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PREFACE 

Polymer-clay nanocomposites are a new class of materials which have 

attracted much attention from both scientists and engineers in recent years due to 

their excellent properties such as high dimensional stability, heat deflection 

temperature, gas barrier performance, reduced gas permeability, optical clarity, 

flame retardancy, and enhanced mechanical properties when compared with the 

pure polymer or conventional composites (micro- and macrocomposites). These 

unique properties resulted from the combining characteristics of components at 

nanoscale level and make them competitive with other materials for a wide range 

of applications. Recently, polymer clay nanocomposites became commercially 

available, and were applied to the automotive and food packaging industries. 

Biodegradable polymer based nanocomposites appear to have a very bright future 

for a wide range of applications as high performance biodegradable materials. 

Although significant amount of work has already been done on various aspects of 

polymer clay nanocomposites, much research still remains in order to understand 

the complex structure–property relationships in various nanocomposites. 

Organomodification of clay and its dispersion in polymers is one of the potential 

areas for research. Hence the thesis aims in synthesis of polymer clay 

nanocomposite using adduct modified clays and evaluation of its self-assembling 

and anticorrosive characteristics. 

The thesis is divided into six chapters, of which the first chapter gives an 

overview on polymer clay nanocomposites including structure and characteristics 

of clays, organic modification of clays, structural characterization of 
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nanocomposite, preparative methods and morphological study, nanocomposite 

properties, advantages and applications like self assembly and corrosion resistant 

coatings and finally the scope and objectives of the present research work. 

The second chapter deals with the synthesis of adduct modified clay 

(AMC) having different reactive acid group like acrylic acid, cinammic acid and 

oleic acid. A facile method is adopted for the modification of Na+-MMT using 

Cetyl Trimethyl Ammonium Bromide (CTAB)- Acid adducts. The successful 

clay modification via cation exchange was confirmed by FT-IR spectroscopy and 

X-ray diffraction (XRD). In the second part, these AMC with reactive 

functionality was used for the preparation of polystyrene clay nanocomposite 

(PSC). A series of exfoliated PSC using 10 wt.% AMC were prepared by 

effectively dispersing the inorganic MMT  clay platelets in organic polystyrene  

(PS) matrix via in situ intercalative polymerisation. The as-synthesized neat PSC 

materials were characterized by FT-IR spectroscopy, XRD, thermogravimetric 

analysis (TGA) and differential scanning calorimetry (DSC). FT-IR spectrum 

supports the successful intercalation of adducts into the interlayer space of MMT. 

This was further confirmed by XRD analysis, in which the (001) reflection of all 

the AMC appeared at smaller angles (2θ) as compared to the pristine clay-

indicating the successful ion exchange. Further the PSC-AC prepared using AC-

AMC showed a higher thermal stability and higher glass transition temperature 

(Tg) compared to other Adduct modified PSC. The molecular weight distribution 

studies were carried out using Gel permeation chromatography. 
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The third chapter deals with the morphology and self-assembling properties of a 

series of Polystyrene (PS)-clay nanocomposites are investigated via in-situ free 

radical polymerization using adduct modified montmorillonite (MMT) clay. 

Adducts are synthesised by reacting quaternary ammonium salt with unsaturated 

organic acid like Acrylic acid, Cinnamic acid and Oleic acid. The resulting 

reactive cation is used to organo-modify the Na+-MMT clay. Polystyrene clay 

nanocomposites (PSC) prepared by effectively dispersing styrene monomers into 

the interlayer regions of organophilic clay hosts are used for studying solvent 

assisted Self-assembling property in THF. Among the three polystyrene clay 

nanocomposites, PSC-AC was found to exhibit better self-assembling properties 

than PSC-CC and PSC-OC. Microvesicles of uniform size were produced from 

solution concentration of 2.5 mg/mL. Micropatterned PSC film with concavity 

size of 1 to 1.5 μm was obtained by drop-casting PSC solution (20 mg/mL) under 

relative humidity of 70-80% and a uniform film of PSC was obtained at a solution 

concentration of 50 mg/mL and above. Solvent-assisted self-assembling studies 

are characterized using Optical microscope (OM), and Scanning electron 

microscope (SEM).The Guest-encapsulation of PSC vesicles are gained by 

encapsulating with fluorescent dyes and oil by Fluorescent microscope.  

 The fourth chapter, deals with the investigation on processing of a 

series of clay polystyrene nanocomposite (PSC) coatings containing 

different adduct modified montmorillonite (AMC) for corrosion resistance 

coating applications and also by varying the clay loading from 1- 20 wt.%.. 

The corrosion properties were studied using potentiodynamic and 

electrochemical impedance spectroscopy measurements in 3.5 wt.% 
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aqueous NaCl electrolyte. The PSC coatings offered enhanced corrosion 

protection for Aluminum 6061 alloy even at high clay loading (20 wt.%). 

The order of their protection efficiency was PSC-AMC> Pristine PS > 

Pristine Na+-MMT. Dispersion of clay in the polystyrene matrix resulted in 

significant improvement of properties such as corrosion protection and 

thermal stability. 

  Chapter five describes the synthesis of a series of polystyrene clay 

nanocomposite (PSC) coatings containing different concentration of adduct 

modified clay (AMC). These AMCs were designed to investigate the impact of 

their chemical structure on the corrosion protection efficiency. PSC coatings 

with high modifier concentration on cold rolled steel were found to exhibit much 

better in corrosion protection over those of pristine PS based on a series of 

electrochemical measurements including corrosion potential, polarization 

resistance, and corrosion current in 3.5 wt % aqueous NaCl electrolyte. Also the 

PSC with high clay loading (10 wt.%) showed higher protection efficiency than 

one with low clay loading. Finally, chapter six summarises the major 

conclusions of the thesis. 

 

 

 


