		List of Tables	
Table	1.1.	Chemical formula and cation exchange capacity of 2:1 phyllosilicates	4
Table	2.1.	Thermal property measurement of PS and PSC materials	56
Table	2.2.	Molecular weights of bulk and extracted PS	58
Table	4.1.	Electrochemical corrosion measurements of Bare, PS-coated, and PSC-coated Al-Alloy	89
Table	4.2.	Thermal property and Electrical conductivity measurement of PS and PSC materials	95
Table	5.1.	Electrochemical corrosion measurements of Bare, PS-coated, and PSC-Coated CRS	112
Table	5.2.	Thermal property measurements	116
Table	5.3.	Electrochemical corrosion measurements of Bare, PS-coated, and PSC-AC Coated (Different clay loading)	119

		List of Figures	
Figure	1.1.	Structure of 2:1 layered silicate (Beyer G., 2002)	4
Figure	1.2	Schematic picture of an ion-exchange reaction (Fischer H., 2003)	5
Figure	1.3	Orientations of alkyl ammonium ions in the galleries of layered silicates with different layer charge densities (Lagaly., 1986)	6
Figure	1.4	Schematic representation nanocomposite production of PE/OMMT with rac-ethylene bis (4,5,6,7-tetra hydro-1-indenyl) zirconium dichloride by in situ polymerization. (Ren et al., 2010).	8
Figure	1.5	Schematic representation of PLS obtained by direct polymer melt intercalation of M ₂ (HT) ₂ with LLDPE (Hotta and Paul., 2004; Beyer., 2002)	9
Figure	1.6	Schematic representation of EVA/LLDPE/DS-LDH obtained by solution blending (Kuila et al., 2008; Pavlidou and Papaspyrides., 2008)	10
Figure	1.7	Schematic representation of three different types of PCNs	11
Figure	1.8	Typical XRD patterns from PCNs: (a) PE + organoclay (no formation of a nanocomposite), (b) PS + organoclay (intercalated nanocomposite), (c) siloxane + organoclay (delaminated/exfoliated nanocomposite) (Beyer G., 2003)	13
Figure	1.9	Transmission electron microscopy images indicating various possible morphologies in the composites as a function of the filler distribution (a) Unintercalated (b) Intercalated and (c) Exfoliated.	14

Figure	1.10	TGA curves of the degradation of PS100 and nPS90 at a heating rate 5 $^{\circ}$ C min ⁻¹ in air and nitrogen	18
Figure	1.11	Schematic view of the cone calorimeter (Beyer., 2002)	19
Figure	1.12	Formation of tortuous path in Polymer clay nanocomposites	21
Figure	1.13	(a) Real pictures of biodegradability of neat PLA and PLACN4 recovered from compost with time. Initial shape of the crystallized samples was 3cm×10 cm×0.1 cm	22
Figure	1.14	Schematic diagram of the formation for opened hollow spheres. (a) Na ⁺ -MMT; (b) a solid shell formed through MMT aggregates intercalating across each other during spray drying; (c) a porous shell formed by MMT aggregates overlapping during spray drying. (d and e) FE-SEM micrographs of clay/CNTs composite at low and high magnifications (Du Jiang et al., 2008)	27
Figure	1.15	SEM micrographs of (a,b) fiber-like (d,e) rod-like microstructures from the self-assembling of POP2000/MMT organoclay (Lin et al., 2004; Lin et al., 2008) (c) TEM micrographs of POP2000/MMT microstructure of a thin film (Chou et al., 2003) (f) TEM micrographs of POP2000-intercalated synthetic mica and MMT(Lin and Chen., 2004) (g) Conceptual explanation for the formation of these rod-like arrays	28

		-	
Figure	1.16	SEM, TEM and AFM images of self-assembled POP/clay (1.0 CEC) at the toluene/water surface and conceptual diagram of POP/clay self-assembling procedures	29
Figure	1.17	Hexagonally patterned lamellar morphology in ABC triblock copolymer poly (ethylene-alt-propylene- block-ethyleneoxide-block-n-hexyl methacrylate)-clay nanocomposites	30
Figure	1.18	SEM (a) and TEM (b) images of hollow laponite spheres obtained after calcination of PS spheres (640 nm)	31
Figure	1.19	Hydrogels of an organic-inorganic network using laponite clay	32
Figure	1.20	Self-assembly of polystyrene-clay nanocomposite particles as a) Vesicles and b) Micropatterned film	33
Figure	1.21	Electrochemical measurements performed at a double-wall jacketed cell, covered with a glass plate, through which water was circulated from a thermostat to maintain a constant operational temperature of 30, 40 and 50 ± 0.5 °C	38
Figure	1.22	Tafel plot of a series of poly(o-methoxyaniline) (PMA)/Na ⁺ montmorillonite (MMT) clay nanocomposite corrosion protection studies	39
Figure	2.1.	Flow chart for clay modification	47
Figure	2.2.	Structure of adducts (a)Acrylicacid-CTAB adduct, (b) Cinnamic acid-CTAB adduct and (c) Oleic acid- CTAB adduct	47

Figure	2.3.	Flow chart for PSC preparation using adduct modified clay	48
Figure	2.4.	FT-IR spectra of (a) Pristine Na ⁺ -MMT (b) AC-AMC (c) OC-AMC, and (d) CC-AMC	51
Figure	2.5.	Wide-angle powder X-ray diffraction patterns of (a) pristine Na ⁺ -MMT (b) OC-AMC, (c) CC-AMC and (d) AC-AMC	52
Figure	2.6.	Small-angle powder X-ray diffraction patterns of (a) PSC-OC, (b) PSC-CC, and (c) PSC-AC	53
Figure	2.7A.	TGA curve of modified clays (a) OC-AMC, (b) CC-AMC and(c) AC-AMC	54
Figure	2.7B.	TGA curves of composites (a) PS, (b) PSC-OC, (c) PSC-CC and (d) PSC-AC	55
Figure	2.8.	DSC curves of (a) PS, (b) PSC-OC, (c) PSC-CC, and (d) PSC-AC	57
Figure	3.1.	Optical micrographs of PSC-OC at (a) 1 mg/mL (b) 2.5 mg/mL (c) 5 mg/mL (d) 15 mg/mL and (e) 20 mg/mL concentration in THF solvent	66
Figure	3.2.	Optical micrographs of PSC-CC at (a) 1 mg/mL (b) 2.5 mg/mL (c) 5 mg/mL (d) 15 mg/mL and (e) 20 mg/mL concentration in THF solvent	67
Figure	3.3.	Optical micrographs of PSC-AC at (a) 1 mg/mL, (b) 2.5 mg/mL,(reflection mode) (c) 5 mg/mL, (d) 15 mg/mL, (e) 20 mg/mL and (f) 2.5 mg/mL (transmittance mode) concentration in THF solvent	67
Figure	3.4.	SEM micrographs of (a) 1 mg/mL PSC-AC/THF, (b) and(c) 2.5mg/mL PSC-AC/THF showing concentration dependent formation of vesicle	68

r –]
Figure	3.5.	(a) Fluorescent micrographs of vesicles containing 8- anilinonapthalene sulfonic acid (ANS), (b) Rhodamine 6G (R6G) and (c) triglyceride oil containing R6G at 2.5mg/mL PSC-AC/THF	69
Figure	3.6.	SEM micrographs of of PSC-AC/THF at (a) 5 mg/mL, (b) 10 mg/mL, and (c) 15 mg/mL solution concentration	70
Figure	3.7.	SEM micrographs of PSC-AC micropatterned film from 20 mg/mL PSC-AC/THF at high and low magnification	71
Figure	3.8.	Formation of micropatterned film of PSC-AC by Breath figure mechanism	72
Figure	3.9.	SEM micrographs of of PSC-AC/THF at (a) 30 mg/mL, (b) 40 mg/mL, and (c) 60 mg/mL solution concentration	73
Figure	4.1A.	Wide-angle powder X-ray diffraction patterns of (a) Pristine clay, (b)CTAB-MC, (c) OC-AMC, (d) CC- AMC and (e) AC-AMC	83
Figure	4.1A.	Small-angle powder X-ray diffraction patterns of (a) PSC-AC1, (b) PSC-AC3, (c) PSC-AC5, (d) PSC- AC10, (e) PSC-OC10, (f) PSC-CC10 and (g) PSC- AC20	84
Figure	4.2.	FTIR spectra of (a) Pristine clay (b) AC-AMC, (c) OC-AMC, and (d) CC-AMC	86
Figure	4.3.	SEM micrographs of (a) Polished A1 alloy and (b) PSC-AC10 coated A1 alloy	87
Figure	4.4A.	Tafel plots for (a) uncoated (b) PS-coated, (c) PSC-OC10-coated, (d) PSC-CC10-coated and (e) PSC-	88

		AC10 coated A1 alloy measured in 3.5 wt.% aqueous NaC1 solution	
Figure	4.4B.	Tafel plots for (a) PSC-AC1-coated, (b) PSC-AC3- coated, (c)PSC-AC5-coated and (d) PSC-AC20- coated Al alloy measured in 3.5 wt.% NaCl aqueous solution	89
Figure	4.5.	Randle circuit	91
Figure	4.6.	Nyquist plots for (a) uncoated, (b) PS-coated (c) PSC- AC1-coated (d) PSC-AC3-coated (e) PSC-AC5- coated and (f) PSC-AC10-coated Al alloy samples immersed in 3.5 wt% NaCl aqueous solution	92
Figure	4.7A.	TGA curves of (a) PS, (b) PSC-OC10, (c) PSC- CC10, and (d) PSC-AC10 using different adducts at 10 wt % clay loading	93
Figure	4.7B.	TGA curves of (a) PSC-AC1, (b) PSC-AC3, (c) PSC-AC5, and (d) PSC-AC10 by varying the clay loading (1-10 wt.%)	93
Figure	4.8A.	DSC curves of (a) PS, (b) PSC-OC10, (c) PSC-CC10, and (d) PSC-AC10	94
Figure	4.8B.	DSC curves of (a) PSC-AC1, (b) PSC-AC3, (c) PSCAC5, and (d) PSC-AC10	95
Figure	4.9A.	UV-Visible transmission spectra of (a) neat PS, (b) PSC-AC1, (c) PSC-AC3 (d) PSC-AC5 and (e) PSC- AC10	96
Figure	4.9B.	Relationship between electrical conductivity and clay loading as obtained from four-probe technique measurements	97

Figure	5.1.	Everyday examples of corrosion: (a) corrosion of a computer circuit board (b) crevice corrosion on the underside washroom sink; (c) corrosion of a food can (d) pitting corrosion of a silver-plated water jug (e) corrosion of brass plate and (f) deicing salt-induced corrosion of reinforcing steel corrosion in reinforced concrete bridge.	100
Figure	5.2.	Proposed structure of Acrylic acid-CTAB adducts	104
Figure	5.3.	X-ray diffraction patterns of (a) pristine clay, (b) AC-AMC2x, (c) AC-AMC1x, (d) AC-AMC1.5x and (e) AC-AMC 0.5x	108
Figure	5.4A.	WAXS patterns of PSC-AC0.5x	109
Figure	5.4B.	SAXS patterns of (a) PSC-AC1x, (b) PSC-AC1.5x and (c) PSC-AC2x	109
Figure	5.5.	FT-IR spectra of (a) Pristine clay, (b) AC-AMC2x, (c) AC-AMC1x, (d) AC-AMC1.5x and (e) AC-AMC 0.5x	111
Figure	5.6.	Tafel plots for (a) uncoated, (b) PS-coated, (c) PSC- AC0.5x-coated, (d) PSC-AC1x-coated (e) PSC- AC1.5x-coated and (f) PSC-AC2x-coated Cold rolled steel measured in 3.5 wt.% NaCl aqueous solution	112
Figure	5.7.	Randles circuit	114
Figure	5.8.	Nyquist plots for (a) uncoated, (b) PS-coated, (c) PSC-AC0.5x-coated, (d) PSC-AC1x-coated (e) PSC-AC1.5x-coated and (f) PSC-AC2x-coated Cold rolled steel measured in 3.5 wt.% NaCl aqueous solution	115
Figure	5.9.	TGA curves of (a) PS (b) PSC-AC0.5x (c) PSC-AC1x (d) PSC-AC1.5x and (e) PSC-AC2	116

Figure	5.10.	DSC curves of (a) PS (b) PSC-AC0.5x. (c) PSC-AC1x (d) PSC-AC1.5x and (e) PSC-AC2x	117
Figure	5.11.	Tafel plots for (a) PSC-AC1-coated (b) PSC-AC3- coated, (c) PSC-AC5-coated, and (d) PSC-AC10- coated cold rolled steel measured in 3.5 wt.% NaCl aqueous solution	118

List of Abbreviations		
АА	Acrylic Acid	
Al-alloy	Aluminum alloy	
AC-AMC	Acrylic acid-CTAB Adduct Modified Clay	
AC-AMC0.5x	Acrylic acid-CTAB Adduct Modified Clay at 0.5 meq	
AC-AMC1x	Acrylic acid-CTAB Adduct Modified Clay at 1 meq	
AC-AMC1.5x	Acrylic acid-CTAB Adduct Modified Clay at 1.5 meq	
AC-AMC2x	Acrylic acid-CTAB Adduct Modified Clay at 2 meq	
AMC	Adduct Modified Clay	
ANS	8-Anilinonaphthalene-1-Sulfonic acid	
BPO	Benzoyl Peroxide	
CC-AMC	Cinammic acid-CTAB Adduct Modified Clay	
CEC	Cation Exchange Capacity	
CRS	Cold Rolled Steel	
СТАВ	Cetyl Trimethyl Ammonium Bromide	
CTAB-MC	CTAB Modified Clay	
DSC	Differential scanning calorimetry	
E _{corr}	Corrosion Potential	
FRS	Frequency response analyser software	

FT-IR	Fourier Transform Infrared
GPC	Gel permeation chromatography.
I _{corr}	Corrosion Current
meq	Milliequivalent
MMT	Montmorillonite
Na ⁺ -MMt	Sodium Montmorillonite
NMP	N-Methyl pyrrolidone
OC-AMC	Oleic acid-CTAB Adduct Modified Clay
ОСР	Open Circuit Potential
ОМ	Optical Microscopy
PANI	Polyaniline
PCN	Polymer Clay Nanocomposite
PMMA	Polymethymethacrylate
PS	Polystyrene
PSC	Polystyrene Clay Nanocomposite
PSC-AC	Polystyrene Clay Nanocomposite using Acrylic acid-
	CTAB Adduct Modified Clay
PSC-AC20	Polystyrene Clay Nanocomposite using Acrylic acid-
	CTAB Adduct Modified Clay at 20 wt.% clay loading
PSC-AC10	Polystyrene Clay Nanocomposite using Acrylic acid-
	CTAB Adduct Modified Clay at 10 wt.% clay loading

PSC-AC5	Polystyrene Clay Nanocomposite using Acrylic acid- CTAB Adduct Modified Clay at 5 wt.% clay loading
PSC-AC3	Polystyrene Clay Nanocomposite using Acrylic acid- CTAB Adduct Modified Clay at 3wt.% clay loading
PSC-AC1	Polystyrene Clay Nanocomposite using Acrylic acid- CTAB Adduct Modified Clay at 1wt.% clay loading
PSC-AC0.5x	Polystyrene Clay Nanocomposite using Acrylic acid- CTAB Adduct Modified Clay at 0.5 meq concentration
PSC-AC1x	Polystyrene Clay Nanocomposite using Acrylic acid- CTAB Adduct Modified Clay at 0.5 meq concentration
PSC-AC1.5x	Polystyrene Clay Nanocomposite using Acrylic acid- CTAB Adduct Modified Clay at 0.5 meq concentration
PSC-AC2x	Polystyrene Clay Nanocomposite using Acrylic acid- CTAB Adduct Modified Clay at 0.5 meq concentration
PSC-AC	Polystyrene Clay Nanocomposite using Acrylic acid- CTAB Adduct Modified Clay at 10 wt.% clay loading
PSC-CC	Polystyrene Clay Nanocomposite using Cinnamic acid- CTAB Adduct Modified Clay at 10 wt.% clay loading
PSC-OC	Polystyrene Clay Nanocomposite using Oleic acid- CTAB Adduct Modified Clay at 10 wt.% clay loading
R _{ct}	Charge Transfer Resistance
R-6G	Rhodamine-6G
SAXS	Small-angle powder X-ray diffraction

SCE	Saturated Calomel Electrode
SEM	Scanning Electron Microscope
T _d	Degradation Temperature
T _g	Glass Transition Temperature
TGA	Thermogravimetric Analysis
THF	Tetrahydrofuran
WAXS	Wide-angle powder X-ray diffraction
XRD	X-Ray Difraction

PREFACE

Polymer-clay nanocomposites are a new class of materials which have attracted much attention from both scientists and engineers in recent years due to their excellent properties such as high dimensional stability, heat deflection temperature, gas barrier performance, reduced gas permeability, optical clarity, flame retardancy, and enhanced mechanical properties when compared with the pure polymer or conventional composites (micro- and macrocomposites). These unique properties resulted from the combining characteristics of components at nanoscale level and make them competitive with other materials for a wide range of applications. Recently, polymer clay nanocomposites became commercially available, and were applied to the automotive and food packaging industries. Biodegradable polymer based nanocomposites appear to have a very bright future for a wide range of applications as high performance biodegradable materials. Although significant amount of work has already been done on various aspects of polymer clay nanocomposites, much research still remains in order to understand the complex structure-property relationships in various nanocomposites. Organomodification of clay and its dispersion in polymers is one of the potential areas for research. Hence the thesis aims in synthesis of polymer clay nanocomposite using adduct modified clays and evaluation of its self-assembling and anticorrosive characteristics.

The thesis is divided into six chapters, of which the first chapter gives an overview on polymer clay nanocomposites including structure and characteristics of clays, organic modification of clays, structural characterization of

xiv

nanocomposite, preparative methods and morphological study, nanocomposite properties, advantages and applications like self assembly and corrosion resistant coatings and finally the scope and objectives of the present research work.

The second chapter deals with the synthesis of adduct modified clay (AMC) having different reactive acid group like acrylic acid, cinammic acid and oleic acid. A facile method is adopted for the modification of Na⁺-MMT using Cetyl Trimethyl Ammonium Bromide (CTAB)- Acid adducts. The successful clay modification via cation exchange was confirmed by FT-IR spectroscopy and X-ray diffraction (XRD). In the second part, these AMC with reactive functionality was used for the preparation of polystyrene clay nanocomposite (PSC). A series of exfoliated PSC using 10 wt.% AMC were prepared by effectively dispersing the inorganic MMT clay platelets in organic polystyrene (PS) matrix via in situ intercalative polymerisation. The as-synthesized neat PSC materials were characterized by FT-IR spectroscopy, XRD, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). FT-IR spectrum supports the successful intercalation of adducts into the interlayer space of MMT. This was further confirmed by XRD analysis, in which the (001) reflection of all the AMC appeared at smaller angles (2θ) as compared to the pristine clayindicating the successful ion exchange. Further the PSC-AC prepared using AC-AMC showed a higher thermal stability and higher glass transition temperature (T_g) compared to other Adduct modified PSC. The molecular weight distribution studies were carried out using Gel permeation chromatography.

The third chapter deals with the morphology and self-assembling properties of a series of Polystyrene (PS)-clay nanocomposites are investigated via in-situ free radical polymerization using adduct modified montmorillonite (MMT) clay. Adducts are synthesised by reacting quaternary ammonium salt with unsaturated organic acid like Acrylic acid, Cinnamic acid and Oleic acid. The resulting reactive cation is used to organo-modify the Na⁺-MMT clay. Polystyrene clay nanocomposites (PSC) prepared by effectively dispersing styrene monomers into the interlayer regions of organophilic clay hosts are used for studying solvent assisted Self-assembling property in THF. Among the three polystyrene clay nanocomposites, PSC-AC was found to exhibit better self-assembling properties than PSC-CC and PSC-OC. Microvesicles of uniform size were produced from solution concentration of 2.5 mg/mL. Micropatterned PSC film with concavity size of 1 to 1.5 µm was obtained by drop-casting PSC solution (20 mg/mL) under relative humidity of 70-80% and a uniform film of PSC was obtained at a solution concentration of 50 mg/mL and above. Solvent-assisted self-assembling studies are characterized using Optical microscope (OM), and Scanning electron microscope (SEM). The Guest-encapsulation of PSC vesicles are gained by encapsulating with fluorescent dyes and oil by Fluorescent microscope.

The fourth chapter, deals with the investigation on processing of a series of clay polystyrene nanocomposite (PSC) coatings containing different adduct modified montmorillonite (AMC) for corrosion resistance coating applications and also by varying the clay loading from 1-20 wt.%.. The corrosion properties were studied using potentiodynamic and electrochemical impedance spectroscopy measurements in 3.5 wt.%

xvi

aqueous NaCl electrolyte. The PSC coatings offered enhanced corrosion protection for Aluminum 6061 alloy even at high clay loading (20 wt.%). The order of their protection efficiency was PSC-AMC> Pristine PS > Pristine Na⁺-MMT. Dispersion of clay in the polystyrene matrix resulted in significant improvement of properties such as corrosion protection and thermal stability.

Chapter five describes the synthesis of a series of polystyrene clay nanocomposite (PSC) coatings containing different concentration of adduct modified clay (AMC). These AMCs were designed to investigate the impact of their chemical structure on the corrosion protection efficiency. PSC coatings with high modifier concentration on cold rolled steel were found to exhibit much better in corrosion protection over those of pristine PS based on a series of electrochemical measurements including corrosion potential, polarization resistance, and corrosion current in 3.5 wt % aqueous NaCl electrolyte. Also the PSC with high clay loading (10 wt.%) showed higher protection efficiency than one with low clay loading. Finally, chapter six summarises the major conclusions of the thesis.