Respiratory complex I and III are the major sites for the production of ROS, with a 

general consensus that production at complex I is about half of that at complex III 

(Turrens and Boveris, 1980). Our investigation revealed that ATO can affect 

mitochondrial function by inhibiting the different component of ETC like complex I, III 

and IV. The increase of cellular ROS production observed in ATO treated cells could be 

associated with the inhibition of the mitochondrial complexes which in turn may be due 

to a lowered efficiency of the innate antioxidant enzymes. Several studies report that 

each multienzyme complex helps to maintain the assembly and stabilisation of the other 

complexes. Thus, damages to single complex can easily spread to other complexes (Li 

et al., 2007; Hiraumi et al., 2009). A deficiency in complex III or complex IV results in 

a marked decrease in the level of complex I. The reciprocal action of each ETC complex 

is more pronounced in the rapidly dividing myoblasts (Diaz et al., 2006; Li et al., 2007). 

A reduction in complex I enzyme activity leads to accumulation of electrons in the 

initial part of the transport chain which facilitates direct transfer of electrons to O2 that 

results in the generation of O2
•- radicals (Chan et al., 2009). Co-treatment of H9c2 cells 

with phloretin resulted in a marked protection against ATO induced alterations in 

multienzyme complexes. Depletion in ATP production results in the accumulation of 

hypoxanthine resulting in excessive production of free radicals by XO. The reduced 

ATP production in ATO treated cells further supports the mitochondrial dysfunctioning 

and phloretin treatment could replenish the level of ATP in the cells.  

Mitochondria require O2 to produce ATP in sufficient quantities to drive energy-

requiring reactions. Thus, the measurement of OCR from mitochondria is significant in 
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assessing mitochondrial function (Li and Graham, 2012). It has been proved that O2 

consumption in eukaryotic cells is regulated by the cytosolic ATP/ADP concentration 

ratio. A decrease in this ratio results in an increase in the activity of the mitochondrial 

F1-ATPase, the proton concentration within mitochondria, the activity of the ETC, and 

in O2 consumption (Hayakawa et al., 2005). Our measurement of the OCR during ATO 

toxicity revealed a decrease in O2 consumption compared with that in normal cells. This 

might be due to the defect in ETC via generation of O2
•-. Co-treatment of H9c2 cells 

with phloretin resulted in a marked protection against ATO induced toxicity. 

Mammalian HSP60 cDNA was first cloned as a mitochondrial P1 protein (Jindal 

et al., 1989) and for these reasons, it has long been believed that mammalian HSP60 is 

located and functions only in the mitochondria. HSP60 may play a key role in anti-

apoptosis. It has also been reported that HSP60 exists in human plasma, and there are 

evidence of an association between the levels of HSP60 in the plasma and the 

proinflammatory cytokine TNF-α (Habich and Burkart, 2007). When exposed to a lethal 

environment, HSP60 is quickly imported into the mitochondria (Itoh et al., 2002). 

HSP60 also play the role as a molecular chaperone in the mitochondria. The import 

mechanism of HSP60 into the mitochondria is mediated by the cytoplasmic HSP70 

(Itoh et al., 2002). Both the levels of HSP60 and HSP70 were increased with ATO 

treatment and were ameliorated with phloretin co-treatment. 

Under normal conditions, the very negative inner mitochondrial membrane 

potential provides a strong electrochemical driving force for Ca2+ to enter the 

mitochondrial matrix from the cytosol (Piquereau et al., 2013). Increased [Ca2+]i, 

favoured by Ca2+ flux aberrations, eventually raises mitochondrial Ca2+ levels. [Ca2+]i 

overload is also an inducer of mPTP opening. The opening of mPTP leads to 

mitochondrial swelling with release of pro-apoptotic proteins and uncoupling of 

mitochondrial phosphorylation because of the increased permeability to protons. The 

resulting ATP deprivation causes disruption of ionic homeostasis, ROS overproduction 

and ultimately ruptures the cell membrane (Halestrap and Pasdois, 2009). The opening 

of mPTP is now recognized as a major cause of necrotic cell death (Kinnally et al., 

2011). In addition, there are evidences that mPTP plays essential role in the 

pathogenesis of multiple cardiac diseases. Accordingly, inhibition of the mPTP opening 

by decreasing oxidative stress with free radical scavengers appear to be a protective 
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measure against numerous heart pathologies. The alteration in [Ca2+]i and Ca2+-ATPase 

activity in ATO-treated cells as well as modulation by phloretin showed its protective 

efficacy. There are reports to reveal the basic mechanism of our finding that phloretin 

reduces the maximal velocity of Ca2+ uptake into the SR via inhibition of SR Ca2+-

ATPase (Olson et al., 2006; Olson et al., 2007). Alteration in Ca2+ homeostasis has a 

drastic impact on cardiac cell physiology leading to cardiac failure. Here we found that 

ATO altered the Ca2+ homeostasis by increasing Ca2+ influx and content in the cell. The 

alteration in [Ca2+]i and Ca2+-ATPase activity in phloretin co-treated cells showed its 

protective efficacy and this may be due to the interaction of phloretin with various 

transporting molecules like Ca2+ channels and Na+-Ca2+ exchangers.  

A sustained increase in [Ca2+]i concentrations activates calcineurin. Calcineurin 

is a ubiquitously expressed serine/threonine phosphatase that exists as a heterodimer, 

comprised of a 59-kDa Ca2+-binding catalytic A subunit and a 19-kDa Ca2+-binding 

regulatory B subunit (Stemmer and Klee, 1994). Activation of calcineurin is mediated 

by binding of Ca2+ and calmodulin to the regulatory and catalytic subunits, respectively. 

A toxicologic significance of calcineurin is that it is activated by a sustained Ca2+ 

elevation and is insensitive to transient Ca2+ fluxes such as those that occur in response 

to cardiomyocyte contraction (Molkentin et al., 1998). Free radical overproduction also 

increases the cytosolic Ca2+ contributing to the activation of endonucleases that degrade 

DNA leading to cell death. Phloretin could decrease the calcineurin over expression 

caused by ATO, helping maintain the Ca2+ homeostasis. The high binding affinity of 

phloretin to calcineurin might be a possible reason for the decreased expression of 

calcineurin in the cells. 

We found that ATO increased intracellular ROS generation in cardiomyocytes. 

It caused alteration in Ѱm, increased O2
•- production as a result of decreased aconitase 

and increased Noxs activity, increased mitochondrial swelling that resulted in mPTP 

opening due to excessive [Ca2+]i influx and overload. It also altered the activity of 

mitochondrial respiratory complexes, ATP production, O2 consumption and 

mitochondrial HSPs. Phloretin co-treatment could significantly revert all the adverse 

effects caused by ATO on H9c2 cardiomyoblasts. The beneficial effect of phloretin on 

apoptosis was mediated through ROS and mitochondrial-dependent pathways. Overall 

results conclude that mitochondrial dysfunction contribute significantly to toxicity of 
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ATO in addition to its electrophysiological alteration (Fig. 4.14.). The significant 

finding of this study is that agonist specific for mitochondrial toxicity could be tried 

against ATO cardiotoxicity.  

 

Fig. 4.14. 

 

 

 

Fig. 4.14. Schematic summary of the Chapter 
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5. ANTI-INFLAMMATORY AND ANTI-APOPTOTIC POTENTIAL OF 

PHLORETIN IN ATO INDUCED CARDIOTOXICITY 

  

5.1. Introduction 

One of the major causes underlying cardiotoxicity is inflammation and its 

associated complications (Marchant et al., 2012). There is a strong association between 

oxidative stress and cardiac inflammatory response including cytokine release after 

doxorubicin treatment (Bien et al., 2007). Doxorubicin led to an increase in TNF-α 

expression, which is one of the pro-inflammatory cytokines that mediate cardiac 

damage (Riad et al., 2009). Moreover, IL-6 and TNF-α are reported to be significantly 

up-regulated with epirubicin treatment (Cadeddu et al., 2010). IL-1 family and IL-6 are 

closely connected with doxorubicin-induced cardiotoxicity (Zhu et al., 2010; Niu et al., 

2009). Accumulating evidence has also shown that doxorubicin plays a pivotal role in 

the induction of MCP-1 expression in human lung carcinoma cells (Niiya et al., 2003). 

During the progression of cardiovascular diseases such as congestive heart failure and 

atherosclerosis, TNF-α may activate redox-sensitive transcriptional pathways such as 

NF-κB and regulate the expression of downstream inflammatory molecules via ROS 

generation and Noxs (Lin et al., 2010). Doxorubicin has also been reported to induce 

NF-κB-associated apoptosis in endothelial cells and human colon cancer cells (Wang et 

al., 2002; Riganti et al., 2008). Arsenic has been reported to increase the expression of 

MCP-1 and IL-6 in VSMC (Lee et al., 2005a) and the synthesis of inflammatory 

mediators such as leukotriene E4, prostacyclin, TNF-α and NF-κB in vascular 

endothelial cells to induce the pathogenic process of atherosclerosis (Bunderson et al., 

2004; Tsai et al., 2001) as has been mentioned in Chapter 1. However, there are no 

much reports available on inflammation caused due to ATO induced cardiotoxicity. 

In the patho-physiology of cardiovascular disease, apoptosis of cardiomyocytes 

has been suggested to be an important contributor as it has been identified during 

hypoxia, ischemia, cardiac overload, acute myocardial infarction and end-stage heart 

failure in vivo (Ito et al., 1999; Arola et al., 2000). Myocardial apoptosis leads to acute 

and chronic myocyte loss and decline of cardiac function which are the major problems 
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in ATO-induced cardiotoxicity (Saraste et al., 1997; Olivetti et al., 1997; Saraste et al., 

1999).  

In the previous chapter, we found that ATO induced toxicity in H9c2 cells are 

associated with alteration in mitochondrial functions and [Ca2+]i overload, and phloretin 

was found to be effective in protecting the mitochondria from the deleterious effects of 

ATO. The present chapter deals with ATO induced inflammation and apoptosis in H9c2 

cells and prevention by phloretin.  

  

5.2. Methods 

Experiments were conducted to see the alterations in following parameters of 

inflammation and apoptosis. 

 Alteration in interleukins (IL-2, IL-6 and IL-10), MCP-1, IFN-γ and TNF-α (details 

2.2.24.) 

 Alteration of NF-κB activity of cytoplasmic and nuclear fractions (details 2.2.25.) 

 Imaging and flow cytometric studies on apoptosis (details 2.2.26., 2.2.27.) and 

DNA fragmentation (details 2.2.28.) 

 Activity of caspase-3 (details 2.2.29.) 

 Bcl-2 expression (details 2.2.31.) 

 Expression of mRNA and proteins involved in apoptosis such as AKT, ERK1/2, 

JNK, RAF1 and p38 MAPK (details 2.2.30., 2.2.31.) 

  

5.3. Results 

 

5.3.1. Inflammatory markers 

ATO treatment showed a significant increase in IL-2 (54.82±2.39 pg/ml), IL-6 

(163.25±3.53 pg/ml) and IL-10 (126.43±5.38 pg/ml) compared to control group (IL-2 = 

8.83±3.12 pg/ml; IL-6 = 49.96±9.95 pg/ml; IL-10 = 88.05±0.94 pg/ml). Both 

concentrations of phloretin showed significant protection (P < 0.05) by preventing the 

release of IL-2 (2.5 µM = 12.03±3.75 and 5 µM = 15.19±4.94 pg/ml respectively), IL-6 

(2.5 µM = 50.32±2.17 and 5 µM = 70.67±3.82 pg/ml respectively) and IL-10 (2.5 µM = 

86.76±1.75 and 5 µM = 89.62±1.28 pg/ml respectively) to the medium when compared 

to that of ATO alone treated group (Fig. 5.1.A., B., C.). The level of MCP-1 was 
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significantly increased in ATO cells (115.69±11.78 pg/ml) compared to control 

(20.01±0.89 pg/ml). Phloretin alone at both the concentrations showed no alterations in 

the level of MCP-1. When co-treated with ATO, phloretin at both the concentrations 

(2.5 µM = 21.61±3.06 and 5 µM = 27.18±1.61 pg/ml respectively) showed significant 

reversal in the level of these cytokines from that of ATO group (Figure. 5.1.D.). 

Fig. 5.1. 

A.                                                                   B. 

    
 

C.                                                                     D.                                     

  
 

Fig. 5.1. Level of A. IL-2, B. IL-6, C. IL-10 and D. MCP-1 in H9c2 cells treated with ATO 

and phloretin. Values are means, with standard deviations represented by vertical bars (n = 6). * 

Mean value was significantly different from the control cells (P < 0·05). $ Mean values were 

significantly different from the ATO treated cells (P < 0·05). 

 

The level of IFN-γ (252.10±10.14 pg/ml) and TNF-α (100.37±11.78 pg/ml) 

were significantly (P < 0.05) increased in ATO treated cells compared to control group 

(IFN-γ = 55.20±5.74 pg/ml; TNF-α = 36.17±9.37 pg/ml). Here also, phloretin co-

treatment was significantly effective in reducing the IFN-γ (2.5 µM = 77.66±6.97 and 5 

µM = 91.36±2.25 pg/ml respectively) and TNF-α (2.5 µM = 51.33±3.65 and 5 µM = 

65.60±4.96 pg/ml respectively) release to the medium (Fig. 5.2.A., B.). 
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Fig. 5.2. 

A.                                                                 B. 

  

Fig. 5.2. Level of A. IFN-γ and, B. TNF-α in H9c2 cells treated with ATO and phloretin. 

Values are means, with standard deviations represented by vertical bars (n = 6). * Mean value 

was significantly different from the control cells (P < 0·05). $ Mean values were significantly 

different from the ATO treated cells (P < 0·05). 

 

5.3.2. Effect of phloretin and ATO on NF-КB (p65) expression 

 The level of NF-КB (p65) in nuclear fraction were increased in ATO (OD = 

0.338±0.016) treated group compared to control (OD = 0.184±0.004). Phloretin co-

treatment with ATO at both concentrations (2.5 µM, OD = 0.208±0.021; 5 µM OD = 

0.224±0.013) showed protection by preventing the translocation of NF-КB (p65) to 

nucleus (Fig. 5.3.). 

 

Fig. 5.3.  

  

Fig. 5.3. Level of NF-κB in H9c2 cells treated with ATO and phloretin. Values are means, with 

standard deviations represented by vertical bars (n = 6). * Mean value was significantly 

different from the control cells (P < 0·05). $ Mean values were significantly different from the 

ATO treated cells (P < 0·05). 
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5.3.3. Imaging and flow cytometric studies of apoptosis with AO/EB staining 

AO/EB staining showed that ATO treatment resulted in apoptosis wherein most 

of the cells lost its organelle as well as spindle shape (Fig. 5.4.A.b). The result also 

revealed that the phloretin alone did not cause any alteration in DNA integrity at both 

concentrations (Fig. 5.4.A.c, e). ATO phloretin co-treatment was effective in keeping 

the shape of the cells intact (Fig. 5.4.A.d, f). Flow cytometric evaluation also showed a 

considerable decrease in AO stained cells on treatment with ATO compared to control, 

whereas on co-treatment with phloretin there was a significant increase in the number of 

viable cells compared to that of ATO alone treated group (Fig. 5.4.B.) 

 
Fig. 5.4.A. 

  

  

  

 

Fig. 5.4.A. Alteration in DNA integrity with ATO and phloretin. Representative fluorescent 

microscopic images of H9c2 cells stained with AO/EB (Original magnification ×20). a: control 

cells; b: cells treated with ATO; c: cells treated with 2.5 µM phloretin; d: cells treated with 2.5 

µM  phloretin and 5 µM ATO; e: cells treated with 5 µM phloretin; f: cells treated with 5 µM  

phloretin and 5 µM ATO.  
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Fig. 5.4.B. 

 
 

Fig. 5.4.B. Flow cytometric analysis of viable H9c2 cells stained with AO. a: control cells; b: 

cells treated with ATO; c: cells treated with 2.5 µM phloretin; d: cells treated with 2.5 µM  

phloretin and 5 µM ATO; e: cells treated with 5 µM phloretin; f: cells treated with 5 µM  

phloretin and 5 µM ATO  

 

5.3.4. Flow cytometric analysis with Annexin/PI  

Flow cytometry results of double staining with Annexin V-FITC and PI (Fig. 

5.5) was interpreted as follows: the upper left quadrant (UL) -primary necrotic cells, the 

upper right (UR) -late apoptotic or secondary necrotic cells, the lower left quadrant (LL) 

-viable or live cells and the lower right quadrant (LR) -cells were undergoing apoptosis. 

The results showed that in control cells (Fig. 5.5.a.), 96.7% of the cells were viable, 

0.1% in early apoptosis, 2.2% was necrotic and 1.1% was in late apoptosis/dead cells. In 

cells treated with 2.5 µM of phloretin (Fig. 5.5.c.), the percentage of viable cells, early 

apoptotic cells, necrotic cells and late apoptotic cells were similar to that of control 

cells. ATO alone treated cells (Fig. 5.5.b.) showed a decrease in the number of viable 

cells (84.3%) and a 10.1% corresponding increase in necrotic cells and 5.3% in late 

apoptotic group, whereas the early apoptotic cells (LR) were almost absent. ATO-
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phloretin co-treated cells (Fig. 5.5.d.) showed an increase in the percentage of viable 

cells (95.7%) compared to ATO alone treated cells, with 2.9% of late apoptotic cells 

and 1.4% necrotic cells. 

  

Fig. 5.5. 

 

 

Fig. 5.5. Effects of ATO and phloretin in inducing cell death in H9c2 cells with flow 

cytometry. Dot plot of H9c2 cells stained annexin V FITC/ PI. a: control cells; b: cells treated 

with ATO; c: cells treated with 2.5 µM phloretin; d: cells co-treated with ATO and 2.5 µM 

phloretin. Legend for cytogram : the lower left quadrant includes the viable cells, which are 

negative for annexinV/ FITC binding (annexin V) and exclude PI (PI); the lower right quadrant 

include early apoptosis cells, which are positive for annexin V/FITC biniding (annexin V+) but 

PI negative; the upper right quadrant represents the late apototic cells, which are annexin V+ 

and show PI uptake (PI+); the upper left quadrant represents necrotic cells, which are annexin 

V/PI+. 

 

5.3.5. Effect of ATO and phloretin in DNA fragmentation 

ATO induced apoptosis was also studied by DNA fragmentation assay (Fig. 

5.6.). ATO induced DNA fragmentation, indicated by appearance of a ‘ladder’ pattern 

on agarose gel. Prominently, treatment of cells with phloretin at 2.5 µM concentration 

showed no DNA fragmentation induced by ATO. 
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Fig. 5.6.  

  
 

Fig. 5.6. Analysis of DNA fragmentation in H9c2 cells treated with ATO and phloretin. Lane 

1-control; lane 2- ATO treated; lane 3- 2.5 µM phloretin; lanes 4- ATO+2.5 µM phloretin 

respectively. 

  

5.3.6. Caspase-3 activity assay 

The behaviour of caspase-3 under ATO exposure (Fig. 5.7.) was found to be 

enhanced (104.5%) compared to control group, indicating the pro-apoptotic property of 

ATO. Phloretin alone treated group did not show any alteration in caspase-3 activity. 

When co-treated with ATO, phloretin at both concentrations (2.5 µM = 43.72%, 5 µM = 

38.88% recovery) was significantly effective (P < 0.05) in reducing the caspase-3 

activity compared to ATO group. 

  

Fig. 5.7. 

  

Fig. 5.7. Caspase-3 activity in H9c2 cells treated with ATO and phloretin. Values are means, 

with standard deviations represented by vertical bars (n = 6). * Mean value was significantly 

different from the control cells (P < 0·05). $ Mean values were significantly different from the 

ATO treated cells (P < 0·05). 
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5.3.7. Bcl-2 protein expression with ATO and phloretin 

The Bcl-2 family are major regulators of mitochondrial cytochrome C release 

and caspase-3 activation and play an important role in the regulation of cardiomyocyte 

apoptosis. Compared to control, ATO resulted in a decrease in the expression of Bcl-2 

protein (Fig. 5.8.). Phloretin alone showed protection against apoptosis at both the 

concentrations. Phloretin when co-treated with ATO could protect H9c2 cells from 

apoptosis as seen by the up-regulated level of anti-apoptotic Bcl-2 (Fig. 5.8.). 

 
Fig. 5.8.a. 

 
 

              b. 

  
 

Fig. 5.8.a. Representative western blot image of the expression of Bcl-2; b. Densitometric 

analysis. Values are means, with standard deviations represented by vertical bars (n = 3). * 

Mean value was significantly different from the control cells (P < 0·05). $ Mean values were 

significantly different from the ATO treated cells (P < 0·05). 

  

5.3.8. Phloretin modulates the mRNA and protein level expression of genes 

involved in apoptosis 

The mRNA and protein level expression of genes related to protection from 

apoptosis were detected in H9c2 cells in all treatment groups. The genes studied include 

Igf1, AKT, ERK1, ERK2, JNK, RAF1 and p38 MAPK. As seen in the Fig. 5.9., the 

mRNA expression of Igf1 and Akt (Fig. 5.9.A.) were decreased in ATO group and 
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treatment with phloretin significantly increased their expression. A similar trend was 

observed in the protein level expression of AKT as shown in Fig. 5.9.B.  

 

Fig. 5.9.A. 

 

Fig. 5.9.A. mRNA expression of Igf1 and Akt in H9c2 cells with ATO and phloretin. Values 

are means, with standard deviations represented by vertical bars (n = 6). * Mean value was 

significantly different from the control cells (P < 0·05). $ Mean values were significantly 

different from the ATO treated cells (P < 0·05). 

 

Fig. 5.9.B. 

         
 

 

 

 
 

 

Fig. 5.9.B. Protein expression and corresponding densitometric analysis of AKT in H9c2 cells 

treated with ATO and phloretin. Values are means, with standard deviations represented by 

vertical bars (n = 3). * Mean value was significantly different from the control cells (P < 0·05). $ 

Mean values were significantly different from the ATO treated cells (P < 0·05). 
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ERK1, ERK2 and RAF1 expression were drastically down-regulated on 

treatment with ATO (Fig. 5.10.A.) compared to the control group. Treatment with 

phloretin at both doses significantly up-regulated their expression both at mRNA (Fig. 

5.10.A.) as well as at protein level (Fig. 5.10.B.). On the other hand, JNK expression 

was significantly up-regulated at mRNA (Fig. 5.10.A.) and protein (Fig. 5.10.B.) level 

in ATO treated cells. Phloretin co-treatment significantly down-regulated the JNK 

expression level compared to ATO treated group. The expression of p38 MAPK did not 

show significant alteration with ATO compared with control group (Fig. 5.10.B.).  

 

Fig. 5.10.A. 

 

Fig. 5.10.A. mRNA expression of Erk1, Erk2, Jnk and Raf1 in H9c2 cells treated with ATO 

and phloretin. Values are means, with standard deviations represented by vertical bars (n = 6). * 

Mean value was significantly different from the control cells (P < 0·05). $ Mean values were 

significantly different from the ATO treated cells (P < 0·05). 
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Fig. 5.10.B. 

a.                                                                 b. 

   

  

 

c.                                                                      d. 

  

   

 

5.10.B. Protein level expressions and corresponding densitometric analysis of a. pERK1/2, b. 

RAF1, c. JNK and, d. p38 MAPK in H9c2 cells treated with ATO and phloretin. Values are 

means, with standard deviations represented by vertical bars (n = 3). * Mean value was 

significantly different from the control cells (P < 0·05). $ Mean values were significantly 

different from the ATO treated cells (P < 0·05). 
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5.4. Discussion 

Cell death takes place mainly by two processes in cardiomyocytes that include 

apoptosis and necrosis. Apoptosis is an active and physiological mode of cell death that 

is mediated by active intrinsic mechanisms, although extrinsic factors can contribute 

(Bellamy et al., 1995; Chalmers-Redman et al., 1997; Johnstone et al., 2002; Padanilam, 

2003). Apoptosis is genetically controlled and is characterized by cytoplasmic and 

nuclear shrinkage, chromatin margination and fragmentation, and breakdown of the cell 

into spherical bodies (Buja et al., 1993; Majno and Joris, 1995). In contrast, necrosis is 

an uncontrolled cell death that is characterized by progressive loss of plasma membrane 

integrity, rapid influx of Na+, Ca2+ and water, resulting in cytoplasmic swelling and 

nuclear pyknosis (Wyllie, 1994; Berridge et al., 2000; Barros et al., 2001). The latter 

feature leads to cellular fragmentation and release of lysosomal and granular contents 

into the surrounding extracellular space, with subsequent inflammation (Padanilam, 

2003; Buja et al., 1993; Majno and Joris, 1995). In the present study we observed that 

ATO induced both apoptosis and necrosis in H9c2 cells. 

Oxidative stress causes injury to cardiac myocytes and vascular cells triggering 

inflammatory cascades through the induction of cytokines (Dhalla et al., 2000; Granger, 

1988). IL-6, TNF-α and IL-10 have been reported to be good predictors of 

cardiovascular events. The IL-6 is an important immune cell activator and can 

participate in the destabilization of the atherosclerotic plaque (Hamdy, 2011). IL-2 has a 

central role in the development of cell-mediated immunity and also it serves as an  

important  factor  in  the  induction  of  a  complex  network  of  cytokines. The level of 

IL-2 is increased in patients with coronary artery disease (CAD) (Ding et al., 2013; 

Mizia-Stec et al., 2002). MCP-1 is believed to play a crucial role in heart failure and is 

known to be involved in apoptosis. MCP-1 cause cell death in H9c2 cells via  MCP-1- 

induced protein (MCPIP) induction, ROS production, ER/SR stress and autophagy 

(Younce et al., 2010). IFN-γ is another important pro-inflammatory cytokine with 

pleiotropic biological effects and is highly expressed in atherosclerotic lesions and has 

emerged as an important factor in the development and progression of cardiovascular 

diseases (Hansson and Libby, 2006). It can also recruit macrophages and T cells into 

plaque, contributing to production of ROS, inhibiting collagen production, stimulating 

matrix metalloproteinases and inducing tissue factor expression (Schroecksnadel et al., 



Chapter 5 

 

103 

 

2006). In this study the levels of IL-2, IL-6, IL-10, MCP-1 and IFN-γ were significantly 

increased in ATO group and phloretin co-treatment was found to be effective in 

preventing the release of these cytokines. 

TNF-α has also been reported to be associated with the induction of apoptosis in 

cardiomyocytes (Meldrum, 1998; Ferrari, 1999). Additionally, TNF-α has been 

indicated to be an initiator of a cytokine cascade, which results in the production of IL-

6. Increased amounts of TNF-α has been reported to be synthesized upon activation of 

NF-κB in ischemia/reperfusion and Ca2+-paradox hearts (Cain et al., 1999; Zhang et al., 

2005). TNF-α level had undergone a huge increase on treatment with ATO and 

phloretin co-treatment could considerably decrease the level of TNF-α production. 

In most types of cells, NF-κB remains inactive in the cytoplasm by its 

interaction with the inhibitory proteins IκBs (Brown et al., 1995; Karin and Ben-Neriah, 

2000). Upon cell activation by various stimuli, including pro-inflammatory cytokines 

TNF-α and IL-1, IκBs are phosphorylated which trigger the ubiquitination and 

subsequent degradation of IκBs through the proteasome. The degradation of IκBs leads 

to the release of NF-κB and allows its translocation into the nucleus and subsequent 

activation of a number of target genes (Baeuerle and Baltimore, 1996). Mathas et al. 

proved that arsenic rapidly down-regulated constitutive IκB kinase (IKK) as well as NF-

κB activity and induced apoptosis in Hodgkin/Reed-Sternberg (HRS) cell lines 

containing functional IκB proteins (Mathas et al., 2003). In HRS cell lines, apoptosis 

was blocked by inhibition of caspase-8 and caspase-3–like activity. Furthermore, 

arsenic treatment down-regulated NF-κB target genes, including TNF-α receptor-

associated factor 1 (TRAF1) and interleukin-13 (IL-13) (Mathas et al., 2003). In our 

study, we saw a significant increase in the level of nuclear fraction of NF-κB and a 

decrease in the level of cytosolic fraction indicating the translocation of NF-κB into the 

nucleus and phloretin co-treatment could considerably revert this effect. 

During cardiotoxicity, Ca2+ is mostly accumulated in the mitochondria, which 

causes the mPTP to open and facilitates the release of cytochrome C into the cytoplasm, 

thus activating caspase to induce apoptosis. AO/EB and annexin/PI staining showed a 

considerable increase in the number of apoptotic as well as necrotic cells in the milieu 

on treatment with ATO. DNA fragmentation proved apoptotic cell death on treatment 

with ATO. Caspase-3 is a member of the caspase family that plays a central role in the 
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apoptotic program (Nunez et al., 1998; Boulares et al., 1999). It showed a tremendous 

hike on treatment with ATO confirming the induction of apoptosis. Here also, phloretin 

prevented ATO induced alterations.  

Bcl-2 is a member of an expanding family of related proteins. Some of them are 

pro-apoptotic (Bax, Bak, Bid, Bcl-XS) and some are anti-apoptotic (Bcl-2, Bcl-XL) 

(Hengartner, 2000; Chao and Korsemeyer, 1998). Bcl-2 has been shown to suppress 

cytochrome C efflux from mitochondria and inhibit Ca2+ release from the ER (Adams 

and Cory, 1998; Foyouzi-Yousefi et al., 2000). It has been shown that the presence of 

Bcl-2 blocked the activation of caspase-3. At the protein expression level, the anti-

apoptotic Bcl-2 was considerably down-regulated with ATO treatment whereas 

phloretin co-treatment was effective in up-regulating the Bcl-2 expression. 

Igf1 is one of the most potent natural activators of the AKT signalling pathway. 

It mediates many of the effects of growth hormone on cardiovascular structure and 

function. Igf1 plays an important role in the regulation of myocardial structure and 

function, improves contractility, stimulates cell growth and proliferation, and is a potent 

inhibitor of apoptosis (Ren et al., 1999; Davani et al., 2003; Buerke et al., 1995). There 

are reports that Igf1 not only inhibits necrosis via preservation of mitochondrial 

function, specifically by inhibiting membrane permeability and cytochrome C release in 

mitochondria, but also reduces apoptosis through the inhibition of death signals 

generated by mitochondria (Yamamura et al., 2001). AKT, a serine/threonine protein 

kinase, mediates the cell survival signals coming through phosphoinositide 3-kinase by 

phosphorylation and inactivation of several pro-apoptotic proteins (del Peso et al., 1997; 

Cardone et al., 1998; Biggs et al., 1999; Brunet et al., 1999; Zhou et al., 2000). AKT 

also negatively regulates the MAPK pathways required for ATO-induced apoptosis. 

Oxidative stress initiates the dissociation of AKT from JNK-interacting protein 1 (JIP1), 

a scaffolding protein, which facilitates the activation of the ASK-SEK-JNK pathway 

(Song and Lee, 2005). AKT binding to JIP1 negatively regulates this signal transduction 

pathway; thus, a decrease in AKT as a result of oxidative stress could enhance JNK 

signalling (Song and Lee, 2005). Mann et al. proved that ATO decreases total AKT 

protein levels without affecting transcription or translation of AKT in a caspase-

dependent manner (Mann et al., 2008). Here, we saw a down-regulation in the 

http://en.wikipedia.org/wiki/AKT
http://en.wikipedia.org/wiki/AKT
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expression levels of Igf1 and total AKT on treatment with ATO and an upregulation in 

their expression with phloretin. 

Multiple studies have shown that ROS and high [Ca2+]i concentration induces 

phosphorylation of JNK and p38 MAPK (Tfelt-Hansen et al., 2003; Kim and Sharma, 

2004). This phosphorylated JNK and p38 MAPK mediate Ψm collapse (Kim et al., 

2006), which plays a major role in mediating apoptosis. Recently, the MAPK signalling 

cascade has been shown to be incorporated into cardiomyocytes apoptosis (Muslin, 

2008). ATO-induced p38 MAPK activation plays an important role in the resistance to 

ATO and its inhibition may overcome resistance to ATO treatment in myeloma patients 

(Wen et al., 2008). It has been reported that JNK agonist promotes apoptosis, while its 

inhibitor prevents apoptosis by suppressing expression of apoptotic-related proteins 

(Xie et al., 2009). ATO treatment results in JNK activation, which is required for 

maximal induction of apoptosis in several cell types (Davison et al., 2004). Genetic 

deletion of the upstream activator kinase SEK1/MAPK kinase 4 in mouse embryo 

fibroblasts inhibits both ATO-induced JNK activity and apoptosis (Davison et al., 

2004). Here, we saw a significant increase in JNK on treatment with ATO similar to the 

previous reports but, unlike the reports available we did not observe a significant 

alteration in p38 MAPK on treatment with ATO. Phloretin co-treatment could down-

regulate the JNK expression considerably. 

We checked the expression of RAF1 which is the member of MAPK cascade. 

Recently, RAF1 activation of the MEK-ERK pathway has been associated with 

inhibition of apoptosis, leading to cell survival (Cleveland et al., 1994; Xia et al., 1995; 

Erhardt et al., 1999; Le-Gall et al., 2000). Wang et al. had reported that Bcl-2 can target 

RAF1 to mitochondria and protect cells from apoptosis (Wang et al., 1996). Gene and 

protein expression studies showed that phloretin up-regulated the RAF1 expression 

significantly. Activation of ERKs plays an important role in protecting cardiomyocytes 

from oxidative stress-induced apoptosis (Aikawa et al., 1997; Lee et al., 2005c). The 

biologic effects of arsenic may be attributed to structural and functional alterations of 

critical cellular proteins by its reactivity with sulfhydryl groups (Mathas et al., 2003). 

The resulting loss of function of specific enzymes, including kinases and phosphatases, 

functionally alters diverse signalling pathways (Cavigelli et al., 1996). Here we saw a 

down-regulation in RAF1 expression on treatment with ATO, and phloretin co-
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treatment could significantly up-regulate the expression of these proteins. The activation 

of the ERK pathway, which provides a survival signal against stress-induced apoptosis 

was considerably down-regulated in ATO toxicity and phloretin could attain significant 

recovery. 

In addition to activated pathways leading to death, we hypothesize that survival 

signals would be inhibited by ATO. Overall results reveal that cardiotoxicity induces 

inflammation and apoptosis in H9c2 cells and phloretin protects the H9c2 cells from 

apoptosis by reducing the release of inflammatory cytokines and reduces the cell death 

by increasing the expression of Bcl-2 proteins and regulating the expression of genes 

involved in apoptosis (Fig. 5.11.). 

 

Fig. 5.11. 

 

 

 

Fig. 5.11. Schematic summary of the Chapter 
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6.   SUMMARY AND CONCLUSION 

 

Cardiotoxicity has a rising relevance in the present scenario as a consequence of 

the global improvement in cancer therapy and management, which has led to better 

survival of cancer patients. It is therefore critical to limit the co-morbid illnesses 

associated with chemotherapy. Arsenic trioxide (ATO) is a highly effective therapeutic 

drug used in the treatment of acute promyelocytic leukemia (APL) and is widely known 

by the trade name Trisenox™. However, the clinical use of ATO has been greatly 

limited due to its cardiotoxicity. The reported adverse effects associated with ATO 

treatment in cancer patients include QT prolongation, torsades de pointes and sudden 

cardiac death. The cardiotoxicity is mainly due to the effect of ATO on cardiac ion 

channels, excessive free radical production, oxidative stress, intracellular calcium 

overload, mitochondrial dysfunctioning and depletion of antioxidant status.  

Currently, no specific effective treatment is available to nullify the 

cardiotoxicity due to ATO therapy. So, a prophylactic strategy to protect cardiac cells 

from ATO induced oxidative stress is urgently required. Phytochemicals with 

nutraceutical properties are the ideal choice in this regard. Flavonoids, which are a part 

of the more extended family of polyphenols, are well known for their antioxidant 

activities due to the presence of phenolic rings in their structure. They exert antioxidant 

effects by scavenging reactive oxygen species (ROS), chelating transition metals, and 

inhibiting enzymatic generation of ROS. A large number of epidemiological studies 

suggest that flavonoids may reduce the incidence of cardiovascular diseases. Phloretin 

[3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)propan-1-one] is a dihydrochalcone 

phenolic compound found mainly in apples. Studies have revealed that apples exert 

antioxidative activities, attributed to phytochemicals such as quercetin, catechin, 

phloretin, phloridzin and chlorogenic acid, all of which are strong antioxidants present 

mostly in the skin. The objective of the present study was to evaluate phloretin against 

ATO induced cardiotoxicity in H9c2 cardiomyoblasts emphasizing on innate 

antioxidant status, organelle damage, calcium homeostasis, mitochondrial biology and 

apoptotic and inflammatory pathways. 
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We studied the effect ATO (5 µM) and phloretin (2.5 µM and 5 µM) on various 

cancer cell lines to confirm that phloretin does not compromise with the anticancer 

property of ATO. The cell lines studied were pancreatic cancer cell line (BxPC3), breast 

cancer cell line (MCF7) and colon cancer cell line (SW480). Microscopic evaluation 

showed severe alterations in the morphology of cells on exposure to ATO as well as 

when co-treated with phloretin. MTT assay, lactate dehydrogenase release assay and 

glutathione assay also supported the morphological data proving that the toxic effect of 

ATO on cancer cells was not compromised by phloretin rather it potentiated the effect 

of ATO. 

In order to evaluate the protective efficacy of phloretin against cardiotoxicity, 

ATO (5 µM) was induced in H9c2 cardiomyoblasts and co-treated with phloretin (2.5 

µM and 5 µM) for 24 h. During cardiotoxicity, ROS are generated mainly along the 

mitochondrial respiratory chain that triggers lipid peroxidation, protein oxidation, 

enzyme inactivation and impairment of physiological functions. During this condition 

the innate antioxidant status is altered and cause generation of more free radicals which 

in turn activates various pathways leading to cell death. The results showed that co-

treatment with phloretin reduced the toxic response of the cardiomyoblast cells, which 

was evident from increased cell viability, reduced ROS generation, protein carbonyl and 

malondialdehyde level, increased innate antioxidants, decreased Nrf2, xanthine oxidase 

and BNP level when compared to ATO alone treated cells. In addition, phloretin co-

treatment also reduced the alterations caused by ATO in cellular organelles. Alterations 

caused by ATO on cardiac specific genes such as troponin, desmin and caveolin-3 were 

also normalized with phloretin co-treatment. The results of the study clearly affirm the 

efficacy of phloretin against ATO induced adverse effects in H9c2 cardiomyoblasts.  

Mitochondria in cardiomyocytes have a special status due to their high density 

and important role in energy supply for cellular activities like rhythmic contractions 

throughout the life that consequently requires a fast and efficient intracellular energy 

delivery to the ATP consumers of the myocyte. As a result mitochondrial dysfunction 

plays a critical role in the development of cardiotoxicity. Dysfunctional mitochondria 

act as a major source of free radical production in the heart. They are also involved in 

other phenomena such as calcium homeostasis, innate antioxidant status and apoptosis, 

revealing its critical role in the overall physiology of heart cell. As a result, 
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mitochondria are emerging as one of the important druggable targets in the management 

of cardiotoxicity and other associated complications. Thus, we evaluated the protective 

efficacy of phloretin against mitochondrial dysfunction in ATO induced toxicity in 

cells. There was a significant alteration in mitochondrial parameters like mitochondrial 

transmembrane potential (Ѱm), superoxide production, NADPH oxidase, swelling, 

permeability transition pore (mPTP) opening, aconitase activity, activities of respiratory 

complexes (I, II, III and IV), oxygen consumption rate, ATP content, alteration in stress 

proteins (HSP60 and HSP70) and intracellular calcium status. The results showed that 

phloretin protects mitochondria during cardiotoxicity induced by ATO by preventing 

the generation of mitochondrial superoxide radicals, preventing dissipation of Ѱm, 

opening of mPTP, mitochondrial swelling, enhancing the activities of respiratory chain 

complexes, increasing oxygen consumption rate and ATP production in H9c2 cells. 

Moreover, phloretin also reduced the intracellular calcium overload in ATO treated 

cells. Thus the results revealed that ATO induced severe alterations in mitochondrial 

function and phloretin protected the mitochondria from the deleterious effects of ATO 

in H9c2 cells. 

Inflammation and associated complications play a critical role in cardiotoxicity. 

Many effector genes including those encoding cytokines such as TNF-α and IL-6 are 

activated by NF-κB. In the present study there was a significant increase in the level 

NF-κB as well as all inflammatory markers studied, such as IL-6, IL-2, IL-10, MCP-1, 

IFN-γ and TNF-α in cardiomyocytes subjected to ATO toxicity. The results showed that 

phloretin co-treatment significantly reduced the ATO induced increase in all the 

inflammatory cytokines. Cardiac cell apoptosis via oxidative stress plays an important 

role in the pathogenesis of cardiac dysfunctions. Free radical over-production increases 

intracellular calcium accumulation which in turn alters the mitochondrial membrane 

permeability that further leads to activation of apoptotic cascades. We investigated the 

mechanism of ROS-mediated mitochondrial apoptotic cell death in response to ATO in 

H9c2 cells by analyzing the cells with AO/ EB dual staining, annexin FITC/ PI staining, 

DNA fragmentation, activity of caspase-3, anti-apoptotic Bcl-2, Igf1, AKT, ERK1/2, 

RAF1, JNK and p38 MAPK. The results showed that phloretin has significant anti-

apoptotic potential and its co-treatment provides protection against ATO mediated pro-

apoptotic signalling in H9c2 cells via inhibition of proteins involved in cell survival 
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pathway (Igf1, AKT, RAF1 and ERK1/2), and activation of proteins involved in cell 

death pathway (JNK). The mechanism of ATO toxicity appears to involve activation of 

caspase-3 activity and via down-regulation of ERK1/2 phosphorylation. Here also 

phloretin showed protective effect and thereby up-regulating the ERK pathway for 

preventing apoptosis.  

Overall results shows that phloretin exhibits cardioprotective efficacy via 

various mechanisms that includes the attenuation of oxidative stress, mitochondrial 

dysfunction and intracellular calcium overload along with alteration in various 

inflammatory signalling pathways and mitochondria mediated pro-apoptotic signalling. 

In some of the parameters, a differential effect of phloretin in combination with ATO 

was observed. The probable reason may be due to the hormetic biphasic effect of 

phloretin with ATO. The results of the present findings may shed new light on the 

therapeutic potential of phloretin in addition to its nutraceutical potentials (Fig. 6.1.).  

Fig. 6.1. 

 

Fig. 6.1. Effect of phloretin against ATO in H9c2 cardiomyoblast 

To conclude, bioactive phloretin (a flavonoid in apples) is found to be effective 

in in vitro system to protect against ATO induced toxicity in H9c2 cardiomyoblast cell 

line. This study gives an insight into the protective efficacy of phloretin and its potential 

as a nutraceutical for the prevention and management of cardiotoxicity due to cancer 

chemotherapy and other associated disorders.  
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