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Preface 

Identification, exploration and value addition of the strategic minerals plays an 

important role in the socio-economic development of the nation in supporting nation’s low- 

carbon plans (electric and hybrid vehicles) and will give a boost to our strategic sector such 

as aerospace, defence, and nuclear energy. Exploring minerals is always a challenge for the 

miners because there is a possibility for missing rare and scarcely existing minerals and 

metals, and the process of finding them is an expensive risk.  Here makes the remote sensing 

techniques and satellite data in mineral exploration so important. It provides solid 

information on exact targeting of mineral occurrences and thereby it reduces field exploration 

and drilling costs. Remote sensing archives of satellite data which covers large areas on the 

ground are readily available. The remote sensing techniques have become a guiding and 

promising tool for mineral exploration and mapping of lithological units. The heavy mineral 

deposits found in coastal zones are of high quality and high volume. These strategic minerals 

act as the primary source for the production of titanium products, rare earth elements, etc. 

The main objective of the present study is to investigate the texture and mineralogy of beach 

sediments in the coast of  Thiruvananthapuram district, Kerala, India using hyperspectral 

remote sensing techniques. An attempt has been also made to map other strategic minerals 

like the silica, baryte and Kaolin clay deposits using hyperspectral remote sensing techniques.  

The chapter 1 gives an introduction to remote sensing and its applications in mineral 

exploration. A literature review on various remote sensing techniques used for mineral 

exploration is discussed here in detail. 

In chapter 2, detailed investigation on texture and mineralogy of beach sediments along the 

coast of Thiruvananthapuram, the southernmost district of Kerala, India have been carried 

out. The variation in grain size was studied using the spectral indices derived from the 

visible-NIR-TIR bands of Landsat and ASTER remote sensing data. Further, an attempt has 

been made to map the distribution of strategic minerals present in beach sands using 

standardized hyperspectral analysis techniques. Individual heavy minerals of good quality 

were recovered from beach sands using a judicious combination of magnetic, electrostatic 

and gravity separation units. The spectral signatures of 10 strategic minerals including beach 

minerals, silica sand, kaolin clay deposits were measured using ASD Fieldspec® 3 

spectroradiometer and used as the reference spectra for mapping these minerals.  Grain Size 

Index maps showing the texture of beach sediments were successfully generated from the 

satellite imageries.  The hyperspectral analysis extracts two endmembers of ilmenite and light 
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minerals from the Landsat and ASTER imagery, which could be successfully, mapped using 

the SAM classification algorithm.  The same procedure was used for mapping silica deposits 

from Landsat and ASTER data. The Fullerene bearing Barytes (Mangampet, Andhra 

Pradesh) and Kaolin deposits (Thonnakkal, Kerala) were successfully derived from Landsat 

data using hyperspectral analysis followed from MTMF classification method. The satellite-

derived maps have been validated with the results of laboratory analysis and field data which 

shows strong correlation almost in all locations.  

In chapter 3, the most widely used four machine learning algorithms such as Random Forest 

classifier (RFC), Artificial neural network (ANN), support vector machine (SVM) and 

maximum likelihood classifier (MLC) were compared for their efficiency in mapping beach 

minerals and silica sand deposits using landsat 8 OLI imagery. The image pixels correspond 

to sampling locations were selected as the training sites. The random forest classifier (RFC) 

and Support vector machine (SVM) shows the highest Kappa coefficient and overall accuracy 

for mapping beach sediments and silica sand deposits.  

In chapter 4, EO-1 Hyperion data was used for mapping the strategic minerals of Cuddalore 

coast, Tamil Nadu using the hyperspectral analysis techniques followed by SAM 

classification.  The endmembers of garnet, zircon, sillimanite and light minerals (quartz) were 

derived from the satellite data and compared with spectral library of minerals. The band 

depth analysis of continuum removed laboratory spectra and image spectra helps to derive a 

strong correlation between band parameters and the corresponding mineral concentration. 

This relation was used to quantify minerals with the help of Random Forest Regression 

technique. Thus the concentration of zircon mineral along the coast of Cuddalore, Tamil 

Nadu was quantified from Hyperion data. 

In chapter 5, detailed characterisation on structure, chemistry and surface morphology of 

beach minerals recovered from the beach sands of the present study area was carried out 

using advanced characterisation techniques. The crystal structure of the minerals was 

analysed using Raman spectroscopy and X-ray diffraction. The X-Ray Fluorescence 

Spectroscopy (XRF), high resolution inductively coupled mass spectrometer (HR-ICP-MS) 

and X-ray photoelectron spectroscopy (XPS) was used to analyze chemical composition and 

rare earth chemistry. Thermal properties of the samples were determined using TG-DTA 

analysis. The surface morphology of mineral grains was also analysed using scanning electron 

microscope (SEM). Detailed characterisation helps to analyse and compare the grade of the 

beach minerals with other important placer deposits of India. The characterisation results 

show good agreement with the reported values for other major placer deposits in India.  
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Summary of the thesis work with valid conclusions obtained from the present work are given 

in the Chapter 6 which also includes the future perspectives. 
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Chapter 1 

Introduction and Literature Review 

1.1.Introduction to GIS and Remote sensing 

GIS stands for „Geographic Information System‟.  It is defined as a computer system 

designed for collecting, managing, analyzing, and displaying geographically related data 

or spatial data. Any data that consists of a geographic component (latitude/longitude) 

which identifies the geographic location of features on the Earth‟s surface is termed as 

spatial data or geographically related data. GIS provides a framework for performing few 

tasks such as collection of  spatial data using GPS, satellite, etc., storing the data in a 

suitable database, analyzing, manipulating, and mainly querying of these data with the 

help of softwares and finally displaying the data in online platforms as digital maps. 

There are many sources for spatial data such as remote sensing (RS), photogrammetry, 

field survey, paper maps and files, etc. Remote sensing is one the most important source 

of spatial data where the information about the Earth‟s surface is acquired without being 

in contact with it. This is achieved with the help of sensors attached to the satellites which 

move around the Earth in the outer space. Remote sensing is defined as science to some 

extent, an art of collecting information about Earth‟s surface.
1
  

 

Figure 1.1: Components of remote sensing 

The important components of remote sensing are (i) Source of energy source or 

illumination. Usually sun act as the primary source of energy. It provides electromagnetic 

energy to the target of interest (A). (ii) While traveling from source to target, the energy 

gets interacted with the atmosphere where it passes through (B), (iii) Once the energy 
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reaches the target, an interaction occurs between radiated energy and target. The 

interaction can be reflection, absorption or transmission (C), (iv) The reflected or emitted 

light is recorded by the sensor attached remotely, usually in a satellite system in space 

(D), (v) The recorded energy will be transmitted to processing stations where it is 

received and processed into an image which is called “satellite imagery” (E), (vi) The 

satellite data is interpreted using image processing software for extracting solid 

information regarding the target material (F), (vii) The extracted information regarding 

the target material is used for an application where it solves a particular problem (G). The 

seven elements of remote sensing process are shown in Figure 1.1.  

 

Figure 1.2: Electromagnetic spectrum 

The most significant requirement for a remote sensing process is the energy source or 

source of illumination. The energy is electromagnetic radiation. Based on the wavelength 

range of electromagnet radiation, the remote sensing can be classified as (i) Optic Remote 

Sensing, (ii) Thermal Remote Sensing, and (iii) Microwave Remote Sensing. The optic 

remote sensing uses ultraviolet (UV), visible, and infrared (IR) region. Thermal Remote 

Sensing uses thermal infrared (TIR) region and Microwave Remote Sensing uses energy in 

the microwave region. The electromagnetic spectrum is shown in Figure 1.2.  

1.2.Remote sensing data 

Remote sensing data products ranging from multispectral to hyperspectral and high 

resolution to low resolution are widely used for mapping mineral deposits and lithological 

units. The Landsat 8, ASTER and EO-1 Hyperion data were used for the present study. 
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1.2.1. Landsat  imagery 

Over the past few decades, the multispectral remote sensing datasets of the Landsat series 

such as Thematic Mapper (TM), the Enhanced Thematic Mapper (ETM+) and Landsat 8 

OLI. A Comparison of the Landsat products are shown in Table 1.1.   

Table 1.1:  Sensor characteristics for Landsat satellites.
2
 

Satellite Sensor Band 

number 

Band Name Wavelength 

(µm) 

Spatial 

Resolu 

tion 

(m) 

Radiom

etric 

Resolu 

tion (bit) 

Spectral 

Resolu 

tion 

Landsat 

8 

OLI 1 Coastal 

aerosol 

0.43-0.45 30 12 11 

2 Blue 0.45-0.51 

3 Green 0.53-0.59 

4 Red 0.64-0.67 

5 NIR 0.85-0.88 

6 SWIR-1 1.57-1.65 

7 SWIR-2 2.11-2.29 

8 Panchromatic 0.50-0.68 15 

9 Cirrus 1.36-1.38 30 

TIRS 10 TIR-1 10.60-11.19 100 

11 TIR-2 11.50-12.51 

Landsat 

7 

ETM+  1 Blue 0.45-0.52 30 9 
(8  

transmitted) 

8 

2 Green 0.52-0.60 

3 Red 0.63-0.69 

4 NIR 0.77-0.90 

5 SWIR1 1.55-1.75 

6 TIR 10.40-12.50 60 

7 SWIR2 2.09-2.35 30 

8 Pan 0.52-0.90 15 

Landsat 

5 

TM 

 

1 Blue 0.45 - 0.52 30 8 7 

2 Green 0.52 - 0.60 

3 Red 0.63 - 0.69 

4 NIR 0.76 - 0.90 

5 SWIR1 1.55 - 1.75 

6 TIR 10.4 - 12.5 60 

7 SWIR2 2.08 - 2.35 30 

(VNIR: Visible near-infrared; SWIR: shortwave infrared; TIR: Thermal Infrared; N: Nadir 

looking; B: Backward looking, The Swath width for Landsat satellites is 185km) 
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All these three Landsat products are successfully used for mapping variety of rocks and 

mineral deposits of particularly alteration minerals like iron oxides and clays associated with 

hydrothermal altered rocks. The Landsat 7 satellite with   Enhanced Thematic Mapper plus 

(ETM+) sensor consists of seven spectral bands in which the VNIR bands 1-4 and SWIR 

bands of 5 and 7 and a panchromatic band 8. The Landsat 8 consists of two sensors of 

Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS).  It provides images 

with eleven spectral bands out of which the Visible-NIR-SWIR bands of 1-7 and 

panchromatic band 8 have the same spatial resolution of 30m as that of ETM+. The band 9 

which is used for cirrus cloud detection has a spatial resolution of 30 meters. The thermal 

Bands 10 and 11 have the resolution of 100 meters. The OLI bands are designed to have 

optimum spectral range without any influence of atmospheric absorption features observed in 

ETM+ bands.
3
 The water vapour absorption features at 0.825µm exist in the band 4 (0.780-

0.900 µm) of ETM+ is removed in OLI by introducing two bands of band 4 and band 5.
4
  

1.2.2. ASTER imagery 

Another major remote sensing dataset which is also commonly used for mineral 

mapping especially for alteration minerals is Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) imagery. ASTER was launched using the NASA‟s TERRA 

spacecraft.
5
 It is an advanced multispectral data consists of 14 bands with three VNIR bands  

ranging from 0.52 µm – 0.86 µm, six SWIR  bands ranging from 1.6 to 2.43 μm and also five  

TIR bands ranging from 8.125 to 11.65 μm.
6
 The SWIR bands have 30meters resolution 

same as that of Landsat but the VNIR and TIR have the spatial resolution of   15 meters and 

90 meters. The alteration minerals show characteristics spectral features in SWIR regions of 

electromagnetic spectrum. The alteration minerals show relatively high reflectance in SWIR 

band 5 (1.55-1.75 µm) of Landsat ETM+ and band 4 of ASTER.  At the same time they show 

relatively high absorption in other SWIR bands of Landsat ETM+ and ASTER. The epidote, 

chlorite, and calcite show high absorption for ASTER band 8, where as the minerals 

montmorillonite, kaolinite, and muscovite show high absorption for ASTER band 6. The 

thermal emissivity shown by different rock units corresponds to its silica content. The mafic-

ultramafic rock units having low SiO2 content show high emissivity in shorter wavelengths of 

ASTER correspond to band 12, 11 or 10 whereas the felsic rock units having high SiO2 

content shows high emissivity in larger wavelengths correspond to ASTER band 13 and 14. 

So as the rock type changes from felsic to intermediate and finally to ultramafic, the 
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emissivity increases for ASTER low wavelengths and decreases for ASTER high 

wavelengths.  

1.2.3. EO-1 Hyperion 

However, the spatial resolutions of 15 meters and 30 meters are too coarse to recognize 

small lithological units and mineral resources having very less size. The advent of Hyperion 

sensor made the beginning of hyperspectral geological remote sensing. Hyperion launched in 

November 2000 as part of  NASA‟s EO-1 Millennium Mission,  is the first spaceborne 

hyperspectral sensor having the capabilities of acquiring spectral bands in the range of VNIR 

and SWIR.
7
 It covers VNIR and SWIR regions of wavelength 0.36 to 2.58 μm with 242 

spectral bands at a spectral resolution of 10nm and spatial resolution of 30m. Comparison of 

Landsat ETM+, ASTER and Hyperion spectral bands is shown in Figure. 1.3. Sensor features 

of Hyperion and ASTER are given in Table 1.2. 

 

Figure 1.3: Comparison of Landsat 8, ASTER, Sentinel 2A and Hyperion spectral bands.
8,9
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Table 1.2:  Sensor details of Hyperion and ASTER.
2,5,10

  

Sate 

llite 

Sensor Sub 

system 

Band 

Number 

Wave 

length 

(µm) 

Spatial 

Resolution 

(m) 

Radio 

metric 

Resolution 

(bit) 

Spectral 

Resolutio

n 

EO-1 Hyperion VNIR 1 – 70 0.36 – 1.06 30 12 242 bands 

SWIR 70– 242 0.85 – 2.58 

Terra ASTER VNIR 1 0.52-0.60 15 8 14 bands 

2 0.63-0.69 

3N 0.76-0.86 

3B 0.76-0.86 

SWIR 4 1.600-1.700 30 

5 2.145-2.185 

6 2.185-2.225 

7 2.235-2.285 

8 2.295-2.365 

9 2.360-2.430 

TIR 10 8.125–8.475 90 12 

11 8.475–8.825 

12 8.925– 

9.275 

13 10.25–10.95 

14 10.95–11.65 

(The swath width for EO-1 Hyperion data is 7.5km and that of ASTER is 60km; VNIR: 

visible near-infrared region; SWIR: shortwave infrared region; TIR: Thermal infrared, N: 

Nadir looking; B: Backward looking) 

1.3.Remote sensing for mineral exploration 

Remote sensing applications in mineral exploration mainly deal with mapping of 

lithological units and mineral resources. The structural units like faults and fractures help to 

easily identify ore deposits. In contrast with field surveys, remote sensing is a cost-effective, 

less time consuming and efficient method for collecting information from poorly accessible 
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remote areas like mountainous terrains.
11

 All the mineral deposits show characteristic spectral 

signatures on multispectral and hyperspectral remote sensing systems based on their 

mineralogy and texture. Even though the hyperspectral images are used in advanced spectral 

analysis, the freely available multispectral datasets like Landsat imageries are also 

successfully used for mapping hydrothermally altered mineral deposits like iron oxide and 

clay minerals which have strong absorption in near and shortwave infrared (NIR and SWIR). 

The diagnostic spectral characteristics shown by Fe-bearing and hydroxyl-bearing minerals 

allows mapping of alteration zones. Therefore by accessing the remote sensing techniques 

like mixture-tuned matched filtering (MTMF), relative band depth (RBD), and band ratio 

(BR), the six SWIR bands of ASTER data effectively maps Al-OH, Fe-OH and  Mg-OH 

abundances and five VNIR bands of Landsat 8 effectively maps ferric iron alteration 

minerals.
12–16

 The narrower optical bandwidths and high radiometric resolution (16-bit) for 

Landsat 8 compared to that of Landsat-7 facilitates effective mapping of clay and iron oxide 

minerals with improved quality. Principle component analysis, band rationing, spectral 

indices and colour composites have been widely used for mapping mineral abundances from 

multispectral datasets of Landsat and ASTER.
17

  Later it was found out that the combination 

of remote sensing datasets like ASTER and Landsat8-OLI data together called AO data 

provides more information regarding the existence of alteration zones and the iron-bearing 

minerals on applying the same remote sensing techniques such as BR, RBD, and MTMF 

separately.
3,16

 

Recent advances in sensor technology made a breakthrough in the production of satellite 

imageries with improved spectral, spatial and radiometric resolutions. Hyperspectral 

imageries like EO-1 Hyperion which have 242 bands would make  more easier and efficient  

for identifying Fe oxide minerals, clay minerals, sulphates and carbonates  associated with 

hydrothermal alteration assemblages using advanced spectral classification techniques.
18,19

 

The remote sensing techniques are widely used for mapping chromite occurrences
20

 

carbonatite using HYMap data
21

. Recently an airborne TIR spectrometer called MAGI 

(Mineral and Gas Identifier) have been introduced for improved discrimination of rocks and 

mineral types, and more accurately retrieves land-surface temperature.
22

 MAGI use 32 

contiguous channels to span the TIR spectral region of 7.1 to 12.7μm. 

A series of analytical techniques broadly classified into two categories of spectrum 

matching techniques and subpixel methods were implemented for mapping mineral resources 
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and lithological units from satellite data.
23,24

 The spectrum matching techniques like SAM, 

SFF, SVM, etc. are used for comparing and validating the reflectance spectra of target 

materials measured using spectroradiometer and the image spectrum. The maximum 

likelihood classification (MLC) technique shows better performance than spectral angle 

mapper (SAM), parallelepiped,  Mahalanobis distance, and minimum distance to mean for 

mapping lithology using ASTER data (Fatima et al. 2013). 

The subpixel method finds the spectrally pure pixels with unique signatures of 

endmembers and then unmixed the mixed pixel spectra as combinations of these endmember 

spectra. Transformation of multivariate datasets removes the redundancy of spectral 

information and thereby reduces the computational requirements for further processing.  Thus 

the most commonly used linear transformation techniques like PCA, ICA, MNF, etc. 

provides a new set of uncorrelated image bands retaining most of the variance. Apart from all 

these techniques, the band ratios and spectral indices are simple and most widely accepted 

techniques not used only in the field of mineral exploration but also in other areas of 

applications. They enhance the spectral differences between the two bands by dividing one 

spectral band with another. The color composite of band ratios are also used for enhancing 

the mineral occurrences. Meanwhile researchers also made comparison of different data sets 

as well as the performance of different techniques for the successful discrimination of 

mineral resources. Adiri et al. found out that band ratios and PCA outperforms SVM for 

discriminating lithological units like sandstone, alluvium, etc. The same SVM technique 

outperformed the SAM technique in mapping the major lithological units of polymictic 

conglomerate, metabasalt, amphibolite, etc.  using Hyperion data.
25

  

The software packages PCI Geomatica, ENVI, ERDAS and ArcGIS with more 

versions and capabilities are used in digital processing, spectral enhancement, and  spectral 

classification. Ground verifications shows good agreement with the obtained results and 

therefore the accuracy of these latest mapping techniques were also very high. In situ 

geochemical analyses were also performed using portable X-ray fluorescence (XRF) devices 

for confirming the minerals.
26

  The potential of Remote Sensing (RS) techniques in various 

geological applications ranging from lithological mapping to exploration of minerals are 

discussed in detail here. It updates understanding on the subject starting from introducing 

details on different satellite data products like Landsat, hyperspectral data, ASTER data, etc. 
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to its application in exploring mineral deposits through different remote sensing techniques. 

Few case studies were also added under each method.  

The selection of remote sensing data products and techniques completely depends on 

minerals of interest and nature of study area. The major purpose of remote sensing techniques 

is to narrow the search area and subsequently reduces the cost of exploration and time for the 

field work.
26

 Most widely used remote sensing techniques were discussed with few case 

studies. 

1.3.1. Colour Composites and Band Rationing 

Band ratio is used for enhancing the slight variations in the spectral response of 

lithology and rock units by reducing the effect of topography.
27

 It is a simple mathematical 

operation between two bands given by equation (1.1): 

Band Ratio= 
BR

BA
   (1.1) 

Where, BR corresponds to band consists of high reflectance feature and BA corresponds to 

band consists of high absorption feature 

 Colour composite is an image enhancement method where the bands of satellite 

images are displayed using the additive colours of red, green and blue, and thus it is known as 

RGB colour composite.  Band ratios and RGB composites of Landsat ETM+ enhances 

mineral mapping, for example Al-OH have the  strong absorption in band 7 and strong 

reflection in band 5 of ETM+ data, so the band ratio 5/7 enhances hydroxyl-bearing 

minerals.
28

  The band ratio 3/1and 5/4 of Landsat ETM+ highlights iron oxide and ferrous 

minerals.
29

 The alteration zones,  vegetation, and the iron oxide zones are displayed as red, 

violet, and light yellow pixels in a RGB  composite image of band ratios 5/7, 3/1, and 4/3.
30

   

 The Sabins's ratio of R=5/7, G= 3/1, B=3/5 using Landsat ETM+ shows areas with  

iron oxides and clay minerals.
31,32

 On applying Kaufmann ratio, Abrams ratio, and Chica-

Olm ratio to the bands of Landsat ETM+, iron and clay minerals are easily identified.
32,33

 On 

applying Abrams ratio (RGB composite of the band ratios 5/7, 3/2, and 4/5), the iron-oxide 

and clay minerals associated with hydrothermal altered areas were visible in green and red 

colour. Kaufmann ratio (RGB composite of band ratios 7/4, 4/3 and 5/7) gives red, green and 

blue colour to iron minerals, vegetated zones and hydroxyl minerals. The Chica-Olma ratio 
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(RGB composite of band ratios 5/7, 5/4, and 3/1) provides red, green and blue colour to 

altered clay minerals, iron ions, and ferrous oxide minerals. The RGB composite of 5/7, 4/5 

and 3/1 using Landsat ETM+ clearly discriminates the uraniferous alteration zones 

surrounded by granitic rocks.
28

  

The ferric iron oxide minerals show high reflectance in the range 0.63 to 0.69 μm and 

high absorption in the range 0.45 to 0.52 μm, so the band ratio 4/2 made using the bands 2 

and 4 of Landsat 8 clearly depicts the zones rich in iron oxides.  The colour composite of 

bands 6, 5, 4 and band ratios 4/5, 5/6 and 6/7 made using the  Landsat 8 data was used to 

identify iron ores.
34

 The colour composites of  bands 765 and 752 in RGB and also the  band 

rationing  composite of  OLI 6/7, 6/4, 4/2 and 6/7, 4/2, 5/4 to RGB, respectively delineates 

gossanic ridges associated with gold mineralization from Landsat 8.
35

 The high grade iron 

ores are easily detected using the band ratio (4+6)/5of Lansat 8.
10

 The band ratios 5/7, 3/1, 

and 4/3 of  Landsat ETM + and 6/7, 4/2, and 5/4 of  Landsat 8 in RGB shows  iron oxide and 

hydroxyl-bearing alteration minerals which is sometimes  difficult to distinguish from 

vegetated areas.  So the RGB composite of band ratios (5 + 3)/(7 + 1), 3/1, and 5/7 of Landsat 

ETM+ and band ratios (6 + 4)/(7 + 2), 4/2, and 6/7 of Landsat 8 clearly distinguishes 

vegetation and alteration areas separately.
36

 

ASTER band ratio of  2/1 have been used for delineating iron oxide rich zones 
37

 and 

RGB composite of band ratios  4/2, 6/7, 5, and 10 helps in discriminating altered rocks and 

lithological units.
38

 The False color composite (FCC) image of three bands (1, 2 and 9 of 

ASTER) at the highest Optimum Index Factor OIF index clearly discriminates younger 

granites.
39

  The RGB composite of  ASTER bands  3, 2, and 1 clearly distinguishes the faults 

and lineament structures.
30

 The RGB combination of ASTER band ratios 7/6, 5/6, and 9/8 

provide  yellow to reddish yellow colors to Phyllic zones,  green color to argillic zones and 

light blue to propylitic zones. Here ASTER 5/6 band ratio detects Al–Si–(OH) mineral 

groups, the band ratio 8/9 shows  Mg–Si–(OH) mineral groups and the muscovite rich areas 

are clearly shown by ASTER 7/6 band ratio images. Also ASTER thermal band ratios 14/12 

and 13/14 re used for identifying silicate and carbonate minerals.
40

 The lighter and darker 

tones noticed in FCC composite of  band ratios 13/10, 14/10, and 13/12 generated using  

ASTER data show the rock units contain felsic and mafic minerals.
41

 The band ratio of 

ASTER 4/5 shows alunite mineral, 4/7 shows calcite and 4/6 shows kaolin minerals. So the 

RGB combination of 4/5, 4/6, and 4/7 shows areas with white pixels indicating the response 
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of (Al-OH) and (Fe-OH) minerals. Propylitic and phyllic alteration zones are seen in dark 

green, and yellow color. 
42

  

Relative absorption-Band Depth (RBD) is computed for each absorption feature  by 

dividing the sum of shoulder bands (Bands 1 and 3)  by the nearest band (Band 2) of the 

absorption feature minimum.
43

 The RBD8= (Band 7+Band 9)/Band 8   using the ASTER 

bands 7, 8 and 9 enhances the pixels showing the abundances of  CaCO3 and Mg-O-H 

minerals like carbonate, chlorite, epidote, etc. since these minerals   shows high absorption at 

Band 8 compared to Band 7 and Band 9  of ASTER data. Similarly RBD6= (Band 5 + Band 

7)/Band 6 highlights Al-O-H minerals. The RBD5= (Band 4+Band 6)/Band 5 is used for 

mapping kaolinite, alunite, and pyrophyllite minerals. The RBD13 highlights mafic and 

ultramafic rock units due to their high absorption feature in ASTER band 13.
37,44–47

   

Spectral indices or Thermal indices are computed using mathematical combinations of 

bands denoting surface reflectance or emissivity at different wavelengths.
17

 The SWIR bands 

of ASTER are used for deriving OH index (OHIb) and pyrophyllite index (PI) for mapping 

Al-OH minerals and pyrophyllite.
48,49

  The TIR bands of ASTER data are used for deriving 

mafic index and mafic-ultramafic index for mapping  mafic-ultrmamafic rock units.
49,50

 The 

TIR bands are also used for deriving carbonate index (CI) and quartz index (QI) for mapping 

carbonate and silicate minerals.
49

 

1.3.2. Principal Components Analysis  

 Principal components analysis (PCA) is an image enhancement technique mostly 

used for generating a set of uncorrelated variables called principle components or PC bands 

by the linear transformation of highly correlated original image data. It segregates noise 

components by inhibiting irradiance effects of the bands and thereby it reduces 

dimensionality of data.
51

 These linear transformation technique have been widely used along 

with other remote sensing techniques like colour composites, band rationing, crosta 

technique, hue-saturation-intensity (HSI) colour model, etc.  for mapping mineral deposits 

from multispectral as well as hyperspectral datasets.  

The PC bands of Landsat ETM+ (except band 6) and ASTER showed up the hydroxyl 

minerals and iron oxide minerals. PC4 band of Landsat ETM+ highlights the hydroxyl 

minerals and PC5 enhances iron oxide minerals. Similar analysis using ASTER data shows 

that PC2 enhances the hydroxyl-bearing areas.
52

 The RGB composite of PC bands of Landsat 
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ETM+ such as PC1, PC3 and PC2 shows basalt areas with the mineral geosite. Here the PC1 

and PC3 were obtained on applying PCA to the first ratio group of band ratios 5/4, 5/1, and 

3/7  and PC2 gray level image from the band ratios 3/1, 4/5, and 3/2 of Landsat 7 ETM+.
53

  

The PCA applied to selected subsets of  SWIR ASTER bands  detects  hydrothermal 

alteration minerals.
54

 Kaolinite mineral shows high reflectance for  bands 4 and 7,  and strong 

absorption for band 6 in ASTER data, the PC4 of the SWIR bands can be used for identifying  

argillic and phyllic alteration zones.
42

 

The RGB colour composite of PC3, PC2 and PC1 of ASTER successfully 

discriminates and characterizes the granitic rocks as younger granites, monzo-granite, older 

granitoides and also the sediments of metavolcanics, Hamammat sediments, Dokhan 

volcanic, tertiary sediments and quaternary sediments.
39

 Out of nine PC images obtained 

from ASTER VNIR + SWIR bands, the PC4 image shows iron oxide minerals, PC5 shows 

the vegetation associated with drainage network, the bright pixels of PC7 image shows  the 

Fe and Mg(OH)-bearing minerals and that of   PC6 shows the Al(OH)-bearing minerals. Thus 

the RGB colour composite of PC bands  highlights  alteration zones associated with copper 

deposits.
45

 The  first three principal components of the PCA image obtained from the  

ASTER bands covering the visible-NIR-SWIR spectral regions helps to discriminate  the 

geological groups like Cretaceous (limestone, clay, dolomite, etc.), Paleogene (limestone, 

clay, dolomite, gypsum, etc.), Miocene-Lower Quaternary (conglomerates, silts, ocher, etc.), 

and Middle Quaternary-Actual(alluvium, silts/gravel, gysum, etc.). Apart from these, the 

SVM classification of these PC images helps in detailed discrimination of 17 lithological 

units.
55

  

1.3.3. Linear spectral unmixing 

Linear spectral unmixing (LSU) considers the reflectance values of pixels in the 

satellite data as the linear proportion-weighted combination of the reflectance values of all  

endmembers present within that pixel on the Earth‟s surface.
56,57

  Thus the output of LSU 

consists of gray-scale images correspond to all the endmembers and a root mean square 

(RMS) error image. Brighter pixels show higher abundances of the mineral.
58

 LSU applied to 

ASTER data for delineating potassic alteration
30

,  Phyllic (muscovite), kaolinite (argillic 

alteration), pyrophylite-alunite (advanced argillic alteration), chlorite-calcite, and epidote 

(propylitic alterations)
59

.  
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1.3.4. Spectral Information Divergence 

Spectral Information Divergence (SID) uses the measures of divergence to match the 

pixels to a particular reference spectra, similar pixels are classified on the basis of smaller 

value of divergence. Pixels above a specified divergence threshold is not classified.
60

 The 

spectral variability of a single mixed pixel is calculated based on a probabilistic point of 

view. Combined SAM and SID classification of ASTER data proved successful  mapping of 

alteration areas consists of calcite, sericite, clay minerals, carbonate, quartz, and pyrite 

associated with gold mineralization.
61,62

  

1.4.Placer deposits and heavy minerals  

Placer minerals or placer deposits are formed by the mechanical concentration of mineral 

particles that get weathered  from host rock.
63

 Placer deposits are classified into (i) eluvial, 

(ii) alluvial or fluvial, (iii) aeolian, (iv) beach placers, and (v) fossil placers based on their 

mode of transportation and site of deposition. The minerals are weathered from parent rocks 

get transported by streams,  reaches the sea and deposited along the coast by the action of 

waves at suitable locations called beach placer deposits.
64

 The geological setting, climate, 

drainage pattern, and coastal processes are the main driving factors behind the deposition of 

heavy minerals along the coast of India.
65

 The geology of the provenance rocks and the effect 

geological processes play a vital role in the formation of placer minerals. The weathering of 

parent rocks is mainly influenced by climatic factors especially the tropical to sub-tropical 

climate influences largely the chemical weathering along coastal regions. The formation of 

laterites also favoured pre-concentration of these minerals. The transport of minerals from the 

provenance to sea is achieved by availability of streams. The dynamic characteristics of 

coastal processes such as long shore currents, wave velocity, and speed made the 

transportation, sorting and deposition of sediments along the coasts. The beach sand minerals 

based on their relative difference in specific gravity are classified into heavy minerals and 

light minerals. The minerals with the property of high density usually having specific gravity 

2.9 or greater are known as Heavy Minerals.
66

 It is a mixture of minerals like ilmenite, rutile, 

leucoxene, zircon, sillimanite, monazite and garnet.
67

 The list of most important heavy 

minerals is shown in Table 1.3. 
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Table 1.3: List of important heavy minerals 

Sl.  

No  

Heavy 

 Mineral  

Magnetic 

 Property  

Electrostatic  

Property  

Specific 

Gravity  

1  Ilmenite  Magnetic  Conducting  4.7  

2  Garnet  Weak  to non-magnetic  Non-conducting  3.4-4.2  

3  Monazite  Weakly magnetic  Low conducting  4.6-5.4  

4  Leucoxene  Weakly magnetic  Conducting  .>2.89  

5  Rutile  Non-magnetic  Conducting  4.18-4.25  

6  Zircon  Non-magnetic  Non-conducting  4.68  

7  Sillimanite  Non-magnetic  Non-conducting  3.23  

The light minerals are mostly quartz, dolomite, aragonite, etc., are called light 

minerals.  Heavy minerals in India like ilmenite, rutile, zircon, sillimanite  and monazite are 

named as „strategic‟ based on their economic importance and critical applications in many 

diverse industries. Many researchers also refers the heavy minerals as „strategic‟ due to its 

importance in nation's economy.
68,69

 

1.4.1. Placer deposits in India 

The important placer deposits of India includes (i) Ratnagiri deposits, Maharashtra, 

(ii) Chavara deposit, Kerala, (iii) Manavalakurichi deposit , Tamil Nadu, (iv) inland placer 

deposits (Teri sands), Tamil Nadu, (v) Srikurmam deposit, Andhra Pradesh, and (vi) 

Chatrapur deposit, Orissa (Figure 1.4).
65

 The Chavara deposit in Kollam district of Kerala 

possesses one of the best ilmenite mineral in the world due to its high TiO2 content of about 

60%.  The Neendakara-Kayamkulam deposit contains ilmenite (2.7Mt-35% grade), rutile 

(1Mt-2.5%), zircon (0.9Mt-2.5%), monazite (0.17Mt-0.5%), and sillimanite (2Mt-7%). The 

khondalite rocks are the major source of heavy minerals. The charnockites and the outcomes 

of pegmatites and quartz veins in these rocks also act as the source of heavy minerals. The 

tertiary sedimentary formations stretched along the coast act as the intermediate source of 

heavy minerals. The average heavy mineral content of these sedimentary formations are 

1%.
70

 The Manavalakurichi deposit in Kanyakumari district of Tamil Nadu shows 39% of 

total heavy mineral content (up to an average depth of 7.5m). Ilmenite mineral (24%) mostly 

exists followed by garnet (5.5%), sillimanite (3.5%), zircon (2%), rutile (1.8%), monazite 

(1%), and leucoxene (0.9%).
71

  The hinterland is mainly occupied by khondalite rocks of 
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Archean age. It comprised of quartzite of arenaceous facies, calc silicates, quartz garnet 

sillimanite graphite schists, etc. Intrusions of charnockites are also noticed in semi-arid 

places.
72

 The Srikurmam deposit in Srikakulam, Andhra Pradesh, predominantly consists of 

garnet (37.10%), followed by ilmenite (31.94%), rutile (1.3%), zircon (0.96%), sillimanite 

(24.33%) and monazite (0.24%). The hinterland is mostly dominated by khondalites, and the 

granulite facies of these khondalite rocks act as the main source of heavy minerals. The 

southwest of the deposition is mainly occupied by upper Gondwana formations. Charnockites 

has an only limited occurrence. In Chatrapur mineral sand deposit in the Ganjam district of 

Orissa, the ilmenite mineral predominantly exist with 5.86-17.45%, followed by garnet (3.78-

12.33%), sillimanite (0.78-6.17%), monazite (0.10-0.77%), zircon (0.24-1.09%), rutile (0.40-

1.70%), and magnetite (0.06-2.13%). The rocks occupied in Eastern Ghat consist of granites, 

gneisses, and metasediments of Archean to Proterozoic age, and Gondwanas act as the main 

provenance for the deposits.
73

  

Apart from major placer deposits, many researchers have done detailed studies on 

texture, mineral distribution and geochemical characterisation of beach sands collected from 

other parts of the country. The average THM of Kantiaghar beach of Ganjam district, Odisha 

is 67%  with the distribution of majorly sillimanite and ilmenite.
74

 The Mulki estuarine beach 

sands in Karnataka, central west coast consists of  ilmenite, magnetite, zircon, etc.
75

 The 

presence of  scandium was reported by instrumental neutron activation analysis for the beach 

sands of eastern coast of Odisha, India.
76

 The zircon, garnet, titanite, and opaque non rare 

earth mineral ilmenite were identified along the Northern Karnataka Coast, India.
77

  From 

Keelakarai to Periyapattinam, Gulf of Mannar, east coast of India, fine grained beach 

sediments exist with THM content of  5.5 to 31.55%.
78

 Coarse grained samples with THM of 

0.5 to 16.9% exist in tourist beaches of Chennai in Tamil Nadu.
79

 Medium to fine sands 

present in the beaches of Point Calimere with heavy minerals of pyroxenes, amphiboles, 

muscovite, etc.
80

 Medium to fine grained sand exist with ilmenite exist along the coast of 

Ullal and Surathkal in Karnataka.
81

 The beach sediments of Valapatanam-Azhikode beach in 

Kerala show 30.32% THM.
82

  Medium to fine grained sand exists with an average of 11.8% 

THM along the coast of Thiruchendur, Tamil Nadu.
67
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Figure 1.4: Major placer deposits in India. 

1.5.Need for the study 

Identification, exploration and value addition of the strategic minerals plays a prominent 

role in the socio-economic development of the nation in supporting Government's low- 

carbon plans (electric and hybrid vehicles) and will give a boost to our strategic sector such 

as aerospace, defence, nuclear energy. Exploring minerals is always a challenge for the 

miners because there is a possibility for missing rare and scarcely existing minerals and 

metals, and the process of finding them is an expensive risk.  Logistic support at high rates 

may require to access exploration areas due to remoteness or difficult terrain.  This all makes 

remote sensing and remote sensing data (satellite data), a prominent technology for mineral 

exploration. It provides solid information on exact targeting of mineral occurrences and 
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thereby it reduces field exploration and drilling costs. Remote sensing archives of satellite 

data which covers large areas on the ground are readily available.  The heavy mineral 

deposits found in coastal zones are of high quality and high volume. But only limited studies 

or no systematic and detailed studies have been carried out so far on its identification and 

exploration. Therefore, consolidation of information on minerals would be complementary to 

the efforts for improving the deposit utilization. As the first step, all the heavy minerals of 

strategic/commercial importance should be evaluated quantitatively/geochemically. GIS and 

remote sensing has emerged as powerful techniques for compiling, storing, integrating and 

reproducing information on spatial systems. So the aim is to explore strategic mineral 

deposits through integrated use of geological, remote sensing, and GIS sciences.  

1.6.Objectives 

 To develop a spectral library of strategic minerals comprising of beach minerals, 

silica sand, clay deposits and baryte mineral deposits in India. 

 To generate potential targets of mineral occurrences using hyperspectral analysis of 

Landsat 8, ASTER and EO-1 Hyperion datasets.   

 To map and quantify mineral abundances through integrated use of machine learning 

algorithms and EO-1 Hyperion datasets. 

 To carryout advanced characterization on structure, chemistry and surface 

morphology of minerals for quality assessment. 

1.7.Strategic mineral deposits and Study area 

1.7.1. Beach minerals of Varkala-Kovalam coast, Kerala 

Thiruvananthapuram (Trivandrum) is the southernmost district of Kerala (Figure 1.5 

and Figure 1.6) with a total of about 78 km coastline along the Arabian Sea on the west (8° 

17‟ 35”N–8° 51‟ 45”N latitudes and 76° 40‟ 23”E–77° 17‟ 2” E longitudes). The beach sand 

of Kappil-Varkala (KV) and Shanghumugham-Kovalam (SK) which stretches along the coast 

of Thiruvananthapuram district shows good THM (Total Heavy Minerals) content. The heavy 

mineral sand deposits contain an assemblage of predominantly ilmenite followed by 

sillimanite, monazite, rutile, zircon, leucoxene and garnet. The existence of these minerals as 

accessories in the provenance rocks act as the geological control, and the rivers originated 
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from the Western Ghats and flowing westwards to meet the Arabian Sea acts as the 

geomorphic control together paved the formation of beach sands with heavy mineral content. 

Geologically the Thiruvananthapuram district has two divisions viz. the eastern Archean 

crystalline rocks and western coastal periphery filled by Tertiary and Quaternary sediments. 

The Archaean crystalline rocks comprise of Khondalite, Charnockite and Migmatite groups 

in which the Khondalites are noticed mainly in the southern part of Kerala and composed of 

garnetiferous biotite-sillimanite gneiss, with rare presence of calc-granulite and quartzite. 

Tertiary sedimentary formations exist linearly along the coastal tract and unconformably 

overlays the crystalline rocks act as the intermediate source of heavy minerals. The laterites 

formed over khondalite rocks also contain minor contents of sillimanite and graphite whereas 

those over charnockites contain ilmenite and magnetite.  The heavy minerals which form the 

major part of beach sands are important accessories of khondalite, charnockites and the 

outcome of pegmatites and quartz veins present in these rocks. The Geological maps of the 

study areas are prepared using the data collected from Geological Survey of India (GSI). 

 

Figure 1.5: Study area map of Varkala-Kovalam coast, Kerala 
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Figure 1.6: Beach placers of  Varkala-Kovalam coast, Kerala 

In particular, the khondalites and charnockites are the significant sources of heavy 

mineral placers in the southern part of Kerala coast. The nature of provenance rocks, climatic 

conditions, coastal processes, coastal geomorphology, and drainage pattern governed the 

formation of beach sands. The action of waves and long currents determine the texture of 

beach sediments as well as the relative sorting of heavy and light minerals.
70

  

1.7.2. Beach minerals of Cuddalore coast, Tamil Nadu 

The Cuddalore coast situated in the Cuddalore district of Tamil Nadu state in India (see 

Figure 1.7). The present study is carried out along a coastal stretch of length 50km , bordered 

with the Bay of Bengal on the east and have the coordinates of  12° 0' 11.53"N-  79° 51' 

18.53"E and  11° 33' 52.46"N- 79° 45' 26.95"E. The geology comprises of Mio-Pliocene, 

Cretaceous deposits, and Quaternary sediments. Uppanar and Gadilam rivers form the major 

east flowing rivers in the study area. The beaches are characterised by cliffs having a height 

of about 75–90 cm, which is formed by the erosion of foreshore by high energy waves.  The 

backshore usually has a width of 30m, and that of the foreshore is about 20-30m. The Coastal 

configuration is N-S, current velocity is 1.8–3.6 m/s, and wave height is 1–1.5m. A detailed 

study on grain size and mineralogy of the present study area was carried out by many 
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researchers.
83–86

 The heavy mineral analysis shows that the heavies exist in the range of 

12.63%- 28.48% comprises mainly of  kyanite, garnet, zircon, and opaques. The 

concentration of kyanite is 1.21% to 32.54%, garnet is 12.03% to 31.76%, and  zircon is 

4.0% to 20.19%.
83

   

 

Figure 1.7: Study area map of Cuddalore coast, Tamil Nadu 

1.7.3. Silica sand deposits of Cherthala, Kerala 

A narrow stretch of land extends over 32km from Arookutti to Cherthala sandwiched 

by Vembanad lake on one side and Lakshadweep sea on another side,  situated in Alappuzha 

district in Kerala, India  is bestowed by large reserves of silica sand deposits of generally flat 

to gently dipping (Figure 1.8 and Figure 1.9). The geographic location of the study area is 9° 

53' 23.50"N -9° 34' 52.29"N latitudes and 76° 16' 15.12"E-76° 23' 55.50"E longitudes.  Major 

silica sand deposits are seen in Cherthala-Alappuzha, Kokothamangalam, and Pallipuram– 

Panavalli areas.
87

 The Palaeo-beach ridges  extends from Alappuzha to Nirkunnam contains 

high concentration of white silica sands which are actually forms the Cherthala  sand deposits 

of  8-9 km length  and 1-2 km width.
88
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Figure 1.8: Study area map of Cherthala siica sand, Kerala 

 

Figure 1.9: Silica sand deposits in Cherthala, Kerala 

The Alappuzha district is mainly comprised of coastal plains with landforms 

originated by marine, fluvial and also fluvio-marine actions. The deposits are unconsolidated 

Quaternary sediments in which the sands occupy the upper layer underlain by clay. The 

quaternary sediments of the study area is mainly occupied by strand line/palaeo beach deposit 

(Guruvayoor Formation) followed by (Viyyam Formation) and beach deposit (Kadappuram 
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Formation).
89

 The coastal parts of the district experience a moist and hot climate, and towards 

the interior it becomes slightly cooler and drier.  The average annual rainfall received by the 

district is 2965.4 mm. The district experiences an average annual temperature of 30.7ºC to 

23.9 ºC. 

1.7.4. Kaolin deposits in Thonnakkal, Kerala  

The Kaolin deposits are situated in Thonnakkal located in Thiruvananthapuram 

district, Kerala, India. It lies at the latitude of  8°37'55.78"N and longitude of 76°51'5.75"E 

which is approximately 7km away from the west coastline of Kerala (as shown in the Figure 

1.10 and Figure 1.11). Geologically the district was divided into two groups of Archean 

crystalline rocks on the eastern side and tertiary-quaternary sediments on the western coastal 

side. 

 

Figure 1.10: Study area map of Thonnakkal Kaolin clay deposits, Kerala 

The Archean crystalline rocks comprise of Khondalite, Charnockite, and  Migmatite 

Group of rocks. The Khondalite group comprises of garnetiferous biotite-sillimanite gneiss, 

with occasional stretches of calc-granulite and quartzite. Apart from these crystalline rocks, 
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Cenozoic sediments are occupied along the coastal react overlain the Precambrian 

crystalline.
89

 The Kaolin deposits at Thonnakkal also forms a part of Cenozoic sediments. It 

is a Tertiary Warkalli formation situated between the Tertiary formation on the western side 

and at the periphery of khondalite belt.
90

 

 

Figure 1.11: Kaolin deposits at Thonnakkal, Kerala 

 

1.7.5. Fullerene bearing Mangampet baryte mine, Andhra Pradesh 

The Mangampet baryte mine is located in the southern part of Kadapa District of state 

Andhra Pradesh in India (Figure 1.12 and Figure 1.13). In India, fullerene bearing shungite 

rocks were discovered in the Mangampet baryte mine located in Kadapa District, Andhra 

Pradesh. 
91

 The interlayered thick black coloured slates of carbonaceous shales exist in barite 

mines are confirmed that of shungite suite of rocks by carbon-hydrogen-sulphur composition. 

Further, ICP-MS analysis indicates the presence of Be, Co, Ga, Ge, Y, Zr, etc. The laser 

desorption/ionization mass spectrometry gives the main peaks near m/z= 720amu and 840 

amu indicating the presence of C60 and C70. It is estimated to about 74 million tonnes of 

reserves which is known to be the largest in the World. The  Andhra Pradesh Mineral 

Development Corporation Limited (APMDC) is presently engaged in mining of barytes and 

achieved a turnover of Rs. 2.13 billion in the year 2009-10 through the sale and exports 

(alone accounts over 92%). The geographic location is 14°1'46.21"N latitude and 

79°18'52.34"E longitude. Belongs to structurally configured “pull apart” Proterozoic 
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Cuddapah Basin. Lithology dominated by quartzites, shales, dolomites, with intercalations of 

chert, limestone, dolerites, and basalts. 

 

Figure 1.12: Study area map of Mangampet baryte mine, Andhra Pradesh 

 

Figure 1.13: Mangampet baryte mine in Andhra Pradesh, India 

The rock strata of Cuddapah Supergroup consists of arenaceous and argillaceous 

sediments overlain by carbonate sediments associated with Kurnool Group with upper part 

covered by clastics. Barytes mineralization is attributed to the hydrothermal solution and 
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contact metamorphism in contact zones of dolomites with the igneous sill intrusive. The bya 

zone of lapilli barite is considered as one of the economically important deposit and it is over 

lined by granular barite beds seen in  upper Carbonaceous tuff zone of Cuddapah Supergroup. 

It is also occurred in association with copper mineralization zones of pyrite, chalcopyrite, 

azurite, etc. The Proterozoic Cuddapah Basin having a crescent-shaped structure is formed 

over the high grade Archaean crust of the Eastern Dharwar Craton. The sub-basins are 

formed by large dolerite dykes. The basin is filled with strategic minerals like baryte, 

asbestos, high-grade limestone, phosphorites, uranium, and diamond.
92
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Chapter 2 

Hyperspectral analysis of Landsat 8 and ASTER data using spectral 

library of minerals 

2.1. Abstract 

Detailed analysis on grain size and mineralogy of beach sediments helps to understand 

their nature of deposition and potential targets of strategic mineral deposits. The beach 

sediments from the coast of Thiruvananthapuram, the southernmost district of Kerala, India, 

have been studied to understand the variation in grain size by using the spectral indices as 

derived from the visible-NIR-TIR bands of Landsat 8 and ASTER remote sensing data. 

Further, an attempt has been made to map the distribution of strategic minerals present in 

beach sands using standardized hyperspectral analysis techniques. The grain size shows a 

remarkable variation from medium sand to fine sand. The THM (Total Heavy Minerals) 

content was estimated to about 80.04% and 52.33% along the coast of Kovalam and Varkala, 

respectively. The ilmenite predominantly exists in these areas, followed by monazite, 

sillimanite, rutile, zircon, garnet, leucoxene, and Kyanite. The hyperspectral analysis extracts 

two endmembers of ilmenite and light minerals from the Landsat and ASTER imagery, which 

could be successfully, mapped using the SAM classification algorithm.  The hyperspectral 

analysis applied to Landsat 8 OLI and ASTER could successfully derived the mineral 

occurrence of silica sand deposits in Cherthala (Kerala), kaolin clay deposits in Thonnakkal 

(Kerala), and baryte mine in Mangampet (Andhra Pradesh). The satellite-derived maps have 

been validated with the results of laboratory analysis and shows strong correlation almost in 

all locations. The present study illustrates the possible applications of satellite remote sensing 

techniques for exploring natural resources, especially mineral resources.  

2.2.Introduction 

The advent of advanced satellite image processing techniques and target recognition 

algorithms made a vital breakthrough in remote sensing applications for mapping mineral 

occurrences and lithological units. During the initial days of remote sensing, the multispectral 

remote sensing using Landsat imageries successfully used to map the mineral occurrences 

above the surface of the Earth.
1
  Since 1972, the  Landsat series of satellite data products are 

extensively used in exploring mineral deposits of altered rocks, gold-bearing sulphide rocks, 
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Li-bearing pegmatites, etc.
2–4

 The Landsat 8 completely avoids the water vapour absorption 

features at 0.825µm of Landsat ETM+
5
 which facilitates advanced  exploration of clay 

minerals
6
, gold

7
, etc. Later other mineral deposits like clays, quartz, carbonates, silica, 

limestone, mafic rock units, gold occurrences were also identified using advanced 

multispectral dataset like ASTER.
7–11

 Apart from these, remote sensing datasets with 

increased spatial, spectral, and temporal resolutions like Hyperion, Sentinel, etc. also make a 

significant contribution to mineral identification.
12

 The improvements in satellite sensor 

technology paralleled with the development of image processing and classification algorithms 

available in the latest versions of remote sensing software packages made a breakthrough in 

mineral exploration. The remote sensing techniques for mineral exploration can be broadly 

classified into two categories of subpixel methods and spectrum matching techniques.
13

 

Subpixel based mapping methods are widely used for extracting solid information of mineral 

occurrences from multispectral and hyperspectral satellite data. Many researchers uses LSU, 

MTMF, and SVM for mapping alteration minerals.
14–18

 The spectrum matching techniques 

like SAM, SVM, SFF, etc. measures the spectral similarity between the reference spectra 

measured in field or laboratory with the image spectrum derived from satellite imageries.
19,20

  

Before these, the linear transformation techniques like PCA, ICA, MNF, etc. removes the 

noise dominated bands by converting the multispectral bands into a set of uncorrelated image 

bands, which reduces the computational requirements for further processing.
21,22

 The spectral 

classification of images can be successfully achieved using various classification algorithms 

like MTMF, SAM, SVM, and LSU, etc.
23,24

 The widely used image enhancement techniques 

such as band ratios and spectral indices also help to quickly resolve mineral deposits of 

varying texture and composition.
9,25

 The integration of results derived from various 

techniques like remote sensing, geophysics, geochemistry, and field data retrieves solid 

information regarding strategic mineral occurrences and their related host rock.  

The beach sands of Kerala are richly bestowed with the presence of heavy minerals, 

predominantly with ilmenite followed by monazite, rutile, sillimanite, zircon, and garnet. 

Presently the high degree of weathering causes the alteration of ilmenite to leucoxene
26

. All 

these minerals are economically significant due to their critical applications in many diverse 

industries, especially the ilmenite from Chavara deposit in Kerala is World famous for high 

TiO2 content. Many researchers have done a systematic analysis of grain size parameters and 

mineral composition of beach sediments, and also conducted detailed characterisation of 

beach minerals from the coast of Kerala.
27–30

 The complex coastal processes such as waves, 
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currents, and tides were the actual governing factors behind the size of the sediment grain, 

and thereby, it determines the depositional environment of beach sediments.  This variation in 

textural characteristics of sediments differentiates the sedimentary environments into beach, 

dune, and river.
31

 Therefore, a systematic granulometric study using textural parameters 

derived from the beach sediments provides an idea of the nature and energy of agents 

responsible for the transport and deposition of sediments.  

The present study aims to investigate the texture and mineralogy of beach sediments 

on the coast of Thiruvananthapuram district, Kerala, India using advanced remote sensing 

techniques. The grain size indices showing the texture of beach sediments were generated 

using the visible, NIR, and TIR bands of Landsat and ASTER imageries. An attempt has been 

made to use the advanced hyperspectral analysis techniques followed by SAM and MTMF 

classification for identifying silica sand deposits (Cherthala, Kerala), kaolin deposits 

(Thonnakkal, Kerala), and baryte mineral deposits (Mangampet, Andhra Pradesh) from 

Landsat and ASTER remote sensing datasets.  

2.3.Materials and Methods 

The flow sheet showing the proposed methodology for mapping the variation in grain size 

and distribution of beach minerals is shown in Figure 2.1.  

2.3.1. Fieldwork and Laboratory analysis 

Beach samples were collected to a depth of 1m from 69 sampling stations located at 

an interval of approximately 1km along the coastline of Thiruvananthapuram district during 

the pre-monsoon months of March and April. The heavy mineral analysis was carried out for 

the 1m depth samples, whereas the textural analysis was carried out in a more detailed 

manner by subdividing the 1m depth samples at 30cm interval and named as ―Top‖, 

―Middle‖ and ―Bottom‖.   Pre-treatment of the collected samples was carried out prior to 

sieving the samples through ASTM sieves of +18 to +230 mesh sizes (0.5ϕ intervals) using a 

gyratory sieve shaker.
32

 The cumulative weight percentage frequencies of the sieved 

materials were computed.
33

 The textural parameters were determined using the GRAIN 

software package. All these statistical methods help to understand even the finer differences 

that may exist within a particular environment of the same geography.
34
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Figure 2.1: Flow diagram of the proposed methodology for mapping the texture and mineralogy of beach sediments.
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Separation  of heavy minerals from the pre-processed beach sands were carried using 

bromoform, having a specific gravity of 2.89.
35

 Then the grains were subjected to grain 

counting using Leica petrological microscope for estimating the relative abundances of 

individual heavy minerals.
36

  

In general, IDW with a power factor of 2 is widely used in interpolating with lower 

prediction error compared to kriging when the number of samples is relatively lesser.
37,38

 

Spatial variation of total heavy minerals (THM), individual mineral concentration, and also 

the texture of the beach sediments along the Indian coast were mapped using Inverse 

Distance Weighted (IDW) interpolation technique.
39,40

 Moreover, the predicted values 

obtained from the widely used interpolation techniques IDW, OK, RBF, and LPI are 

validated against laboratory data using the statistics such as R
2 

, RMSE, and MAE values.
41

 

The best parameters were selected for the interpolation techniques. The power factors of 1 

and 2 were used for IDW. Three semivariograms like circular, exponential, and spherical 

were used for OK. The regularized spline was selected for RBF, and exponential kernel 

function was used for LPI. The ArcGIS software is used for generating surface maps showing 

texture and mineralogy using various interpolation techniques and map generation.  

2.3.2. Separation techniques for mineral recovery 

Representative raw placer samples of 20 Kg each collected up to a depth of about 1m 

from  Kappil-Varkala (KV) and Sanghumugham – Kovalam (SK) coastal stretches were 

processed to separate and estimate heavy minerals from the bulk beach sand. A series of 

mineral separation techniques which include magnetic, electrostatic and gravity methods are 

used for recovering heavy minerals. Suitable separation techniques were adopted based on 

the physical properties of minerals. Figure 2.2 shows the flow sheet for the mineral recovery 

from the beach sands. Laboratory model Carpco rare earth drum magnetic separator, 

Readings induced roll magnetic, Orekinetics CoronaStat high-tension separator, Mineral 

Technologies electrostatic plate separator and Mineral Technologies short spiral concentrator 

separator were used in this study. The samples were weighed and analysed using Leica 

petrological microscope at the start of the exercise and also at different stages during the 

process which helps to estimate the weight percentages and also to identify the individual 

minerals. 
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Figure 2.2:  Flow sheet showing the recovery of heavy minerals from the beach sands. 

The high content of magnetic ilmenite in the raw sand samples suggested the use of 

rare earth drum magnetic separator. The middlings were collected and subjected to 

electrostatic separation using CoronaStat high tension separator which separates the 

remaining magnetic and conducting ilmenite fractions in the bulk sample. The middlings 

from the CoronaStat high tension separator were again passed through rare earth drum 

magnetic separator for recovering less magnetic and less conducting garnet. The non 

magnetic minerals from rare earth drum magnetic separator are fed through a gravity 

concentration unit, typically known as short spiral concentrator. It effectively separates the 

remaining heavy minerals from the sand and produces HMC. The HMC was divided into 

conducting and non conducting fractions, and then passed through a CoronaStat high tension 

separator. The conducting fractions contain ilmenite, rutile, and leucoxene. These fractions 

were separated individually by passing through induced roll magnetic separator and 

electrostatic plate separator.   The non conducting fractions may contain monazite, zircon and 

sillimanite. The non-conducting and magnetic fractions of monazite were recovered by 

subjected to induced roll magnetic separator. The non magnetic fractions of zircon and 

sillimanite were separated using gravity method because of their difference in specific 

gravities. The zircon has high specific gravity compared to sillimanite so they were recovered 

by passing through short spiral concentrator. The concentrate obtained contains zircon and 



Chapter 2 
 

41 
 

tailings contain sillimanite fractions. Further it can be separated in lab using diidomethane 

liquid having a density of 3.31 g/cc.  

The Mineralogical modal analysis was carried out using a Leica petrological optical 

microscope for estimating count percentages of mineral of interest and other contaminants in 

the recovered mineral fraction after the separation. The mineral counting had been 

accomplished by following the method of line counting.
36

 The different counts have been 

converted into percentages and the values were tabulated.   

2.3.3. Textural analysis using spectral indices  

Retrieval of textural parameters from satellite remote sensing data using Topsoil grain 

size index (GSI), Normalized Difference Snow Index (NDSI), Asymptotic Radiative Transfer 

(ART) theory, etc. have been developed for monitoring land desertification and snow cover 

mapping.
42,43

 Here, the visible-NIR-TIR regions of Landsat and ASTER data were used for 

generating grain size indices showing the clear discrimination in the texture of beach sand. 

Atmospheric correction and radiometric calibration of Visible, SWIR, and NIR bands of 

Landsat 8 and ASTER L1B were done using FLAASH modules in the software package 

ENVI. The atmospheric contributions to thermal infrared radiance data of ASTER image 

were eliminated using the Thermal Atmospheric Correction technique, and the emissivity is 

retrieved using the Emissivity Normalization technique. Then the spectral indices such as (i) 

topsoil grain size index (GSI) (Eq.2.1), (ii) Grain index map (Eq.2.2), and (iii) Sand Index 3 

(Eq.2.3) were derived using Visible, SWIR and NIR bands of Landsat 8 and ASTER L1B. 

All image processing analysis, such as atmospheric correction, textural indices, and 

hyperspectral analysis were carried out using image processing software ENVI 

(https://www.harrisgeospatial.com/Software-Technology/ENVI). 

The topsoil grain size index (GSI) calculated using the visible bands of the Landsat 8 

image clearly discriminates the topsoil with varying grain size.
44

   

Grain size index (GSI) = 
(𝐵4− 𝐵2)

(𝐵4+𝐵2+𝐵3)
      (2.1) 

where B2, B3, and B4 correspond to blue, green, and red bands of Landsat 8 imagery. The GSI 

value is near to 0 for the vegetated area, and negative for water bodies. 

https://www.harrisgeospatial.com/Software-Technology/ENVI


Chapter 2 

42 
 

The Grain index map derived using NIR- SWIR bands of ASTER also helps to discriminate 

the topsoil with varying grain size.
45,46

 

Grain Index = 
(𝐵3− 𝐵6)

(𝐵3+𝐵6)
        (2.2) 

where B3 and B6 correspond to NIR and SWIR bands of ASTER.  

Finally, the TIR bands of ASTER data were also used for deriving the Sand Index, showing 

the variation in the texture of the sand.
47

 

Sand Index 3 = 
(3∗𝐵13 )

(𝐵10 +𝐵11 +𝐵12 )
       (2.3) 

where B10, B11, B12, and B13 is the emissivity of the given ASTER thermal bands.  

2.3.4. Building spectral library of beach minerals 

The spectral data of all heavy and light minerals present in the beach sediments of the 

study area were measured using ASD Fieldspec® 3 spectroradiometer. It records the 

reflectance values in the ranges of VNIR (350–1000 nm) at a spectral resolution of 3nm and 

SWIR (1000–2500 nm) at a spectral resolution of 10 nm, respectively.
48

  About 150gm of 

each mineral species were made spread on a black cloth covering the FOV of Fieldspec 
®

 3‘s 

sensor and illuminated using a tungsten filament halogen lamp, which provides a consistent 

energy source in the range of 400–2500 nm.
49

  

Post-processing of collected spectra includes splice correction, removal of measurements 

ranges in the wavelength of 350nm to 400nm, and smoothing of the spectra. The spectral 

drifts at 1001 and 1831 nm were corrected using the splice correction function of ASD 

Viewspec Pro
TM

.
50

 The splice correction function generates a new point using the average of 

tangents at either side of breakpoints for the line to pass through without drift 
51

. Since the 

halogen lamp used as the source of illumination radiates energy in the range of 400 to 

2500nm, the spectral measurements range in the wavelength of 350nm to 400nm were 

removed.  The sensor inherent noises were removed by applying a smoothing filter to the 

data. Savitzky–Golay smoothing algorithm with an optimal degree of polynomial order of 2 

and a filter size of 15, which maintains the actual slope of the spectra is used for smoothing 

the spectra.
49

 The mean spectra in ASCII format consist of wavelength, and full-width half-

maximum values are imported to the ENVI software for building the spectral library of beach 
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minerals. The spectral library of minerals was validated using the scores obtained for spectral 

matching techniques. The spectral matching techniques such as SAM, SFF, and BE are used 

for comparing the laboratory spectra of minerals with the USGS spectral library. A weight 

value of 1 is applied to each algorithm.  

2.3.5. Hyperspectral analysis of ASTER and Landsat 8 

Hyperspectral analysis of ASTER and Landsat 8 data is used for mapping the heavy 

minerals. Many researchers have successfully integrated multispectral data and hyperspectral 

techniques for mapping potential mineral occurrences. Using hyperspectral techniques, 

Masoumi et al. delineated hydrothermally altered areas using Landsat‐7, Landsat‐8, and  

ASTER data
4,52

, Pal et al. used  Landsat ETM+  for mapping minerals over Dalma and 

Dhanjori in  Jharkhand, India.
53

 Yousefi et al. mapped alteration minerals (kaolinite, alunite, 

and quartz) using ASTER data
7
. It is a multi-fold spectral analysis technique consists of six 

continuous processes such as (i) reflectance calibration and atmospheric correction, (ii) 

spectral data reduction and noise reduction using minimum noise transformation, (iii) 

extraction of pure pixels using pixel purity index (PPI), (iv) extraction of endmembers, (v) 

identification of endmembers using spectral matching techniques,   (vi) mineral mapping 

using classification algorithms.
53

 All these techniques were applied to Landsat 8 and ASTER 

individually for mapping the beach minerals. The complete analysis was carried out using the 

Spectral hourglass wizard in ENVI software. The FLAASH atmospherically corrected, and 

reflectance calibrated bands of Landsat and ASTER data were linearly transformed using 

minimum noise fraction (MNF) transformation for removing the noisy bands and thereby 

minimizes the spectral dimensionality.
54

 Here the highly informative lower MNF bands with 

least noises will be selected based on the eigenvalues calculated using the noise statistics of 

the input data. The Pixel purity index (PPI) reduces the spatial dimensionality of the bands by 

separating the spectrally pure pixels from MNF bands. It generates a PPI image, which 

clearly shows the pure pixels as bright. These pure pixels are used for generating the 

spectrally unique target members or endmembers using the n-D visualizer. In the n-D 

visualizer, the clouds of pure pixels lie at the corners of n-D scatter plot are rotated in 

different orientations for extracting the target members.
55

  

The extracted endmembers are assigned to a particular class of minerals by comparing the 

image spectra with the spectral library of heavy minerals using spectral matching techniques 

like SFF, SAM, and BE. Spectral matching algorithms are mainly classified into two types, 
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(i) deterministic, and (ii) stochastic. The SFF, SAM, and BE come under deterministic in 

which the geometry and physical aspects of the spectra were considered for calculating the 

matching.
56

  The SAM uses the spectral angle between the image spectra and reference 

spectra for measuring their similarity, irrespective of their invariance in scale and 

illumination. SFF is a least-squares technique that uses unique absorption features for 

measuring the similarity, irrespective of their illumination, and variations in grain sizes. BE 

uses binary codes of descriptors depicting the spectral and spatial properties of the spectra for 

matching with the target code.
57

 Finally, the true endmembers of the minerals are mapped 

using spectral classification techniques.  

2.3.6. Spectral Angle Mapper (SAM) classifier 

The similarities in spectral properties exist between image-derived spectra, and the 

reference spectra were measured using a spectral angle called n-D angle.
58,59

  For measuring 

the n-D angle, both the spectra were treated as unit vectors in n-dimensional space, and the 

SAM algorithm measures the angle between them as 

θ = cos−1  
 m i ri   

n
i=1

  m i
2n

i=1  
1/2

   ri
2n

i=1  
1/2    (2.4) 

where m is image spectrum, r is reference spectrum, and n represents number of bands in the 

image. Smaller the spectral angle θ, closer the image spectra to the reference spectra. The 

accuracy of the proposed methodology for mapping the heavy minerals was accessed using 

the overall accuracy and kappa coefficient obtained from error matrix calculation. The 

laboratory results of the textural and mineralogical analysis were used for generating the error 

matrix.
60

 The Kappa coefficient is estimated using entire elements of the error matrix, 

whereas the diagonal elements are only taken for finding the overall accuracy.
61

  

2.3.7. Mixture Tuned Matched Filtering (MTMF)  

The true endmembers derived from the satellite data are also mapped using MTMF 

technique.  MTMF is one of the effective image processing technique as well as a  partial 

unmixing process used for mapping minerals that shows remarkable differences from their 

background.
62,63

 It integrates two methods such as matched filter (MF) method and linear 

spectral mixing theory, therefore possess the advantages of two methods. No prior knowledge 

regarding the background spectral signature is required for the processing (matched filter 
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(MF)). The linear combination of individual components exists in each pixel gives spectral 

signature for that particular pixel (linear spectral mixing theory). Apart from this, it reduces 

the weakness of individual methods also.
14,64

 High and low values for MF and  infeasibility 

ranges from 1 to 0 represents closer matches and indicates high probability for mineral 

occurrences.
63

 Pal et al. successfully delineate alteration minerals from Landsat ETM+ image 

using MTMF.
53

 Moreover, the alteration minerals associate with porphyry copper Deposits 

were also delineated from Landsat-8 bands
65

 and ASTER data.
14

 

2.4.Results and Discussion 

The textural parameters and weight percentages of heavy mineral species were 

determined using laboratory analysis. Spectral indices and hyperspectral analysis techniques 

were used to derive the maps showing the texture and mineralogy of beach minerals, which 

were cross-validated using laboratory analysis.  

2.4.1.  Recovery of heavy minerals 

The petro-mineralogical analysis of the sample indicates that the sample mainly 

contains ilmenite followed by sillimanite, zircon, garnet, rutile, monazite and leucoxene. 

Flow sheets shown in  Figure. 2.3 and Figure. 2.4 were also suggested with material balance 

on the recovery of heavy minerals. The mineralogical assemblage, yield, grade and recovery 

of the minerals have been tabulated in Table 2.1 and Table 2.2. The feed samples from KV 

and SK stretches are subjected to a series of separation techniques for recovering the heavy 

minerals. The data indicate that overall recovery of total heavy minerals is 67.3% and 65.15% 

for Kappil-Varkala (KV) and Shanghumugham-Kovalam (SK) coastal stretches. The major 

mineral recovered from the coastal stretch of KV is ilmenite (45.55% yield) followed by 

sillimanite (8.75%), monazite (5.1%), zircon (2%), rutile (1.3%), leucoxene (0.9%), and 

garnet (0.05%). The major mineral recovered from the coastal stretch of SK is also the 

ilmenite (43.6% yield) followed by sillimanite (9.9%), zircon (2.8%), monazite (1.7%), rutile 

(1.05%), leucoxene (2.6%), and garnet (0.95%).  At certain stages of process, small quantities 

of heavy mineral samples with major content of ilmenite and sillimanite were also obtained 

which were totally estimated to about 3.65% and 2.55% for KV and SK.  
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Figure 2.3:  Flow sheet with material balance showing the recovery of heavy minerals from the beach sands of Kappil-Varkala Coast.  
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Figure 2.4:  Flow sheet with material balance showing the recovery of heavy minerals from the beach sands of Shanghumugham-Kovalam 

Coast. 
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Table 2.1: Heavy minerals recovered from the beach sediments of Kappil-Varkala Coast 

Heavy 

Minerals 

Mineral Composition (Grade %) Yield 

(%) 

Recovery 

(%) 

Ilmenite_1  Ilmenite (100) 45.55 97.02 

Ilmenite_2  Ilmenite (100) 

Ilmenite_3 Ilmenite (100) 

Ilmenite_4 Ilmenite (100) 

Monazite_1 Monazite (98.12) Ilmenite (1.88) 5.1 99.98 

Monazite_2 Monazite (91.24) Ilmenite (8.75) 

Sillimanite Sillimanite 

(75.90) 

Zircon 

(17.94) 

Quartz (6.16) 8.75 75.11 

Zircon Zircon (93.16) Sillimanite (6.84) 2 50.96 

Rutile Rutile (91.48) Sillimanite 

(6.2) 

Zircon (2.32) 1.3 99.48 

Leucoxene Leucoxene (90.1) Monazite 

(8.52) 

Sillimanite (1.38) 0.9 92.26 

Garnet Garnet(88.24) Ilmenite 

(9.29) 

Monazite (2.47) 0.05 52.13 

Others_1 Sillimanite 

(55.51) 

Ilmenite 

(36.02) 

Leucoxene (8.48) 3.65   

Others_2 Sillimanite(86.26) Zircon 

(7.17) 

Kyanite 

(5.32) 

Garnet 

(1.24) 

Others_3 Ilmenite (91.88) Garnet (8.12) 

Others_4 Ilmenite (84.07) Sillimanite 

(9.15) 

Zircon 

(4.57) 

Leucoxene 

(2.21) 

Others_5 Ilmenite (68.92) Sillimanite 

(26.93) 

Rutile (4.14) 

Others_6 Sillimanite 

(84.80) 

Zircon 

(7.93) 

Kyanite 

(5.89) 

Garnet 

(1.37) 

Total Weight (%) 67.3   
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Table 2.2: Heavy minerals recovered from the beach sediments of Shanghumugham- 

Kovalam coast 

Heavy 

Minerals 

Mineral Composition 

(Grade %) 

Yield 

(%) 

Recovery 

(%) 

Ilmenite_1 Ilmenite (100) 43.6 96.42 

Ilmenite_2 Ilmenite (100) 

Ilmenite_3 Ilmenite (100) 

Ilmenite_4 Ilmenite (100) 

Monazite_1 Monazite (95.51)           Ilmenite (4.49) 1.7 82.17 

Monazite_2 Monazite (68.03)            Ilmenite (31.97) 

Sillimanite Sillimanite  

(65.64) 

Kyanite 

 (10.94) 

Zircon 

(10.44) 

Quartz (12.98) 9.9 90.9 

Zircon_1    Zircon (100) 2.8 57.66 

Zircon_2 Zircon 

 (91.13) 

Kyanite 

 (7.52) 

Sillimanite 

 (1.35) 

Rutile Rutile (91.15)      Zircon (8.85) 1.05 94.75 

Leucoxene Leucoxene 

 (92.14) 

Garnet  

(2.74) 

Ilmenite  

(5.12) 

2.6 97.95 

Garnet Garnet (90.86) Ilmenite 

(7.26) 

Rutile 

 (1.88) 

0.95 87.76 

Others_1 Sillimanite (67) Ilmenite 

(28.30) 

Kyanite  

(4.71) 

2.55  

Others_2 Sillimanite (82) Ilmenite 

(13.07) 

Sphene  

(4.94) 

Others_3 Garnet (49.38) Ilmenite 

(33.16) 

Monazite 

(11.76) 

Zircon 

(5.70) 

Others_4 Ilmenite (87.28) Sillimanite 

(6.92) 

Leucoxene 

(4.01) 

Garnet 

(1.79) 

Others_5 Ilmenite (90.70) Rutile 

(6.38) 

Leucoxene 

(2.02) 

Garnet 

(0.90) 

Others_6 Sillimanite (58.40)      Monazite (41.60) 

Total Weight (%) 65.15  
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From Table 2.1 and Table 2.2, it is observed that high grades of ilmenite, rutile, 

leucoxene, zircon, garnet, and monazite were recovered from the beach sands of both the 

study areas. The sillimanite fractions associated majorly with zircon, kyanite and quartz 

which can be reprocessed for the recovery of individual mineral concentrates by judicious 

combination of gravity and flotation processes. Ilmenite along with other heavy minerals like 

sillimanite, monazite, rutile, zircon, leucoxene, and garnet are the important constituents of 

beach sand deposits. Initial separation of magnetic minerals like ilmenite and monazite 

followed by the concentration of other mineral constituents using spiral column and other 

magnetic and electrostatic separation techniques seemed to be the best route for recovering 

strategic minerals from the beach sand. The results show that effective recovery of high-grade 

heavy minerals can be achieved by judicious combination of magnetic, electrostatic, and 

gravity separation techniques. Previous studies on mineral recovery focuses only on 

particular categories of minerals like titanium bearing minerals and rare-earth minerals.
66–68

 

Here we have developed a process flow connecting a series of mineral separation techniques 

for the successful recovery of seven important heavy minerals of different magnetic and 

conducting properties from a single feed. 

2.4.2. Grain size parameters and bivariant plots  

The textural parameters like mean (Mz), sorting (SD), skewness (Ski), and kurtosis 

(KG) were meticulously used for studying the sediment transport processes as well as the 

depositional mechanisms in various environments.
69–72

 The coastal geomorphology and 

sedimentology of beach sediments are two critical factors determining the depositional 

environments of a coastal region.
73

 The grain size parameters were calculated for the top, 

middle, and bottom portion of samples collected from a depth of 1metre from 69 sampling 

stations, and the values were interpolated using IDW spatial interpolation technique.  The 

maps showing the variation in the grain size statistical parameters were given in Figure 2.5. 

Samples collected from Perumathura and Poovar regions show coarse to medium-sized grain 

size, whereas the grain size for the samples from Varkala and Kovalam ranges from medium 

to fine. The sorting values range from well-sorted to moderately sorted. All the sectors show 

dominance in strongly coarse skewed to very finely skewed nature, whereas the kurtosis 

values are dominated from very platykurtic to very leptokurtic.   

The Figure 2.6 shows the bivariant plots drawn using the textural parameters. 

Actually, these plots help to understand the fluid –flow mechanisms result in the movement 
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and deposition of beach sediments.
74

 In the mean versus (Vs.) sorting diagram, clustering can 

be observed in medium-sized and moderately well sorted. Since the mean size and sorting of 

sediment grains are hydraulically controlled, the most excellent sorting is always shown by 

sedimentary environments dominated by fine sized grains. The sorting Vs. skewness diagram 

clearly depicts that the sediments are moderately well sorted and near symmetric towards the 

medium fraction.  The skewness Vs. kurtosis diagram shows that the majority of the 

sediments are positively skewed and ranges from lepto to platykutic. The positive skewness 

indicates the domination of medium-sized grains with subdues of coarse and fine-sized 

grains.
32

 Negative skewness is shown by sediments consists of a small amount of coarser 

grains.
75

 At the same time, the positively or negatively skewed sediments show leptokurtic in 

nature.
76

 Most of the beach sediments collected from the study area also contain one 

predominant population of medium-sized grains for Perumathura and Poovar sectors except 

Varkala and Kovalam sectors in which fine sized grains predominantly exist. The change in 

grain size from coarse to fine leads skewness from negative to positive. 

Coastal geomorphology and fluctuation in the physicochemical conditions due to 

marine interactions are the main factors causing variation in wave energy conditions and 

thereby variation in textural patterns of beach sediments. In high wave energy environments, 

the strong winnowing action of waves results in the removal of fine sediments and results in 

coarser to medium-sized sediments. The positively skewed sediments also indicate low 

energy condition, whereas the negatively skewed sediments show high energy waves with 

winnowing action.
77

 

In the present study area, the sediments from Varkala and Kovalam show fine-sized, 

whereas the sediments collected from Perumathura and Poovar show coarse to medium-sized. 

The beach sediments collected from most of the locations in Kovalam are finer compared to 

the Varkala region.  It further suggests that high wave energy conditions prevail in 

Permathura and Poovar regions, which results in the strong winnowing of finer sediments. 

Figure 2.7 developed using sediment trend matrix analysis of McLaren clearly shows the 

movement and transport of beach sediments.
78

  The sediment trend matrix analysis uses 

representative samples from four important locations, such as Varkala (sampling points 1 to 

7), Perumathura (22-24), Kovalam (45-50), and Adimalathura-Poovar (55-57). Total 

deposition (Case I) and selective deposition (Case III) were noticed for the present study area. 

If the deposit is finer, better sorted and more negatively skewed than the source, then total 
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deposition of sediments takes place which is considered as Case I. In case of selective 

deposition, the deposit is seemed to be finer (Case IIIA) or coarser (Case IIIB), better sorted 

and more positively skewed than the source.
79,80

 The textural analysis clearly shows that the 

sediments of Kovalam followed by Varkala are finer, well-sorted, or moderately sorted in 

nature. The sediments of  Adimalathura-Poovar coast, followed by Perumathura regions, 

shows coarse-medium sized grain texture. These results in the deposition of more fine 

sediments in Kovalam-Varkala regions compared to other areas, which are clearly shown in 

Figure 2.7.   

 

Figure 2.5: Maps showing the variation in the grain size statistical parameters according to 

Top, Middle and Bottom samples. (a1-a2) Graphic mean; (b1-b3) Graphic standard deviation; 

(c1-c3) Inclusive graphic skewness; (d1-d3) Graphic kurtosis. 



Chapter 2 
 

53 
 

 

Figure 2.6:  Bivariant plots showing the relationship between grain size, sorting, skewness 

and kurtosis of Top, Middle and Bottom samples. (a1-a3) Mean Vs Sorting corresponds to 

Top, Middle and Bottom samples; (b1-b3) Sorting Vs Skewness corresponds to Top, Middle 

and Bottom samples; (c1-c3) Skewness Vs Kurtosis corresponds to Top, Middle and Bottom 

samples (WS-Well sorted, MWS-Moderately well sorted, MS-Moderately sorted, PS-Poorly 

sorted, VPK- Very Platykurtic, PK-Platykurtic, MK-Mesokurtic, LK-Leptokurtic, VLK-Very 

Leptokurtic, VCS-Very Coarse skewed, CS-Coarse skewed, NS-Nearly symmetrical, FS-

Finely Skewed, VFS-Very Finely Skewed). 

During the south-west monsoon months of June to September, the beach gets eroded 

due to strong and steep waves. During the time of monsoon, the zero-crossing wave periods 

were in the range of 5.3 to 13.1s, and the wave direction varied from 220–254. The 

Valiathura experiences a wave height of 0.78-3.3m.
81

 But during the time of fair seasons 

(November to April), the wave height is low (below 1m).
82

 The wave direction varied from 

199 to 214. The wave angle actually determines the transport of the sediments. The sediment 

transport is southwards from June to August and is towards the north for the rest of the year. 
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So the net transport of the sediments is towards the north, and it‘s about (0.72–1) × 10
5
 

m
3
/year.

83,84
 These are clearly shown in Figure 2.7 where the net movement of fine sediments 

is towards the north.  Sajeev et al.  analyzed the daily and monthly wave breaker height and 

confirmed that the coast of Thiruvananthapuram is an open coast exposed to high wave 

energy conditions.
85

  After the monsoon, the beach building starts, which is a slow process 

compared to erosion. During the period of 1989–2006, it was reported that the Adimalathura 

and Perumathura regions experienced a serious accretion whereas the Panathura–Poonthura–

Bhimapalli-Kovalam coastal sectors experience major erosion.
84,86

 Two major coastal plains, 

such as Pudukuruchi-Poonthura in the north and  Adimalathura-Pozhiyur in the south, are 

characteristically formed by coarse-medium sized grains. The Vizhinjam–Kovalam coastal 

stretch is occupied with rocky headlands, but lateritic cliffs are seen in Edava –Varkala 

beaches. The characteristic features like high energy waves, medium-fine sized texture, steep 

beach face, and the structural interventions such as gyrones, breakwaters, seawalls, etc. 

termed as ‗artificial morphologies‘ by Thankappan et al. are the main factors causing the 

deposition and erosion of coastal sediments.
86

  

 

Figure 2.7:  Sediment transport/movement map. 
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2.4.3. Mineralogy of Beach sediments 

The total heavy mineral weight percentage (THM%) values obtained from 69 sampling 

stations are used to generate a THM% map using the IDW interpolation technique, as shown 

in Figure 2.8(a). The predicted values obtained from four interpolation techniques were 

validated using R
2
, RMSE, and MAE values. It can be noticed that IDW with power factor 2 

shows the highest correlation of 0.998, followed by RBF with 0.997, OK (exponential) with 

0.955, and finally, the LPI with 0.877. The RMSE and MAE values for IDW with power 

factor 2 are 0.642 and 0.0024, which seems to be very low compared to any other 

interpolation techniques. The RBF show RMSE and MAE values of 0.957 and 0.00604 and 

that of OK (exponential) are 4.267 and 0.0298. The fine-grained sediments show the 

maximum THM% in the range of 0.21% to 55.54%. The Shanghumugham-Kovalam and 

Kappil-Varkala coastal regions show the maximum weight percentage of heavy minerals, 

whereas Perumathura and Poovar show the least THM%.  

The THM% of the beach sands in Kovalam and Edava (in Varkala) were estimated to 

about 80.04% and 52.33%, respectively, whereas the Thumba region shows 0.57% only.  The 

winnowing action of waves causes the deposition of heavy minerals as well as the removal of 

light minerals, which maintain the high values of THM% along with these areas. Since the 

heavy minerals possess very high specific gravity as compared to light minerals, high energy 

waves are needed for transportation and deposition along the coast.
32

 The heavy mineral 

concentrate of Varkala and Kovalam regions were taken for grain counting. The results of 

grain counting show that the ilmenite predominantly exists in the beach sands of Varkala and 

Kovalam with a maximum of about 28.14% and 52.86% respectively, followed by monazite, 

sillimanite, rutile, zircon, garnet, leucoxene and  Kyanite. 

The ilmenite map derived using IDW interpolation technique is shown in Figure 2.8(b). 

The Figure 2.8(c) shows the THM% with respect to grain size for the sampling locations. The 

results of the grain counting of heavy mineral concentrate were shown in Figure 2.8(d) and 

Figure 2.8(e). Very small quantities of other heavy minerals like hornblende and sphene were 

also noticed.  The leucoxene, which is a product of ilmenite alteration, is also seen in the 

study area with a maximum of about 0.88%.  Table 2.3 renders a summary of the grain 

counting results of THM concentrate.  The major content of ilmenite mineral followed by 

monazite, sillimanite, etc. along the coast of Varkala-Kovalam coastal stretch was also 

confirmed by many researchers.
87,88
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Figure 2.8: Results of heavy mineral analysis. (a) Heavy Mineral map; (b) Ilmenite mineral 

map (c) Graph showing the THM% with respect to grain size; (d) Graph showing the count 

percentage of heavy mineral species from Kappil-Varkala coast; (e) Graph showing the count 

percentage of heavy mineral species from Shanghumugham-Kovalam coast. 
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Table 2.3: Summary of the results of grain counting of THM concentrate.(Ilm-Ilmenite, Mon-

Monazite, Sill-Sillimanite, Rut-Rutile, Zir-Zircon, Gar-Garnet, Leu-Leucoxene, Kya-Kyanite, 

OM-Other minerals)  

   Ilm 

(%) 

Mon 

(%) 

Sill 

(%) 

Rut 

(%) 

Zir 

 (%) 

Gar 

(%) 

Leu 

 (%) 

Kya 

(%) 

OM 

(%) 

K
a
p

p
il

- 
V

a
rk

a
la

 c
o
a
st

 

 

Medium Max 9.33 5.92 0.82 0.29 0.21 0.02 0.29 0.68 0.33 

Min 2.86 1.25 0.28 0 0 0 0 0 0 

Fine Max 25.43 14.32 2.21 1.12 0.82 0.11 0.35 2.20 1.02 

Min 2.11 1.46 0.15 0 0 0 0 0 0.06 

Very Fine Max 5.65 2.17 1.00 1.05 0.42 0.10 0.20 0.03 0.08 

Min 0.24 0.13 0.02 0 0 0 0 0 0 

Total Max 30.98 17.44 2.97 1.35 0.90 0.14 0.64 2.51 1.37 

Min 5.21 2.84 0.55 0 0.10 0 0 0.12 0.09 

S
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S
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am
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o
as

t Medium Max 3.27 1.88 0.62 0.12 0.02 0.88 0.15 0.28 0.04 

Min 0.10 0.03 0.01 0 0 0 0 0 0 

Fine Max 34.72 11.72 4.95 8.41 0.17 1.50 0.54 1.92 0.25 

Min 5.88 0 0 0 0 0 0 0.09 0 

Very Fine Max 21.09 6.30 2.70 2.12 0.11 0.07 0.87 1.17 0.06 

Min 0.61 0.16 0.07 0 0 0 0 0 0 

Total Max 52.86 18.05 7.48 8.41 0.17 1.50 0.88 3.09 0.31 

Min 7.04 0.84 0.56 0 0 0 0 0.56 0 

 

Geologically the formation of these minerals was supported by the existence of 

khondalites and charnockites. The study area falls under the southern Kerala, which is 

composed of khondalites and charnockites. Both these rocks, along with their outcrops of 

pegmatites and quartz veins, are the important source of heavy minerals.
87

  The tertiary 

sedimentary formations found along the coastal side also act as the provenance of heavy 

minerals. In the present study area, sandstone and clay with lignite intercalations exist in 

Varkala and Kovalam regions, which are prominent heavy mineral areas. The sandstone and 

clay with lignite intercalations fall under tertiary sedimentary formations. The laterites 

formed over khondalites contain sillimanite, whereas over charnockites contain ilmenite and 

magnetite. The zircon and monazite are usually seen as confined to granites and pegmatites. 

High-grade metamorphic rocks of granulite facies contain sillimanite and garnet. All these 
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minerals were carried down by major rivers, and its minor streams like Kallar, 

Vamanapuram, Neyar, Poovar, Karamana, Killiyar, etc., and will deposit along the coastal 

tracts results in a high concentration of heavy minerals. The Karamana River debouches to 

the Arabian Sea at Poonthura estuary carry a significant amount of heavy minerals, which 

makes high concentration along the Vizhinjam-Kovalam-Pachaloor coastal tracts. The 

geology of the study area and the west-flowing rivers are the main reasons behind the high 

heavy mineral concentration in beach sands.  

2.4.4. Grain Size Indices 

The maps showing the texture of beach sediments, which were successfully, derived 

using spectral indices, are shown in Figure 2.9. The Figure 2.9(a), 2.9(b) and 2.9(c) show the 

GSI map, Grain index map, and Sand index3 map prepared using the Visible-NIR-SWIR-TIR 

bands of Landsat 8 and ASTER.  The parameters used for the FLAASH correction of satellite 

data are shown in Table 2.4. The Grain size indices show improved correlation with Graphic 

mean values derived from sixty sampling stations. The scatter plots showing the relationship 

between grain size indices and Graphic mean values were shown in Figure 2.9 (a1-c1). The 

GSI shows the best correlation (R
2
=0.705) with the grain size, followed by grain index 

(R
2
=0.671) and sand index 3 (R

2
=0.646). The spectral indices are statistically significant, 

with a p-value of less than 0.001. Further, an attempt has been made to estimate the graphic 

mean values by substituting the values of GSI, Grain index, and Sand index3 in equations of 

trend lines. The RMSE error calculated between the original and estimated graphic mean 

values is low for GSI (RMSE= 0.264) compared to Sand Index (RMSE=0.290) and Grain 

index (RMSE=0.279). The results clearly suggest that the GSI compared to other spectral 

indices shows the best correlation with the grain size of beach sediments.   

The spectral indices show an increasing trend as the texture of the beach sand changes 

from fine to medium. The Perumathura and Poovar regions show darker pixels with larger 

values indicating the medium texture of the sand as compared to low values in the Varkala 

and Kovalam regions consists of fine sand texture. Here the grain size indices detect the 

medium and fine sand area along the beach, which shows its potential in evaluating the 

textural characteristics. Table 2.5 renders the summary statistics of textural parameters and 

grain size indices. The maximum, minimum, and average values of grain size parameters 

(graphic mean) and spectral indices correspond to different grain sizes estimated for sixty 

sampling points were used for generating the statistics.   
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It clearly shows the correlation between graphic mean and spectral indices. The spectral 

indices show an increase in trend as the size of the sand grains increases. The fine sands 

always dominate in low wave energy environments while the coarser sediments persist in 

high wave energy environments. In this area, the action of strong winnowing waves has 

removed the fine sand.
89

 

Table 2.4: Parameters of   FLAASH atmospheric correction 

 Sensor 
Landsat 8 OLI ASTER 

Scene center location  8.6731N, 76.3287E  8.4775N, 76.8821E 

Sensor altitude  705  705 

Pixel size  30 30  

Flight date  2015-11-29  2004-02-24 

Flight time  05:12:13.21  05:30:09.56 

Atmospheric model Tropical Tropical 

Aerosol model  Maritime  Maritime 

Kaufman-Tanre Upper and lower Band 7 and 4 NIL 

Initial visibility 40 40 

Table 2.5: Summary statistics of textural analysis  

Grain 

size 

Graphic Mean GSI Grain Index Sand Index 3 

Min Max Mean Min Max Mean Min Max Mean Min Max Mean 

Coarse 0.64 0.96 0.88 0.25 0.29 0.27 -0.37 -0.34 -0.36 1.06 1.09 1.08 

Medium 1.02 1.99 1.41 0.07 0.33 0.23 -0.59 -0.32 -0.41 1.02 1.09 1.06 

Fine 2.02 2.80 2.28 0.01 0.14 0.06 -0.72 -0.50 -0.62 1.00 1.05 1.02 
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Figure 2.9: Satellite derived maps showing texture of beach minerals. (a) Grain size index (GSI) map; (b) Grain index map; (c) Sand index 3 

map; (a1) Scatter plot corresponds to Grain size index (GSI); (b1) Scatter plot corresponds to Grain index map; (c1) Scatter plot corresponds to 

Sand index 3 map 
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2.4.5. Mapping of beach minerals in Varkala-Kovalam coast, Kerala 

The reflectance calibrated spectral bands of Landsat imagery and ASTER data were 

linearly transformed using the MNF technique. Spatial data coherency calculated using a 

threshold value of 0.62 and 0.35 removes the noise dominated and least informative last band 

of each dataset.  

 

Figure 2.10: Spectral library of beach minerals. 

The bright pixels of PPI image obtained using 100 iterations with a threshold value of 3 

clearly represent the spectrally extreme pixels. In the case of multispectral datasets, the 

generation of non-extreme pixels may occur for a higher number of iterations.
53

 The 2-D 

scatter plots of this higher number MNF bands are used to identify the unique target material, 

and then they were compared with a laboratory-derived spectral library of beach minerals.  

The spectral library of beach minerals developed after processing the laboratory spectral 

signatures is shown in Figure 2.10.  The mean spectra of beach minerals recovered from 

Kappil-Varkala and Shanghumugham-Kovalam coastal stretches of the study area are used to 

develop the spectral library. Post-processing of laboratory collected spectra eliminates the 

thermal drifts at 1001 and 1831 nm, followed by smoothing of the spectra. Table 2.6 shows 

the validation results of laboratory spectra. Each mineral produces a maximum score with the 

corresponding mineral in the USGS library. The score is calculated using the values obtained 
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for SAM, SFF, and BE methods. The results conclude that the laboratory spectra show the 

best match with USGS spectral library and can be taken for hyperspectral analysis.  

Table 2.6: Validation of laboratory data 

Mineral  USGS Library  Score  SAM  SFF  BE  

Ilmenite  Ilmenite HS231.3B  1.775  0.854  0.588  0.333  

Rutile  Rutile HS137.3B  2.037  0.602  0 .602 0.833  

Monazite  Monazite S255.3B  2.466  0.871  0.762  0.833  

Zircon  Zircon WS522  2.947  0.947  1  1  

Sillimanite  Sillimanite HS186.3B  3  1  1  1  

Garnet  Almandine HS114.3B  2.755  0.886  0.868  1  

Light Minerals  Quartz GDS74 Sand Ottawa  2.749  0.916  1  0.833  

Table 2.7: Results of spectral matching techniques for beach minerals. 

Satellite 

data 

Date of 

Acquisition  

Endmember  SAM  SFF  BE  Score  

Landsat 8 2015-11-29 Ilmenite 0.911 0.965 1 2.876 

Light minerals 0.673 0.975 0.833 2.481 

ASTER  2004-02-24 Ilmenite 0.242 0.720 0.444 1.406 

Light minerals 0.764 0.847 0.444 2.055 

Likewise, the image spectra are also compared with reference spectra using the scores of 

SAM, SFF, and BE methods.  The Table 2.7 shows the scores of SAM, SFF, and BE, 

showing the highest degree of match between the image-derived endmembers and the 

laboratory-derived spectral signatures. The endmembers derived from the image spectrum 

were detected as ilmenite and light minerals. The ilmenite and lights show the maximum 
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scores compared to other endmembers. The image spectra derived from Landsat show total 

scores of 2.876 and 2.481 for ilmenite and light minerals. In the case of ASTER data, the 

scores are 1.406 and 2.055.  

 

Figure 2.11: Plots of relative reflectance of image spectra and reference spectra for beach 

minerals. (a1-a2) ilmenite corresponds to Landsat and ASTER data; (b1-b2) Light minerals 

corresponds to Landsat and ASTER data. 

Comparatively, the image spectra derived from Landsat imagery shows more match with 

the reference spectra.  The Plots of relative reflectance of these image spectra with the 

corresponding reference spectra is shown in Figure 2.11. These identified endmembers were 

used as the input training data for the SAM algorithm. Figure 2.12 and Figure 2.13 show the 

SAM classified images of the study area showing the distribution of ilmenite and light 

minerals derived from Landsat and ASTER data. SAM classified image shows rich deposits 

of heavy mineral such as ilmenite along the coast of Varkala and Kovalam regions, which 

clearly indicate the moderate to high energy environmental conditions, exist on these beaches 

favouring the deposition of minerals.  
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Figure 2.12: SAM classified image of Landsat data showing beach minerals. (a) Thiruvananthapuram district; (b) Varkala coast; (c) Kovalam 

coast.  
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Figure 2.13: SAM classified image of ASTER data showing beach minerals. (a) Thiruvananthapuram district; (b) Varkala coast; (c) Kovalam 

coast. 
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Table 2.8:  Accuracy assessment matrix for Landsat derived mineral map. 

 Reference Data 

Classes Ilmenite 

(>10%) 

Lights Total User’s accuracy 

Unclassified 0 0 0 - 

Ilmenite 17 2 19 89.47 

Light minerals 2 48 50 96 

Total 19 50 69 - 

Overall accuracy = 94.20%, Kappa coefficient = 0.85 

The action of high energy waves and currents results in the removal of light minerals to 

the offshore and leaving the heavy minerals on the beach
90

. Apart from beach minerals, 

endmembers of other geological units, water bodies, vegetation, and land use were also 

derived from the PPI images of ASTER and Landsat, which were removed for the SAM 

classification. Here the SAM technique was used successfully for two purposes; it facilitates 

the comparison of image spectra and reference spectra and also facilitates the sub-pixel 

mapping of target endmembers in the satellite data.  

Table 2.9: Accuracy assessment matrix for ASTER derived mineral map. 

 Reference Data 

Classes Ilmenite  

(>10%) 

Light 

minerals  

Total User’s 

accuracy 

Unclassified 1 2 3 - 

Ilmenite  10 1 11 90.91 

Light minerals  8 47 55 85.45 

Total 19 50  69 - 

Overall accuracy = 82.61%, Kappa coefficient = 0.60 

The accuracy of SAM inferred heavy mineral distribution map is shown in Table 2.8 and 

Table 2.9, which gives an overall classification accuracy and Kappa coefficient. The accuracy 

of the SAM classified ilmenite mineral occurrences was cross-checked using the sampling 

locations having more than 10% ilmenite mineral concentration.  The Accuracy assessment 

matrix for the SAM classified images derived from Landsat and ASTER shows overall 
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accuracies of 94.20% and 82.61% while the values of the Kappa coefficient are 0.85 and 

0.60, which shows a strong correlation between ground truth data and satellite-derived 

results. The value of the Kappa coefficient clearly demonstrates a relatively high degree of 

accuracy for the proposed methodology for heavy mineral mapping.
4
 Since the ilmenite 

predominantly exists in the study area, only two mineral spectra of ilmenite and lights were 

derived from Landsat and ASTER data. But the results obtained from the present study would 

be helpful for the identification of low concentration minerals from hyperspectral remote 

sensing datasets using more advanced mapping algorithms.   

2.4.6. Mapping of Silica sand deposits in Cherthala, Kerala 

The samples collected from six locations (S1 to S6) were used for   reference spectra 

built. The reference spectra of silica sand developed after processing the laboratory spectral 

signatures are shown in the Figure 2.14.  The pre-processed samples are also subjected to 

spectral data collection. The mean spectrum of six samples collected from the study area is 

used to develop the reference spectra of silica sand. The sensor inherent errors such as 

thermal drifts at 1001 and 1831 nm were rectified followed by smoothing of the spectra gives 

characteristic spectra for silica sand which is used for mapping the potential targets of silica 

sand deposits.  Effective mapping of minerals can be successfully achieved if they show 

marked variation in their reflectance for different ranges of wavelengths.
90

 The spectral-

reflectance distribution curve of silica sand reveals reflectance minima at 1.93µm of SWIR 

region.  

The reflectance calibrated nine VNIR-SWIR bands of ASTER and seven bands of 

Landsat 8 OLI imageries were used for deriving the occurrences of silica mineral.  The noise 

dominated and least informative last bands were removed using MNF transformation by 

applying suitable threshold values. The PPI image showing spectrally extreme pixels as 

bright were generated using the 100 iterations with a threshold value of 3. Higher number of 

iterations for multispectral datasets may generate pixels which are not extreme.
53

 The 

endmember spectra of unique target materials identified using the 2-D scatter plots of higher 

number MNF bands were compared with reference spectra of silica sand using spectral 

matching techniques results in successful identification of true endmembers. The scores of 

spectral matching techniques such as SAM, SFF and BE showing the highest degree of match 

between the image-derived and the laboratory-derived endmembers were shown in Table 

2.10.  
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Figure 2.14: Laboratory spectral reflectance plot of silica sand 

Table 2.10: Results of spectral matching techniques for silica sand deposits. 

Satellite 

data 

Date of  

Acquisition  

Endmember  SAM  SFF  BE  Score  

ASTER  2017-12-19 Sillica 0.629 0.968 1 2.597 

Purified Sillica 0.511 0.965 0.222 1.699 

2017-12-19 Sillica 0.717 0.948 1 2.665 

Purified Sillica 0.601 0.947 0.222 1.771 

Landsat 

8 

2017-01-18 Sillica 0.426 0.987 0.714 2.127 

Purified Sillica 0.325 0.950 0.429 1.703 
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Figure 2.15: Plot of relative reflectance of image spectra and reference  spectra for silica 

sand. (a) Landsat data; (b)ASTER data. 

The true endmembers showing the highest degree of match is selected for  further 

analysis. The Landsat data generates six  endmembers in which the endmember ―n-D Class 

Mean #2‖ shows the maximum score of  2.127 is used as the image spectra for mapping the 

silica sand occurrences. The ASTER scenes generate eight endmenbers each in which the n-D 

Class Mean #7  and n-D Class Mean #1 show the maximum scores of  2.597 and 2.665. 

These endmembers were used as the training data for SAM classification. The Figure 2.15(a) 

and 2.15(b) shows the plots of relative reflectance between the reference spectra and image 

spectra corresponds to Landsat and ASTER. In addition to these, end members indicating 

waterbodies, vegetation and other common landforms and lithological structures were also 

retrieved from the PPI images which were expelled from the further processing of SAM 

classification. SAM is used successfully for comparing the image spectra to reference spectra 

and also it is also used for the per-pixel mapping of the target endmembers by measuring the 

spectral angle between the unit vectors representing the image and reference spectra.
91

 The 

Figure 2.16 and Figure 2.17 shows the SAM classified images of the study area showing the 

rich distribution of silica sand derived from Landsat and ASTER datasets. On comparing with 

the Geological map, it is revealed that the inland silica sand deposits are mainly distributed 

along with the quaternary sediments of strand line/paleo beach deposit (Guruvayoor 

Formation).  
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Figure 2.16: SAM classified image of the Landsat data.showing silica sand deposits. 

The accuracy of the classification was assessed using the overall accuracy derived 

using error matrix.
60

 Since only one mineral type is taken for the study, Kappa coefficient 

cannot be calculated. The overall accuracy obtained for the Landsat 8 OLI imagery is 

90.476% and that for ASTER data is 80.952%.  Accuracy assessment using field observation 

demonstrates that the mineral occurrences show a high degree of accuracy with the sampling 

points.  The sampling locations show a strong correlation with the pixels of classified images 
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denoting silica mineral occurrences. The silica sand content of the beach deposit along the 

coastal side is also clearly seen in the inferred map derived using SAM method.  

 

Figure 2.17: SAM classified image of the ASTER data showing silica sand deposits. 
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2.4.7. Mapping of Kaolin deposits in Thonnakkal, Kerala  

The laboratory spectral reflectance plot of Kaolin clays are given in Figure 2.18. This 

is used as the reference spectra for mapping the kaolinite occurrences using the MTMF 

classification of Landsat 8 OLI imagery. The parameters such as 100 iterations with a 

threshold value of 3 are used for generating the PPI image. The endmembers derived from n-

D visualizer are compared with the laboratory spectral reflectance of kaolin clay deposits.  

 

Figure 2.18: Laboratory spectral reflectance plot of Thonnakkal Kaolinite clays. 

The scores obtained for the spectral matching techniques are given in Table 2.11. On 

comparing with the image spectra, the laboratory spectra obtained a total score of 2.638 and 

thereby the endmeber can be assigned to the class of Kaolin clays. The plots of relative 

reflectance of endmembers from image and reference spectra are shown in Figure 2.19.   

Table 2.11: Results of spectral matching technique for Thonnakkal Kaolinite clays. 

 

 

Satellite data Date of acquisition SAM  SFF  BE  Score  

Landsat 8 2017-01-18 0.791 0.990 0.857 2.638 
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Figure 2.19: Plots of relative reflectance of endmember spectra from Landsat data and 

reference spectra for Koalin clay deposits.  

 

Figure 2.20: Map showing Kaolin clays mines derived from Landsat imagery using MTMF 

method.  
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These endmember was used as the traing site for the MTMF algorithm. The classified 

mineral  map  obtained from MTMF method is shown in  Figure 2.20. Thonnakkal clay 

deposits were marked in red color.  On field verification, it was confirmed that the  clay 

mines in Thonnakkal mines were identified correctly using MTMF metod applied to Landsat 

8 imagery.  

2.4.8. Mapping of Fullerene bearing Mangampet baryte mine, Andhrapradesh 

The reference spectra developed by processing the laboratory spectra collected for the 

samples is also shown in the Figure 2.21.  The reflectance calibrated and FLAASH 

atmospherically corrected seven VNIR-SWIR bands of Landsat imagery were used for the 

study.  

 

Figure 2.21: Laboratory spectral reflectance plot of baryte mineral 

The MNF transformation eliminates the least informative and noisy last band from the 

satellite data. The PPI image showing extremely pure pixels as bright ones are generated 

using 100 iterations with a threshold value of 3. The endmembers generated using 2-D plots 

of MNF bands were compared with reference spectra using spectral matching techniques and 

true endmembers of shungite rocks were identified. The scores of spectral matching 

techniques such as SAM, SFF and BE showing the highest degree of match were shown in 

Table 2.12 and the corresponding plots of relative reflectance is shown in Figure 2.22.  
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Figure 2.22: Plots of relative reflectance of endmember spectra from landsat data and their 

corresponding reference spectra.  

Table 2.12: Results of spectral matching technique for baryte mineral in Mangampet. 

 

  On comparing with the reference spectra, the endmember ―n-D class Mean #1‖ out of 

six endmembers extracted from the Landsat data shows the maximum score of 2.797 which 

indicates the maximum similarity with reference spectra. Finally the MTMF algorithm 

classifies the entire images using these endmember and the bright pixels shown in the 

MTMF-classified imagery shows the occurrence of fullerene bearing shungite rocks (Figure 

2.23).  The MTMF gives the most satisfying results when a particular target needs to be 

identified rather than all the materials in the scene 
14

. 

Satellite data Date of 

acquisition 

      SAM  SFF  BE  Score  

Landsat 8 2018-05-06       0.823  0.974 1  2.797 
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Figure 2.23: Map showing Baryte mines derived from Landsat imagery using MTMF 

method.  

2.5.Conclusion 

Investigation on grain size and mineral distribution of beach sediments collected from 

the coast of Thiruvananathapuram District in Kerala, India, shows the dominance of medium 

to fine-grained sands with the major content of ilmenite mineral. The spectral indices 

developed using the bands of ASTER and Landsat clearly detect the abundance of medium to 

fine sand area. The mineral map developed using hyperspectral analysis of ASTER and 

Landsat data shows it‘s ability in demarcating the potential targets of mineral occurrences. 

Two mineral spectra of ilmenite and lights were successfully extracted from processed 

Landsat and ASTER data and the spectra were compared using the laboratory spectra of the 

minerals. Meanwhile, the silica sand deposits in Certhala, Kerala, Kaolin clay deposits in 

Thonnakkal, Kerala and Baryte mine in Mangampet, Andhrapradesh were also successfully 

mapped using the hyaperspectral analysis of Lasat and ASTER data. The accuracy of 

satellite-derived maps has been validated using field measurement that shows strong 

correlation almost in all locations. Laboratory derived spectral library provides highly 

accurate information of minerals, which significantly increased the accuracy of image 

classification. The spectral library is the first of its kind in Indian minerals and covers nine 
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strategic minerals seen commonly in the beaches and inland areas of the India. On applying 

hyperspectral analysis techniques to multispectral remote sensing datasets, effective mapping 

of texture and mineralogy of minerals can be achieved successfully, which has been analysed 

at first in this study areas. The results clearly illustrate the advanced image processing 

techniques and multispectral remote sensing datasets are very useful for the eco-friendly and 

sustainable exploration of strategic mineral resources. Moreover, the results will be helpful in 

identifying optimal wavelengths in hyperspectral remote sensing datasets for mineral 

exploration, using advanced mapping techniques and machine learning methods.   
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Chapter 3 

Mineral mapping using Machine learning algorithms and Landsat 8 

imagery 

3.1. Abstract 

Machine learning algorithms (MLAs) provides a supervised classification of high-

dimensional data like satellite imageries for mapping lithological units and mineral 

occurrences on Earth‟s surface. Here, four widely used MLAs like RFC, SVM, MLC, and 

ANN were used for mapping beach minerals and inland sand deposits. The Visible-NIR-

SWIR seven bands of multispectral remote sensing dataset Landsat-8 OLI imagery is used in 

the present study. The accuracy assessment using overall accuracy and Kappa coefficient 

reveals that RFC and SVM show better performance for mapping beach minerals and inland 

sand deposits. The results confirm the ability of MLAs to map mineral sands on the Earth‟s 

surface.  

3.2.Introduction 

Since the time of first Landsat data product called Lansat-1 launched in the year 1972 

onwards, remote sensing applications have made a breakthrough in the field of mineral 

exploration and lithological mapping.
1
 Geological analysis of Landsat-1 data of 

Nevada suggests Seventeen (17) areas as favourable targets for mineral exploration, 

especially limonitic iron oxide.
2
  Landsat series of satellite data products such as Landsat 5, 

Landsat 7, and finally the Landsat 8 have contributed immense information on the lithology 

and precious minerals and metals on the surface of Earth. Through the years, it can be noticed 

that the advancements in sensor technology get paralleled with innovations in software and 

computing technologies. This paved the invention for new image processing algorithms, and 

target detection algorithms like principal components analysis, band ratio that facilitates the 

accurate mapping of mineral occurrences. The colour composite, band ratio, and principal 

components analysis extracts the occurrence of clay alteration  in Landsat TM
3
, Landsat 

ETM+
4
 and Chromite mineralization from Landsat 8

5
. Mixture tuned matched filtering 

(MTMF) applied to Landsat TM,  Landsat ETM+, and Landsat 8 identifies alteration 

minerals
6,7

 and   lithological units
8
. The SAM applied to Landsat TM,  Landsat 7,  and 

Landsat 8 data identify hydrothermal alteration minerals
9
, lithological mapping

10
, sulphide 
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deposits
11

. Linear spectral unmixing (LSU) applied to Landsat ETM+ identifies 

Hydrothermal Alteration minerals.
12

 

Machine learning algorithms are data-driven algorithms developed based on the input 

data without relying on any predefined rule as a model. Since it offers an automated means of 

recognizing patterns in high-dimensional data, today ML algorithms are widely used as an 

image classification algorithms in remote sensing applications where it easily hands large 

volumes of satellite data.
13

 Different MLC algorithms are compared for mapping mineral 

occurrences, and the best one will be selected based on cross-validation with testing points. 

RF classification outperforms Naive Bayes, SVM,  k-Nearest Neighbors,  and ANN for 

geological mapping using  Landsat 7 ETM+ data.
13

 The SVM approach provides better 

results than the ANN for lithological mapping using Landsat 8 OLI.
14

  Random Forest shows 

better performance than Naïve Bayes,  k Nearest Neighbour, and SVM for geological 

mapping  using Landsat 4-5 TM.
15

  The ML algorithms like NN, SVM, and RF performed 

better than the maximum likelihood classifier (MLC) on using the Landsat 8 and Landsat 7 

data for mapping lithology.
16

  

The beach sands of the Indian coast are bestowed with a good concentration of 

strategic minerals like ilmenite, rutile, monazite, zircon, sillimanite, garnet, and the altered 

form of ilmenite called leucoxene.
17

 These minerals are collectively called heavy minerals 

due to high specific gravity of about 2.9, and also these minerals are economically important 

due to their immense applications in wide areas of industries. The rutile and synthetic rutile 

from ilmenite having high TiO2 content are used for the production of TiO2 products such as 

titania, TiO2 pulp, metal, etc.
18

 Rare earth elements are produced from monazite
19

, zirconia 

from zircon, synthetic mullite from sillimanite for refractories applications, and garnet is as 

abrasive material used for glass polishing
20

.  A combination of magnetic, electrostatic, and 

gravity separation units is used for recovering these minerals from beach sands.  Detailed 

studies were carried out on the depositional environment, mineralogy
21

, and geochemical 

characteristics
22

 of these strategic minerals. An attempt has made for mapping the beach 

minerals using advanced hyperspectral analysis of Landsat and ASTER data. The silica sand 

deposits in Cherthala region have the SiO2  content of 96.5% and are widely used as a 

„special grade glass making sand‟.
23

 

The present study aims to compare the performance of four machine learning algorithms 

such as Random Forest Classifier, Support Vector Machine, Maximum Likelihood Classifier, 
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and Artificial Neural Network for mapping the beach minerals and the inland silica sand 

deposits using multispectral Landsat 8 OLI imagery. 

3.3.Materials and Methods 

The flow sheet showing the proposed methodology adopted for the present study is 

given in Figure 3.1. 

 

Figure 3.1: Flow sheet showing the proposed methodology adopted for the present study. 

3.3.1. Random Forest Classifier 

RF is a  supervised ensemble algorithm widely used for both classification and 

regression where it  combines the performance of multiple decision trees  for generating the 

results.
24

 The Random Forest method was widely used for lithological mapping using 

Landsat
15,25

, AVIRIS-NG
26

, Sentinel-2A
27

 and also identifying gold deposits from Landsat 

Thematic Mapper (TM)
28

.  The decision trees with the inbuilt nature of feature selection 

make the RF method one of the most  robust classification techniques that can be applied to 

any large and  correlated datasets.
26

 Each decision trees will generate results, and based on 

majority rule, a final class is selected. Decision trees and randomness are two advantages of 

RF. Apart from other classification techniques, here, a „forest‟ is constructed comprises of 

multiple decision trees instead of a single classifier, which facilitates lower sensitivity 

towards over-fitting.
29

 The training data is selected via random sampling through a process of 

bootstrap aggregation, known as bagging.
30

 At each node of the classifier, a random subset of 
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variables was selected from the input data and made available to the classifier to split at each 

node. The split at the node is controlled by the rank assigned to the randomly selected 

variables based on the value of Gini index calculated at each node.
31

 While bagging randomly 

selects data, some variables will not get selected or duplicates. Usually, about 63.2% if the 

variable was taken for training the model, which is called training subset, and the remaining 

“out-of-bag” samples of  about 37.8% are used for validation of results.
25

  The Random 

Forest classification was carried out using EnMAP-Box, a free and open-source plug-in 

available in QGIS desktop software using the parameter number of trees as 500.  

3.3.2. Support Vector Machine  

Support vector machine (SVM) is a supervised MLA developed  based on statistical 

learning theory.
32

 It was  proposed by Vapnik and Chervonenkis in 1963
33

 and successfully 

used for pattern recognition and image classification
34

. The SVM provides high classification 

accuracy for complex spectral class distributions
35

 and a small set of learning data compared 

to traditional methods
14

. The SVM generates a hyperplane for the optimal separation of 

classes by maximising the separation margin (optimal separator) between them. The classes 

exist nearest to these margins, or the boundaries of decision are called support vectors. Thus 

the n-dimensional hyperplane with the optimal margin separated the data into support vectors 

and misclassified instances. Recently SVM classification has been successfully used for 

lithological mapping using Landsat
14,15

, Sentinel-2A Data
27

, ASTER data
36

, AVIRIS-NG
26

, 

and also widely used for exploring porphyry-Cu deposits
37,38

 and gold deposits
39

. The best 

performance of SVM truly depends on the selection of parameters, mainly the Kernel 

function along with the penalty parameter and the gamma kernel. In order to avoid the non-

linear relationships between the input data, they were efficiently transformed into a space of 

higher dimension with the help of widely used kernel functions like linear, polynomial, radial 

basis function (RBF), and sigmoid.  The possible degree of non- linearity exists in SVM 

model will be handled by gamma parameter, whereas the level of possible error exists in the 

input data called training errors  will be controlled by the  penalty Parameter.
40

 The RBF 

kernel with a penalty parameter of  100 and a gamma parameter of  inverse of the input band 

numbers shows the best interpolation capabilities compared to other kernel functions.
41,42

 So 

for the present study,  RBF is selected as the kernel,  the penalty parameter is  100 and a 

gamma parameter is 0.167.
14

 The SVM classification was performed using the ENVI image 

processing software.  
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3.3.3. Maximum Likelihood Classifier 

The maximum likelihood classification (MLC) is a widely used supervised 

classification algorithm developed based on the multivariate distribution ( normal /Gaussian) 

of data.
43

 In remote sensing, it was widely used for lithological mapping
27

 and  mapping 

pegmatites
44

 using Sentinel-2A, ASTER, and Landsat-8 OLI  data, also  lithological 

classification using Landsat ETM+ and ASTER images.
45

 The classification  completely  rely 

on the hypothesis that each class of data follows a multivariate probability density function, 

and the assignment of the pixel to a class depends on the highest probability of belonging to 

that particular class.
46

 Here not the minimum Euclidean distance, but the direction and shape 

of hyper-ellipsoids representing the distribution  of pixels belong to a unique class, are used 

for evaluating the probability.
47

 The parameters such as location, shape, and size of ellipsoids 

are defined from statistics of individual classes such as its mean vector and variance-

covariance matrices.
48

 The probability of belonging to a particular class is defined by a set of 

concentric ellipses drawn with the centre on the mean vector of the class. The probability of 

memberships descents away from the mean center. These ellipsoidal “equi-probability 

contours” act as the decision boundaries in the MLC classifier.
49

 In the present study, the 

MLC classification was applied to the Landsat 8 OLI dataset using the ENVI image 

processing software. 

3.3.4. Artificial Neural Network 

Artificial neural network (ANN) also called  neural network (NN) is particularly used 

for pattern recognition, solving complex tasks, generating prediction model from input data 

and classify image data into unique classes  based on artificial intelligence technique.
50,51

 It 

was widely deployed for identifying gold-silver  deposits
52,53

 and also for  lithological 

mapping using  Landsat 8 OLI
14

, Sentinel-2A Data
27

, etc. Here the algorithm attempts to 

solve the  problems and recognize the patterns by exactly simulating the same way by which 

the human‟s brain does.
54

 The architecture is similar to a biological neural system where it 

consists of a large number of simple processing elements called nodes or neurons.
54

 It is a 

multi-layered neural network comprises of three layers, such as an input layer, a middle layer 

(hidden layer), and an output layer, each consists of one or more nodes or neurons. The nodes 

are gets linked by weighted connections and perform interactive experiments for generating 

reasonable results from the given datasets.  The input data are multiplied by weighted 

functions assigned to middle and output layer neurons, and their product is summed up and 
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processed using a log-sigmoid transfer function to generate the results. Each layer of the 

network is trained by doing forward and backward computation, commonly known as back-

propagation training algorithm, using input data and the obtained results.  The back-

propagation training algorithm allows the network to adjust the weights of the neurons by 

analyzing the errors of the output results.
52

 Thus it can be seen that the algorithm involves 

two stages,  training stage where the back-propagation algorithm trains the  network to 

achieve a minimal error, and a  classifying stage where the data is classified using  a feed-

forward structure where it generates the output.
55

 For the present study, a multi-layer feed-

forward ANN method was applied to the Landsat 8 OLI dataset using the ENVI image 

processing software. The parameters used for executing the ANN includes logistic activation 

function, training threshold contribution value of 0.9, the training rate of 0.2, the training 

momentum of 0.9, and the training root mean square (RMS) exit criterion selected was 0.1.
27

 

3.3.5. Accuracy evaluation 

The commonly used Overall accuracy and Kappa coefficient are used for evaluating ML 

algorithms for classifying the Landsat 8 OLI data.
56,57

 The complete elements in the error 

matrix are used for generating the Kappa coefficient, whereas only the diagonal elements are 

used in the case of overall accuracy. The Kappa statistics provide a measure of similarity 

between the observation datasets and the predicted or classified data using a value ranging 

from 0 to 1 where 1 represents the best match.
58

 

3.4.Results and discussion 

3.4.1. Mapping of Beach minerals 

The FLAASH atmospherically corrected seven bands (band1 to band 7) of Landsat 8 

OLI imagery is used for mapping beach minerals. The average spectra of training ROIs are 

shown in Figure 3.2. The classification classes used for the present study include vegetation, 

urban/settlement, waterbody, inland sand deposits and beach sands. The beach sand is again 

subdivided into beach sand 1(>10% THM) and beach sand 2 (light Minerals). The sampling 

points where the THM is >10% is taken as beach sand 1 and the remaining locations were 

assigned to beach sand 2. About 69 sampling stations were used for the present study in 

which 40 sampling stations were assigned as training sites, and 29 sampling stations were 

taken as testing sites for checking the accuracy of the mapping algorithms. The sand types 

such as inland sand deposits (quartz), beach sand 1, and beach sand 2 show almost the same 
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reflectance in the visible bands, and then it shows an increase in NIR and SWIR 1, which is 

due to bright white colour and thin surface covering.  

 

Figure 3.2: Average spectra of training ROIs collected for mapping beach minerals. 

The reflectance for heavy minerals shows a decrease from visible bands until reached 

SWIR2 compared to light minerals due to the addition of high-density heavies such as 

ilmenite, rutile, etc.
59

 The beach minerals correspond to the locations of Varkala and 

Kovalam contain heavy minerals (THM is about 80.04%) with major content of ilmenite 

followed by sillimanite, rutile, monazite, zircon, etc. The presence of ferrous oxide  minerals 

makes the beach sand to possess  strong absorption in band 7.
14

 The accuracy assessment of 

four ML algorithms for mapping beach minerals is given in Table 3.1. On analysing the 

accuracy assessment results, it is clear all the ML algorithms show the best results with 

average values of overall accuracy 84.10488% and Kappa coefficient of 0.813675. Out of 

four, the RFC provides the best results with an overall accuracy of 84.4925% and Kappa 

coefficient of 0.8184 followed by ANN with the values of 84.3515% and 0.8162, then comes 

the SVM with 84.3515% and 0.8161, and finally the MLC with accuracy values of 83.224% 

and 0.804. 
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Table 3.1: Results of accuracy assessment for MLAs 

 The mineral classification map showing the distribution of heavy minerals 

using random forest classifier (RFC) for the study area is shown in Figure 3.3(a-c). The 

mineral maps correspond to four different ML algorithms for Kovalam coast is shown in 

Figure 3.4(a-d). The ANN and MLC (Figure 3.4 (b and c)) generate more pixels of heavy 

minerals   apart from actual locations whereas in the case of SVM, very few pixels were 

noticed. The RFC generates the exact locations with high concentration of heavy minerals 

compared to others. The best performance of RFC for geological mapping was reported 

earlier but not in the case of beach minerals. RFC outperforms MLC and SVM for mapping 

serpentinite, talus and terrace deposits, red argillites, etc. from ASTER data.
60

  RF again 

shows better performance than SVM for geological mapping  using Landsat 4-5 TM.
15

  Also 

it  performed better than MLC for mapping lithology using Landsat-8 and Landsat-7 data.
16

  

 

 

Minerals Machine Learning Algorithms  Overall accuracy 

(%) 

 

Kappa 

coefficient 

Beach Minerals Random Forest Classifier 84.4925 0.8184 

Support Vector Machine  84.3515 0.8161 

Maximum Likelihood Classifier 83.224 0.804 

Artificial Neural Network 84.3515 0.8162 

Silica sand 

deposits 

Artificial Neural Network 96.9855 0.9411 

Random Forest Classifier 97.7635 0.9563 

Support Vector Machine  97.8242 0.9574 

Maximum Likelihood Classifier 95.7093 0.9181 
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Figure 3.3: Mineral classification map showing distribution of heavy minerals using Random forest classifier (RFC) (a) Thiruvananthapuram 

district; (b) Varkala coast; (c) Kovalam coast. 
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Figure 3.4: Mineral classification map showing distribution of heavy minerals for Kovalam 

coast using (a) RFC; (b) ANN; (c) MLC; (d) SVM. 

3.4.2. Mapping of Silica sand deposits in Cherthala 

The FLAASH atmospherically corrected seven bands of Landsat 8 OLI imagery were 

used for mapping the silica sand deposits. The average spectra of training ROIs selected for 

mapping the silica sand deposits in Cherthala are shown in Figure 3.5. The classification 

classes used for the present study are inland silica sand deposits, beach sand, vegetation, 

urban/settlement, and water body. About 21 sampling stations were used for the present study 

in which 11 sampling stations were assigned as training sites, and 10 sampling stations were 

taken as testing sites for checking the accuracy of the mapping algorithms. The sand types 

such as inland sand deposits (silica) and the beach sand show almost the same reflectance in 

the visible bands, and then it shows an increase in NIR and SWIR 1which is due to bright 

white colour and thin surface covering. The reflectance for inland sand deposits show a 

decrease from visible bands until it reached SWIR 2 compared to beach minerals may be due 

to the presence of soil particles.
59

 The presence of hydroxyl and ferrous oxide  minerals also  

possess  strong absorption in band 7.
14
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Figure 3.5: Average spectra of training ROIs collected for mapping inland silica sand. 

Table 3.1 shows the accuracy results obtained for the four algorithms in mapping the 

silica sand deposits. The accuracy assessment clearly indicates that all the ML algorithms 

show good performance in mapping silica sand deposits with average values of overall 

accuracy and Kappa coefficient of 97.0706% and 0.9432%. The results show that SVM 

outperforms the other algorithms such as RFC, ANN, and MLC. The SVM shows an overall 

accuracy and Kappa coefficient of 97.8242% and 0.9574, followed by RFC with values of 

97.7635% and 0.9563, ANN with values of 96.9855% and 0.9411, and finally, the least 

accuracy is shown by MLC with values of 95.7093% and 0.9181. The mineral classification 

map showing the distribution of inland silica sand deposits using support vector machine 

(SVM) is shown in Figure 3.6. The mineral classification maps showing the distribution of 

silica sand deposits in the Cherthala area using different ML algorithms are shown in Figure 

3.7(a-d).  On analysing the Figure 3.7, it is noticed that all the sampling points in the four 

classification maps are overlaying the pixels correspond to silica sand deposits. In the less 

accurate ANN derived   Map (Figure 3.7(b)), comparatively more number of 

misclassification of pixels can be seen. In the case of RFC and MLC (Figure 9(c and d)), 

other classes like waterbody is not seen. These could able to showcase the accuracy of ANN 

over other ML algorithms. 
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Figure 3.6: Mineral classification map showing distribution of inland silica sand deposits 

using support vector machine (SVM).  

On comparing with others, the SVM map (Figure 3.7(a)) shows the accurate locations 

of silica sand deposits along with other classes. The better performance of SVM compared to 

ANN were also reported for mapping lithological units such as limestone, dolostone, 

andesite, etc. using Landsat 8 OLI data.
14

 The SVM and RF performed better than MLC for 

the Landsat-8 and Landsat-7 data for mapping lithology.
16
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Figure 3.7: Mineral classification maps showing distribution of silica sand deposits in 

Cherthala area using (a) SVM; (b) ANN; (c) RFC; (d) MLC. 
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The training set of samples played an important role in the successful classification of 

minerals especially the sand minerals using multispectral data because there are chances of 

misclassification due to the presence of vegetation cover, atmospheric effects, soil presence, 

etc. The similarity in chemical composition, texture, and type of minerals acts as one of the 

prime hindrances for misclassification.
61

 All these factors make a significant contribution to 

the spectral response of target materials, especially, minerals of sand type, which is not 

present in bulk as hard rock mineral. The hyperspectral analysis comprises of MNF 

transformation, pixel purity index (PPI), etc. followed by spectral angle mapper (SAM) 

classification using reference spectra of beach minerals collected at laboratory via 

spectroradiometer,   reveals perfect mapping of ilmenite mineral (heavy mineral) and light 

minerals (quartz) along the coast of Varkala and Kovalam from Landsat 8 OLI imagery with 

overall accuracy and Kappa coefficient of  94.20% and 0.85. The same applied for 

identifying silica sand deposits of Cherthala reveals an overall accuracy of 90.476%. Both 

approaches of classification provide best results of above 80%, but on analysing the classified 

images, it can be concluded that the MLAs provide the accurate and visually satisfying 

distribution of mineral occurrences. In the case of beach sand minerals, it can be noticed that 

most of the pixels in the RFC classified image of Kovalam region having the highest heavy 

mineral concentration of about 80.04% correspond to heavy minerals than that obtained using  

SAM classification. In the case of silica sand deposits also, the results of SVM are optimized 

very well to the sampling stations. Here the difference may occur due to the selection of 

training sites for classification purposes. The RFC classification was carried out using the 

image spectra directly derived from the image at the sampling location rather than using the 

reference spectra measured using the minerals in the laboratory.  

3.5.Conclusion 

On comparing the four widely used MLAs for mapping the mineral sands using Landsat 8 

OLI imagery, it can be concluded that the RFC and SVM show better performance for 

identifying the potential zones of beach minerals and inland sand deposits. The high accuracy 

confirms the ability of MLAs to map mineral sands using multispectral datasets by providing 

the best hyperparameters and accurate selection of training sites. In conclusion, MLAs 

provides an effective mapping of mineral deposits of sand type covering a small area using 

multispectral data. This study facilitates time and resources savings over geological mapping 

in this field, which allows eco-friendly and sustainable mineral exploration. Moreover, the 
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results facilitate the use of optimal wavelengths in hyperspectral remote sensing datasets for 

mineral classification using MLAs.  
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Chapter 4 

Mineral mapping and quantification using EO-1 Hyperion data and 

continuum removed band depth analysis 

4.1. Abstract 

The strategic minerals in beach sands of Cuddalore coast in Tamil Nadu, India were 

mapped from EO-1 Hyperion data using a series of hyperspectral image processing 

algorithms. Furthermore, an attempt has been made to develop a Random Forest (RF) 

regression model to estimate the mineral concentration using Hyperion hyperspectral data 

characterised by the absorption of the minerals. The SAM algorithm is able to show the 

distribution of four minerals such as zircon, sillimanite, garnet and quartz (light minerals). 

The spectral geometric parameters such as band depth and band area corresponding to the 

spectral range  of 1075– 1150nm which has strong absorption characteristics of zircon were 

derived from the continuum removed spectra of image spectra and laboratory spectra of  

physical mixtures of zircon samples. The positive correlation between geometric parameters 

due to absorption and the mineral concentration was used to develop a model using RF 

technique which shows satisfying results having low RMSE error. Thus our study 

demonstrates the ability of EO-1 Hyperion data not only for mapping but also for the 

quantification of mineral occurrences which could be successfully achieved by integration of 

continuum removal band depth analysis and random forest regression. 

4.2.Introduction 

The advances in satellite sensor technology get paralleled with the invention of new 

image processing algorithms, made a significant breakthrough in mineral exploration and 

mapping of lithological units. With the availability of Landsat multispectral data till the 

middle of 2010 decade, the potential zones of hydrothermal alteration minerals, Fe-rich 

minerals, carbonate deposits, uranium deposits, etc.  were successfully mapped using the 

remote sensing techniques like  band composites, band ratio, principal component analysis, 

SAM classification, etc. 
1–4

 Later the ASTER with 14 bands started playing major role in 

exploring  alteration zones of granitic rocks, gold mineralization, mafic-ultramafic rock units, 

felsic igneous intrusion using various remote sensing techniques like principal component 

analysis (PCA), band ratio, colour composites.
5–8
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The Sentinel-2A Data with 12 bands also performed well in mapping hydrothermal 

alteration, lithofacies mapping, and band ratios using various hyperspectral analysis followed 

by spectral angle mapper (SAM), and maximum likelihood classifier (MLC).
9,10

 The advent 

of hyperspectral imagery like EO-1 Hyperion with 242 bands made accurate subpixel 

mapping of alteration minerals using hyperspectral analysis  techniques and classification 

algorithms like SAM and MTMF techniques.
11–13

 The mineral type, its distribution and the 

nature of study area determines the selection of satellite data and the remote sensing 

techniques for mineral studies. The remote sensing approach will narrow down the expense 

and time needed for delineating the potential targets for mineral exploration.
14

 Recently 

attempts were also made to formulate quantitative relationships between the mineral 

concentrations, its geochemistry with reflectance spectra either extracted from the satellite 

data or measured using spectroradiometer. The reflectance measurements made in the 

laboratory were used for determining the copper concentration of rocks using Partial least 

squares support vector machine (PLS-SVM) algorithm
15

,  quantification of mineral 

abundances using radiative transfer models
16

 and coupling spectral deconvolution
17

, 

carbonate mining waste quantification using Continuum Removal Analysis
18

. The Hyperion 

image analysis were also carried for determining grades of iron ores using Continuum 

Removal Analysis.
19

 

The beaches of India are bestowed with enormous quantity of strategic minerals like 

ilmenite, monazite, rutile, zircon, etc.
20

 The major beach placer deposits in India like  

Chavara in Kerala, Manavalakurichi in Tamil Nadu, Ratnagiri in Maharashtra, 

Bhimunipatnam in Andhra Pradesh, and Chatrapur in Odisha are good sources of these 

minerals.
21

 The wide range of critical applications brought high economic value to these 

minerals and made them strategic minerals. The ilmenite and rutile act as a primary source of 

titania products such as TiO2 pulp, pigment, etc.
22

, rare earth elements from monazite
23

, High 

purity zirconia from zircon mineral
24

, synthetic mullite from sillimanite
25

, etc. Many 

researchers have studied in detail the depositional environment, heavy mineral distribution 

and geochemical characterisation of  all major placer deposits in India.
26–31

 However only 

few studies had been carried out on mapping these strategic mineral using remote sensing 

datasets.  

Present study aims to map the beach minerals of Cuddalore coast, Tamil Nadu, 

Southern India from EO-1 Hyperion data using a series of hyperspectral remote sensing 

techniques followed by SAM image classification. An attempt has also been made to predict 
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the concentration of minerals by using the random forest regression model developed using 

band parameters of continuum removed spectra derived from Hyperion data. 

4.3.Materials and methods 

The flow sheet showing the detailed methodology adopted for the present study is given 

in Figure 4.1. 

 

Figure 4.1: Flowchart showing the proposed methodology adopted for the present study. 

4.3.1. Hyperspectral analysis of EO-1 Hyperion 

The hyperspectral analysis techniques which, include six continuous processes 

followed by SAM image classification algorithm, were selected for mapping minerals present 

in beach sand using Hyperion data. Many researchers have made an attempt to integrate 

hyperspectral techniques for mapping minerals.
32–34

 The analysis includes a series of six 

continuous processes such as (i) radiometric correction and extraction of reflectance values; 

(ii) spectral data reduction for removing noisy bands; (iii) spatial data reduction for extracting 
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pure pixels; (iv) extraction of endmembers from pure pixels; (v) identification of mineral 

classes from endmembers, and  (vi) mapping of minerals using a classification algorithm 
33

. 

The  FLAASH was used for eliminating the atmospheric effects and for retrieving the 

reflectance values.
35

  In the case of Hyperion data, prior to FLAASH correction, a series of 

pre-processing steps which involves (i) Bad band removal, (ii) Along track de-striping and 

(iii) Georeferencing,. The 242 bands of Hyperion level L1R data have been processed and 

only 158 bands were taken for the hyperspectral analysis. The non- illuminated bands (1-7 

and 225-242), overlap region (58-78), water vapour absorption bands (120-132, 165-182, and 

221-224), Hyperion bad bands (185-187) were removed from the Hyperion data.
36

 The 

differences in calibration of Hyperion detector array based on pushbroom technology cause 

striping noises like visually noticeable  corrupted pixels and dark vertical stripes which got 

de-stripped using flag mask correction  utility, and  also manually using the  ENVI 

module Spatial Pixel Editor which interpolates adjacent image columns.
37

  Minimum Noise 

Fraction (MNF) transformation was applied on de-striped bands to generate a set of 

uncorrelated bands from the input bands. Out of that, the most informative bands with least 

noise were selected based on eigen values estimated using noise statistics of input bands. 

Pure pixels were extracted using PPI, where it generates a PPI image showing pure pixels in 

bright pixels. Unique target members having a unique spectra value called endmembers are 

extracted from the pure pixels using n-D visualizer.
13

 The true endmembers are compared 

with the reference spectra of minerals using the widely used spectral matching techniques 

like SAM, SFF, and BE. Each produces a score between 0 and 1, where 1 corresponds to the 

best match. The reference spectra can be measured using a spectroradiometer or otherwise 

extracted from the image itself. Finally, the identified mineral classes were used for 

classifying the satellite image using a suitable image classification algorithm. In the present 

study, mineral was mapped using the SAM classification where the image spectra and 

reference spectra were considered as unit vectors in an n-dimensional space for measuring the 

n-D angle between them.
38,39

   

The commonly used Overall accuracy and Kappa coefficient are used for evaluating ML 

algorithms for classifying the Landsat 8 OLI data.
40,41

 The complete elements in the error 

matrix are used for generating the Kappa coefficient, whereas only the diagonal elements are 

used in the case of overall accuracy. The Kappa statistics provide a measure of similarity 

between the observation datasets and the predicted or classified data using a value ranging 

from 0 to 1 where 1 represents the best match.
42
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4.3.2. Reflectance measurements and Continuum removed band depth analysis 

High purity minerals of  ilmenite, zircon, sillimanite, rutile, garnet, etc. were successfully 

recovered from beach sands of Varkala and Kovalam coasts of India using a judicious 

combination of gravity, electrostatic, and magnetic separation units. These minerals are used 

for preparing physical mixtures of mineral samples, as shown in Table 4.1, having a 

gravimetric content of 100g. Since the zircon exists in maximum compared to others in the 

present study area, the mixtures are prepared with zircon as the reference. The Light minerals 

or quartz exist as ubiquitous in beach areas, it is also added to the mixtures. Moreover, the 

addition of quartz causes a strong impact because it causes scattering of light in the 

absorption features of other minerals.
43

 Since the spectra of physical mixtures were compared 

with satellite data showing real scenarios, the addition of quartz is very important.  

Reflectance measurements of the physical mixtures of mineral samples were carried out 

in the laboratory using ASD Fieldspec® 3 spectroradiometer. Two sets of spectral 

measurements were recorded in the wavelength regions of visible-near infrared (350–1000 

nm) at a spectral resolution of 3 nm and short-wave infrared (1000–2500 nm) at a spectral 

resolution of 10 nm.
44

 The instrument consists of a sensor for recording the light reflected 

from the sample mixtures, which is spread on a black cloth in such a way that it covers the 

FOV of the sensor. A tungsten filament halogen lamp is used for illuminating the samples in 

which it consistently generates energy in the spectral range of 400–2500 nm. The measured 

spectra were subjected to a series of post–processing techniques such as splice correction of 

ASD Viewspec Pro
TM

, elimination of spectral data in the wavelength range of 350nm to 

400nm, and finally, the smoothing of spectra
45

. The splice correction eliminates the 

temperature-driven spectral drifts that occurred at 1001 and 1831 nm.
46

 Savitzky–Golay 

smoothing algorithm is used for removing the sensor inherent noises and smoothen the 

spectra by maintaining the actual slope of the curve. The parameters like the degree of 

polynomial order is selected as 2, and a filter size of 15 is used for executing the algorithm.
47

 

The mean spectra in ASCII format were imported into ENVI software for generating the 

reference spectra for the continuum removed band depth analysis. The reflectance spectra of 

the pure zircon mineral are taken from the spectral library of minerals prepared in the 

laboratory using the same spectroradiometer.  
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Table 4.1:  Prepared mineral samples with content given in wt. % of the total mass of 100 g. 

Samples  Mineral mixture 

S1  Zircon (100%)   

S2 Zircon (75%)  Ilmenite (25%)   

S3  Zircon (50%)  Ilmenite (50%)   

S4  Zircon (25%)  Ilmenite (75%)   

S5  Zircon (25%)  Ilmenite 

 (25%)  

Sillimanite 

(25%)  

Quartz (25%)  

S6  Zircon (50%)  Quartz (50%)   

S7  Zircon (20%)  Ilmenite  

(50%)  

Quartz 

(20%)  

Sillimanite (10%)   

S8  Zircon (30%)  Ilmenite 

 (40%)  

Sillimanite 

(10%)  

Quartz (20%)   

S9  Zircon (50%)  Sillimanite (50%)   

S10  Zircon (75%)  Quartz (25%)   

S11  Zircon (75%)  Sillimanite (25%)  

S12  Zircon (25%)  Quartz (75%)   

S13  Zircon (25%)  Sillimanite (75%)  

S14  Zircon (20%)  Sillimanite 

(20%)  

Ilmenite 

(20%)  

Rutile 

(20%)  

Garnet 

(20%)  

S15  Zircon (20%)  Sillimanite 

(20%)  

Ilmenite 

(20%)  

Rutile 

(20%)  

Quartz 

(20%)  

 

Continuum removal is a normalization function that enhances the absorption features by 

removing its background information, and thereby, it allows a better comparison of different 

spectra under a common baseline.
48,49

 The reflectance value of each absorption pit of the 

original data set at a particular wavelength is divided by the reflectance value of the 

continuum line (convex hull) corresponds to that wavelength. The output shows enhanced 

absorption between the values between 0 and 1.
50

 The absorption feature parameters 

measured from the continuum-removed reflectance spectra particularly depth, width and 

asymmetry of absorption band are widely used for content estimation of the materials such as 

mining waste quantification.
18,19,51,52
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 The absorption band depth is expressed as  

Absorption band depth = 1-
𝑅𝑏

𝑅𝑐
    (4.1) 

Where Rb and Rc correspond to reflectance values at band bottom and continuum of the 

same band.
53

 The band depth analysis corresponds to the strongest absorption band that was 

carried out on the image spectra (spectra derived from EO-1 Hyperion data) as well as on the 

laboratory spectra measured from the physical mixtures of mineral samples. The absorption 

parameters were measured using the DISPEC (version 18.03), an IDL program developed by 

Harald Van der Werff.
54

 

4.3.3. Random forest regression modelling 

The Random forest (RF) regression has been used to develop a prediction model using the 

relationship between the mineral concentration and their corresponding absorption 

parameters. Recently RF is widely used in diverse fields due to their brilliant classification 

results and high-speed processing of  complex data structures in high dimensional feature 

spaces.
55,56

 Mainly it is used for classifying remote sensing datasets
57–59

 but recently started to 

use as regression technique
60–62

 for predictive modelling for remote sensing purposes.  RF is 

a machine learning algorithm that uses decision trees to make predictions
63

. Best results are 

obtained from the aggregation of a large number of regression trees, which is termed as 

‗bagging‘ approach 
64

.Here the trees are made to its maximum based on the bootstrap sample 

by selecting a random set of variables from the training dataset (approximately 70% of the 

total input data). In each tree, the RF makes a prediction for the out of bag data, which is 

called OOB data (approximately 30% of the total input data).The decision trees can be either 

classification trees or regression trees which need only two parameters, such as the number of 

regression trees (ntree) and the number of predictive variables (mtry).  An independent 

dataset of 30 variables randomly selected from the laboratory spectra data was used for 

optimizing the parameters ntree and mtry using root mean square error (RMSE). The ntree 

was tested for 100, 300, 500, 700, and 900. The mtry was tested for 5,10,15,20, and 25. 

Finally using the best parameters of ntree and mtry having the least RMSE error, the RF 

regression model was applied to both the datasets of laboratory spectra and image spectra. 

The random forest modelling is implemented using the Python programming environment 

with the help of the Scikit-learn machine learning module ( http://scikit-learn. org/stable/).
65
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4.4.Results and Discussion 

4.4.1. Mineral Mapping using EO-1 Hyperion 

The reflectance calibrated 158 bands of EO-1 Hyperion data were used for creating 

mineral map of the study area. The FLAASH atmospheric correction parameters are shown in 

Table 4.2. The reflectance calibrated bands were linearly transformed using MNF 

Transformation. The MNF bands having eigenvalues below one are usually noise dominant 

with less information.
66

 It was noticed that usually first 6, 10, and 20 MNF bands were 

selected for classifying mineral occurrences from Hyperion data.
67–70

 The MNF images 

clearly show that up to the MNF 15 band with the eigenvalue of 4.2756 can be taken for 

further processing. The first 15 MNF bands were used to generate the PPI image with the 

iterations of 15000 and a threshold value of 2.5 for extracting the pure pixels.  

Table 4.2: FLAASH atmospheric correction parameters of Hyperion image. 

Scene center location 11.7861N, 79.7993E 

Sensor altitude 705km 

Initial visibility 40km 

Spectral polishing Yes 

Pixel size 30m 

Flight date 9 February 2009 

Flight time 04:55:24 

Atmospheric Model Tropical 

Aerosol Model Maritime 

Water retrieval No 

Aerosol Retrieval 2-Band(K-T) 

Width of bands 9 

Wave length calibration No 

The pure pixels were rotated in a 15-dimensional visualizer for generating the 

endmembers having unique spectral characteristics. Endmembers were derived mostly from 

individual pure pixels rather than considering the mean of a group of pixels, which may avoid 

mixing endmembers and increase the accuracy of target detection and sub-pixel mapping of 

minerals.
70

 The ROI exported from the endmembers falls over other geological units, 

waterbody,   landcover, etc. were not considered for further processing. The endmembers that 
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fall exactly along the beach sediments of the coast were assigned to a particular mineral class 

by comparing with the spectral library of beach minerals. The spectral library consists of 

reference spectra of ilmenite, rutile, zircon, monazite, sillimanite, leucoxene, garnet and the 

light minerals (quartz). Table 4.3 shows the results of spectral matching techniques. The plots 

of relative reflectance of image spectra and reference spectra were shown in Figure 4.2.  

Table 4.3: Spectral matching results of laboratory spectra and image spectra 

Endmember  SAM  SFF  BE  Score  

Zircon 0.903 0.898 0.943 2.744 

Garnet 0.434 0.679 0.709 1.821 

Sillimanite 0.910 0.907 0.968 2.78 

Light minerals (Quartz) 0.824 0.866 0.905 2.596 

The scores obtained for SAM, SFF, and BE clearly indicate that the true endmembers 

collected from the image show a strong correlation with the reference spectra of zircon, 

garnet, sillimanite/kyanite and the quartz. Thus the hyperspectral analyses could able to 

retrieve the endmembers of four minerals from the beach sand which exist in moderately low 

concentration. These four endmembers of mineral classes such as garnet, zircon, 

kyanite/sillimanite, and lights (quartz) were used as the training data for executing the SAM 

classification. Here the SAM algorithm has been used for two purposes; it is used as a 

spectral matching algorithm for deriving the mineral classes from true endmembers and also 

as a sub-pixel mineral image classification algorithm for mapping minerals. The SAM 

classified image of the study area is shown in Figure 4.3.  

The SAM classified image was verified with the previous studies carried out on the 

Cuddalore coast.
30,71–73

 The results clearly indicate the potential of Hyperion data for 

mapping low to moderate concentration of beach minerals. The Pondicherry –Cuddalore 

region is mainly occupied by kyanite (1.21% to 32.54%),  zircon (4.0% to 20.19%),  and 

garnet (12.03% to 31.76%), sillimanite (0 to 1.84%), and the light minerals (71.52% to 87.17) 

30
. The SAM classified image could able to map zircon, garnet, sillimanite and light minerals 

(quartz) from the Hyperion data. The classification accuracy calculated for six locations is 

given in Table 4.4. The results show an overall accuracy of 88.68% and Kappa coefficient of 
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0.85 which is sufficient to prove the ability of Hyperion data in mapping beach minerals. The 

abundance of zircons indicates the influence of paleosediments and probably originated from 

khondalites
71

. Garnets are noticed in two types, such as colourless and pink originated from 

pyroxene granulite 
74

. The Cuddalore region is dominated by colourless garnets. The kyanite 

exists as colourless, and blue originated from Miocene Cuddalore sandstone. The Cuddalore 

region is dominated by Blue kyanite. The high concentration of heavy minerals usually 

occurred due to the removal of light minerals from the beach due to the action of high energy 

waves 
32

.   

 

Figure 4.2: Plots of relative reflectance between reference spectra and image spectra. (a) 

zircon; (b) sillimanite; (c) garnet; (d) light minerals (quartz). 
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Figure 4.3: SAM classified image of EO-1 Hyperion data showing the mineral distribution 

along Cuddalore coast. 
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Table 4.4:  Accuracy assessment matrix for SAM derived mineral map. 

 Reference Data 

Classes Light 

minerals 

Zircon  Garnet Sillimanite Total User’s accuracy 

Unclassified 2 0 1 0 3  

Light minerals 7 0 0 3 10 70 

Zircon 0 16 0 0 16 100 

Garnet 0 0 11 0 11 100 

Sillimanite 0 0 0 13 13 100 

Total 9 16 12 16 53  

Overall accuracy = 88.68%, Kappa coefficient = 0.85 

4.4.2. Deriving spectral parameters using Continuum removal band depth analysis 

The well-defined absorption features of zircon are needed for predicting the concentration 

of zircon in sample mixtures as well as in satellite data. To obtain this, continuum removal 

was applied to each spectrum. The Figure 4.4 shows the continuum removed spectra of zircon 

mineral, where it allows comparison of individual absorption features. Here the reflectance 

spectra are broken into two parts, broad and smoothly changing regions showing the general 

shape of the spectra, and another one is narrow and deep trough indicating the strong 

absorption features. Minerals can be easily identified using the shape, depth, and position of 

these absorption features.
75

  Well defined absorption features for zircon mineral are noticed in 

the range 1075– 1150nm at a position of 1113nm. The strongest absorption feature for zircon 

can be correlated with UV-Vis-NIR spectroscopy of zircon samples.
76

 A quantitative relation 

always exists between depth of absorption and the abundance of the absorber.
52

 Figure 4.5 

clearly shows that as the amount of zircon in the mixture increases, the absorption maxima at 

1113nm becomes more visible. 
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Figure 4.4: Continuum removed spectra of zircon mineral. 

 

Figure 4.5: Laboratory spectra measured for different physical mixtures of samples with 

content given in wt. % of the total mass of 100 g. 

4.4.3. Correlating mineral concentration and spectral parameters 

The Figure 4.6 shows the empirical models relating absorption parameters and mineral 

concentration. Figure 4.6(a-b) corresponds to the relation between band depth and band area 

with laboratory spectra developed using physical mixtures of mineral samples. Figure 4.6(a1-
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b1) corresponds to the relation between band depth and band area with image spectra derived 

from EO-1 Hyperion data. About 45 spectral measurements were taken from laboratory 

arrangement whereas from image, spectra data of 168 pixels were collected for analysing the 

correlation between the mineral concentration and spectral parameters. The mineralogical 

data for the Cuddalore coastal area is adopted from previous studies
30,71

. Analysis of both 

laboratory and image spectra reveals that the band depth and band area correspond to the 

strong absorption range of 1075– 1150nm show an increase with increasing zircon 

concentration. The band depth and band area derived from laboratory spectra show positive 

correlations of about R² = 0.792 and R² = 0.784 with increasing zircon concentration (20 to 

100%). In the case of image spectra also, the band depth and band area show positive 

correlations of R
2
 = 0.757 and R

2
=0.740 with increasing zircon concentration (4 to 20.19%). 

 

Figure 4.6: Empirical models relating absorption parameters and mineral concentration. (a-b) 

laboratory spectra; (a1-b1) image spectra.  

In the case of laboratory spectra, the average band depth and band area of 0.686 and 

18.706 were obtained for 20%, 3.294 and 96.986 for 50%, and 10.685 and 323.792 for 100% 
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zircon concentration respectively. In the case of image spectra, the average band depth and 

band area were observed as 2.573 and 73.762 for 4%, 4.34 and 117.564 for 12.54%, and 

8.783 and 226.689 for 20.19% concentration values respectively. In both the cases of 

laboratory and image spectra, spectral parameters show a gradual and well-defined increase 

with the mineral concentration. It was reported that the Fe content in iron ores shows a 

positive correlation with band depth and band area whereas the Al content shows a negative 

correlation.
19

 The Al-OH related absorption-band depth of spectral data of AVIRIS data show 

an increase in intensity with the formation of hydrothermal alteration minerals like alunite, 

kaolinite, montmorillonite, etc.
77

 Likewise, in the present study also a strong correlation was 

successfully derived between zircon concentration and absorption band parameters. The 

increasing trends of band parameters with the increase in mineral concentration may help to 

derive a quantitative relationship between mineral content and spectral parameters. Also, 

these relationships can be used for predicting the concentration of minerals from unexplored 

areas using the absorption parameters measured from the satellite data.  

4.4.4. Prediction of mineral concentration  

The optimization results of RF parameters (ntree and mtry) are shown in Figure 4.7. The 

optimization was carried out using 30 variables selected from the laboratory dataset. The 

results clearly show that the parameters ntree and mtry clearly affects the RMSE error of the 

prediction. The RMSE error was low for the ntree value 500 and the mtry  value 5-10 which 

is approximate to the 1/3
rd

 of the total variables. The higher and lower values of ntree with 

different mtry generate results with high RMSE error. So based on the calibration results, an 

ntree value of 500 and mtry value of 1/3
rd

 of the total variables were selected for the present 

study. Actually, these are default values chosen by many researchers for RF modelling.
62

 The 

entire dataset will be split into 70% and 30% for calibration and validation. The calibration 

dataset  is used to optimize and calibrate the RF regression model, whereas the validation 

dataset is used to validate the prediction results.
78

  

The RF regression model has been successfully used for predicting the concentration of 

zircon using the absorption parameters derived from laboratory spectra and image spectra. 

About 45 datasets were derived from laboratory spectra, which were split into 30 and 15 for 

calibration and validation. In the case of Hyperion data, 168 data variables were used as 112 

for calibration and 56 for validation. The results of RF predictive modelling showing the one-

to-one relationships between the predicted and measured mineral concentration for laboratory 
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spectra and image spectra are shown in Figure 4.8(a) and Figure 4.8(b). The R
2
 and RMSE 

error values are used for validating the RF models. The R
2
 values obtained for laboratory 

spectra and image spectra were 0.959 and 0.805, which clearly shows a strong correlation 

between observed values and predicted values of zircon concentration. Furthermore, the low 

RMSE values of 0.082 and 0.156 also suggest the better predictive performance of RF 

method for estimating mineral concentration in beach sands. Selection of  number of  trees 

(ntree)  and spectral variables (mtry) are other  factors behind the yield of lower RMSE 

because, for predictive purposes, the less number of trees (500 in the present study) results in 

a minimum correlation between ranking variables.
79,80

 

 

Figure 4.7: Optimization of  Random forest (RF) parameters (ntree and mtry) using RMSE. 

The feature-selection method of the RF algorithm is another important factor.
81

 It says 

that the selection of absorption parameters that were showing the best relationship with the 

mineral concentration through a process of internal validation of out-of-bag data helps in 

achieving reducing the hyperspectral data redundancy. On comparing the predictive 

performance of both the cases, it can be concluded that with the aid of the RF regression 

model, the derived absorption parameters can show the best prediction of mineral 

concentration.  
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Figure 4.8: One-to-one relationships between measured and predicted zircon mineral 

concentration. (a) RF regression model developed using Laboratory spectra. (b) RF 

regression model developed using image spectra. 

4.5.Conclusion 

Sub-pixel mapping of strategic minerals in beach sands can be successfully achieved by 

applying standardized hyperspectral analysis techniques, including SAM image classification 

algorithm, to EO-1 Hyperion data. The results clearly depict the ability of hyperspectral data 

for identifying minerals of low to moderate concentration in beach sand deposits. The strong 

absorption parameters like band depth and band area derived from continuum removed 

spectra of satellite data can be used to model and predict the quantity of minerals in beach 

sands. The Random forest regression model has potential in estimating the concentration of 

minerals with reasonable prediction accuracies, using the reflectance spectra either measured 

in the laboratory or extracted from satellite data. Overall, it can be concluded that integration 

of advanced image processing techniques and hyperspectral remote sensing datasets provide 

solid information on potential mineral targets that facilitates eco-friendly and sustainable 

exploration of strategic mineral resources. Moreover, the study recommends the use of the 

Random forest regression model to assess the performance in the prediction of minerals 

(moderate to low concentration) using different remote sensing datasets.  
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Chapter 5 

Studies on structure, chemistry and surface morphology of heavy minerals 

5.1.Abstract 

The beach sands of the Varkala-Kovalam coast, south-west India show good 

concentration of heavy minerals.  The beach sand deposits mainly composed of ilmenite 

followed by sillimanite, monazite, rutile, zircon, leucoxene, and garnet. All these minerals 

from Varkala and Kovalam were successfully recovered and analysed the structure, 

chemistry, and surface morphology using advanced characterization techniques like Raman 

spectroscopy, ED-XRF, HR-ICP-MS, thermogravimetric analysis (TGA), UV-Visible-NIR 

spectroscopy, XPS, and SEM-EDS. The chemical composition including major oxides, trace 

elements, and rare earth elements present in each mineral were quantified.   Surface 

chemistry, oxidation state of surface elements, degree of metamictization in zircon and 

monazite, anisotropic crystal behaviour of the minerals due to physical or chemical processes, 

discrimination of isomorphous series (garnet), polymorphs (Ti-oxide and A12SiO5), opaque 

and non-opaque Fe–Ti oxide minerals, and finally the  morphological changes  due to 

mechanical impacts and solution activity of chemicals during the long transportation and 

deposition of mineral grains were also discussed. The characterisation results show good 

agreement with other major placer deposits in India. The study provides solid information to 

the scientific community and policymakers for determining the grade and potential 

applications of these strategic minerals.  

5.2.Introduction 

The beaches of India are bestowed with high concentration of strategic minerals such as 

ilmenite, monazite, garnet, rutile, sillimanite, zircon,etc.
1
 The important placer deposits in 

India are Chavara (Kerala), Ratnagiri deposits (Maharashtra), Manavalakurich (Tamil Nadu), 

Bhimunipatnam (Andhra Pradesh), and Chatrapur (Orissa).
2
 The ilmenite from Chavara in 

Kerala is industrially important for high TiO2 content, which is about 60%. Many researchers 

have completed detailed studies including depositional environment, mineralogy and 

geochemical characterization of these placer deposits.
3–5

 Apart from these major deposits, 

other  beach placer deposits like the Kanykumari coast
6
, Cuddalore coast

7
, Thiruchendur 

coast
8
, Valapatanam-Azhikode coast in Kerala

9
, etc. were also studied in a detailed manner. 

All these minerals are named as ―strategic‖ on the basics of their huge economic value due to 
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the wide range of applications in diverse areas.
10

 The minerals are recovered from beach 

sands using a judicious combination of different physical, magnetic, and electrostatic 

separation units. Rutile and the upgraded ilmenite (synthetic rutile) with high TiO2 content 

are used for the production of Titania products such as pulp, pigment, metal, etc.
11

 Monazite 

is processed under optimized conditions of leaching, solvent extraction, precipitation, etc. for 

the recovery of rare earth metals.
12

 High purity zirconia is extracted from zircon for ceramics 

and chemical industries.
13

 Sillimanite as such or converted into synthetic mullite, is widely 

used for refractory applications and garnet as an abrasive material for glass polishing.
14

 The 

potential applications of all these minerals truly depend on the grade of minerals, and it is 

determined using advanced characterization on crystal structure and chemical composition.  

Advanced characterization on the crystal structure, geochemistry, optical properties, 

and surface morphology of beach sand minerals can be successfully achieved using a 

combination of robust technologies such as Raman spectroscopy, ED-XRF,  HR-ICP-MS, 

SEM-EDS, etc.  ED-XRF technique ensured the elemental composition especially the major 

oxides ranges from percentage to ppm level in minerals such as Ce2O3, P2O5, U, ThO2, etc.  

of monazite
15

,  Al2O3, SiO2, etc. of sillimanite
16

, and also Fe2O3, TiO2 etc. of garnet and 

ilmenite
6
.  ICP-MS provides a more powerful and accurate determination of rare earth 

elements and also the trace elements present in ppm-level. Padmasubashini and Nandakishore  

determine rare earth and radioactive elements in ilmenite by ICP-MS.
17

 Rajendran et al.  

determine rare earth elements of Indian coastal monazites using ICP-MS.
18

 Raimondo et al.,  

use LA-ICP-MS for assessing minor elements and RE elements of garnet.
19

 The chemical 

composition of minerals such as the TiO2 content of ilmenite and rutile, ZrO2 in zircon, and 

rare earth elements in monazite plays an important role in determining their grade.  Raman 

spectroscopic studies of heavy minerals provide an effective and detailed structural 

characterization of minerals under a polarizing microscope. Here it measures the vibrational 

properties of minerals by means of inelastic scattering of light.
20,21

 The Raman studies of 

ilmenite structure were reported in Martian meteorite EETA79001
22

, Pumice rock from El 

Gasco, Spain
23

 and also in Ganga–Brahmaputra fluvial sediments, Bangladesh
24

. Narayanan 

(1950) have first reported the Raman Effect in rutile.
25

 Presently, the  Raman spectra are used 

for advanced level studies like discrimination of TiO2 polymorphs
26,27

, degree of 

metamictization in zircon and monazite
28

, and discriminating isomorphous series of garnet 

and A12SiO5 polymorphs
29,30

. XPS was used for understanding the chemistry and chemical 

state of surface elements of the minerals. The XPS offers evidence of absorbed D2O, and O2  
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with the Fe or Ti species on ilmenite surfaces.
31

 The X-ray photoelectron spectra was used for 

discriminating Al2SiO5 polymorphs like andalusite, sillimanite, and kyanite based on the 

variance in chemical bonding and structural differences in the Al- and Si-coordination.
32

 The 

abrasive property makes the garnet for preparing paints for metallic surfaces. Poon et al.  use 

XPS for analyzing the surface chemistry of garnet and thereby is used for analysing its 

property for making bindings with metal surfaces. The XPS helps identify the rate of 

weathering of zircon by detecting the formation of Zr oxide or hydroxide at the mineral 

surface.
34

 The optical properties of the minerals were analysed using UV–Vis–NIR 

absorption spectra, which provide solid information regarding various electronic transitions 

of metal cations and their charge transfer process. The charge transfer occurred due to Fe-O, 

Ti-O, and Fe-Ti transitions are responsible for strong absorption peaks of ilmenite in UV-Vis-

NIR range.
35

 General morphological features such as sub-rounded ilmenite grains, highly 

rounded monazite, prismatic sillimanite, angular garnet grains are analysed by SEM 

techniques.
36

  Apart from these, the mechanical impacts and solution activity of chemicals 

during the long transportation and deposition of mineral grains results in morphological 

changes like the removal of blocks, irregular pits, grooves, etch V's, etc. which can be clearly 

seen using SEM images. Moreover, the SEM-EDS help to confirm the mineral grains by 

analysing its major elements.  

In the present work, the crystal structure, geochemistry and surface morphology of 

seven common heavy minerals such as ilmenite, leucoxene,  rutile, monazite, zircon, 

sillimanite, and garnet recovered from Varkala and Kovalam coast in Kerala, south-west 

India have been analysed and studied using characterization techniques such as Raman 

spectroscopy, ED-XRF, TGA, UV-Vis-NIR spectroscopy, and SEM-EDS.  

5.3.Materials and Methods 

A judicious combination of gravity, magnetic, and electrostatic separation techniques 

were applied to raw sand collected from Varkala and Kovalam regions of 

Thiruvananathapuram district for recovering high-grade heavy minerals such as ilmenite, 

sillimanite, monazite, zircon, rutile, leucoxene, and garnet. These two set of mineral samples 

recovered from the coasts of Varkala and Kovalam are used for the present study. Figure 5.1 

shows the characterization techniques used for studying the structure, chemistry, and surface 

morphology of all these heavy minerals. X-ray diffraction analysis was carried out using a 

PANalytical X’Pert Pro diffractometer. The resultant diffraction patterns were processed 
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using X’Pert HighScore Plus software (PANalytical) to identify the recovered mineral 

phases. Raman measurements of the powdered mineral samples were recorded using a 

confocal Raman microscope (WI-Tec, Inc., Germany, alpha 300R).  

Figure 5.1: Characterization techniques used for the present study. 

The trace, REE, and radioactive elements were identified using HR-ICP-MS of Nu 

Instruments Attom


, UK. The finely powdered mineral samples were dissolved in HF: HNO3 

acid mixture for HR-ICP-MS analysis. The bulk chemical composition was studied using Pan 

Analytical Epsilon 3 ED-XRF instrument having Omnion software. The SEM micrographs 

were taken using JEOL make model JSM5600 LV. Silicon Drift Detector−X-MaxN attached 

to the SEM of Carl Zeiss make EVO18 model was used for taking EDS data of minerals. 

Thermal gravimetric analysis of ilmenite and leucoxene were taken using a Perkin Elmer 

Pyris Diamond instrument with alumina as the standard and a heating rate of 10°C/min. The 

UV-Visible-NIR spectra were taken using Shimadzu UV-VIS-NIR spectrophotometer (UV- 

3600).  The XPS spectra were recorded using Multilab 2000 (Thermofisher Scientific, U.K.), 

and the results were interpreted using MultiPak software. 

5.4.Results and Discussion 

5.4.1. Ilmenite and Leucoxene 

Ilmenite (FeTiO3) is an iron titanium oxide mineral with formula ferrous titanate, 

whereas leucoxene is an altered product of ilmenite.
37

  The continuous process of alteration 

from ilmenite through pseudorutile to leucoxene, which includes processes of oxidation and 
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progressive removal of iron, can be expressed as Fe2
3+

Ti3O9→Fe2−y
3+

Ti3O9−3y(OH)3y where 

 y=2 corresponds to leucoxene.
38

 Usually, the Fe-Ti-Cr oxides are classified into two 

structural types of spinel and corundum. The ilmenite belongs to the corundum structure. The 

XRD patterns obtained for ilmenite and leucoxene are shown in Figure 5.2 and Figure 5.3. 

The excitation laser beam shows limited penetration depth for dark coloured Fe oxides. So 

the ilmenite is intrinsically a weak Raman scatter than other oxyanionic and Ti-Al oxide 

minerals.  

 

Figure 5.2: XRD patterns of ilmenite. 

 

Figure 5.3: XRD patterns of leucoxene. 
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The intensity of the Raman signal from a mineral depends on the rigidity of the 

polyhedra in its structure and degree of covalency of its chemical bond. Higher the degree of 

covalency, then the bond produces the strongest Raman peak. The relative difference in bond 

strength between different types of polyhedral acts as the contributors of Raman spectral 

features, in which the  Ti
4+

O6 Octahedra act as the main contributors of the Raman spectral 

features in ilmenite.
22

 

Ilmenite has a Pseudo-corundum structure in which oxygen atoms form a hexagonal 

close-packed framework. The modes of vibrations  for ilmenite is Γ = 5 Ag + 5 Eg + 4 Au + 4 

Eu in which 10 Raman active vibrational modes (5Ag + 5Eg) can be derived based on factor 

group analysis. The Fe and Ti cations in ilmenite structure are well-organized among the 2/3 

to fill the octahedral sites, and thereby, it forms a structural symmetry of R3 -𝐶3𝑖
2 .

39
 The 

strongest peak at 678 cm
-1

 corresponds to Ag symmetry representing symmetric stretching 

vibration of Ti4+O6 octahedra and the weak peak at 236 cm-1 corresponds to Ag symmetry 

representing the translational motion of the Fe cation in the crystal lattice, which assist in 

clear discrimination of ilmenite from other opaque and non-opaque Fe–Ti–Cr oxides. 
22–24

 

Other weaker peaks and their corresponding modes were shown in Figure 5.4 and Table 5.1.  

 

Figure 5.4: Raman spectra of ilmenite. 

 



Chapter 5 
 

139 
 

Table 5.1: Assignments of Raman peaks (cm
-1

) of ilmenite structure. 

 

 

 

 

 

The XPS bands of the ilmenite are shown in Figure 5.5. The Ti 2p3/2 and Ti 2p1/2 XPS 

peaks are observed at 458.23eV and 413.93 eV. The O1s get split into three components, 

such as 529.70eV corresponds to Ti-O, 532.10 eV corresponds to OH, and 531.05 eV 

corresponds to Fe-O. The  2p3/2 state of Fe splits at 710.81 eV and 713.26 eV. The 2p1/2 state 

of Fe can be fit at  724.39 eV.  The  2p3/2 and  2p½ peaks  of Fe state at around 710.81 and 

724.39 eV  corresponds to ferrous species, whereas at around 713.26 eV correspond to ferric 

species.
40

  

 

Figure 5.5:  XPS spectra of ilmenite. (a) Wide scan XPS spectra, and high resolution scans of 

(b) Fe 2p, (c) Ti 2p, and  (d) O 1s. 

Symmetry Assignment Raman peaks 

(cm
-1

) 

Ag(1) X-O stretch 678 

Ag(4) T(XO6) translation 370 

Eg(4) T(XO6) translation 330 

Ag(5) T(M) translation 292 

Eg(5) T(M) translation 236 
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The TGA results of ilmenite and leucoxene are shown in Figure 5.6. The TGA curve 

shows weight loss, which is due to the presence of bound water or hydroxyl groups seen 

more in altered forms. Thus weight loss increases as the alteration increases, which is clearly 

noticeable in the case of leucoxene. The weight gain noticed for ilmenite above 600
o
C 

corresponds to Fe
2+

.
41

 The UV-Vis-NIR spectra of ilmenite and leucoxene are shown in 

Figure 5.7. The strong absorption around 342-384 nm corresponds to O
2−

 → Ti
4+

 charge 

transfer transitions, and around 1259 nm corresponds to iron transition.
35

  

 

Figure 5.6: TGA results of ilmenite and leucoxene. 

 

Figure 5.7: UV-Vis-NIR spectra of  ilmenite and leucoxene. 
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The major oxides, REE and trace elements present in ilmenite are shown in 

Supplementary Table 5.2-5.4. The major oxides, REE, and trace elements present in 

leucoxene, are shown in Table 5.5-5.7.  The average TiO2 content of ilmenite and leucoxene 

is 54.830% and 73.556%. The average TREE content of ilmenite and leucoxene is 0.042% 

and 0.463%.  Leucoxene from Varkala consists of 0.88% TREE, which is high compared to 

any other minerals other than monazite. On comparing with other placer deposits in India like 

Thottappally – Kayamkulam Deposit in Kerala (TiO2 ranges 60.48-66.25%) and 

Manavalakurichi in Tamil Nadu (TiO2 ranges 52.193-54.151%)
10,42

, the results are 

comparable.  

Table 5.2: Major oxides of ilmenite. 

Major Oxides (%) Varkala Kovalam Average 

TiO2 54.597 55.062 54.830 

Fe2O3 41.668 40.686 41.177 

SiO2 0.568 0.55 0.559 

MgO 0.518 0.574 0.546 

P2O5 0.478 0.474 0.476 

MnO 0.439 0.444 0.4415 

Al2O3 0.239 0.747 0.493 

CaO 0.168 0.173 0.1705 

CdO 0.141 0.141 0.141 

Others 1.184 1.149 1.1665 

Table 5.3: Trace elements of ilmenite. 

Trace elements (ppm) Varkala Kovalam Average 

V 1253.975 1249.261 1251.618 

Nb 840.401 850.188 845.295 

Zn 701.461 375.165 538.313 

Cr 285.021 253.800 269.411 

Pb 259.997 173.411 216.704 

Zr 231.126 155.519 193.322 

Ba 152.417 148.958 150.687 
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Th 134.485 81.509 107.997 

Ta 87.330 96.295 91.812 

Co 68.317 66.940 67.629 

Sr 43.279 43.049 43.164 

Ni 26.583 20.492 23.538 

Cu 17.980 19.891 18.936 

Ga 9.832 9.241 9.537 

Hf 8.150 5.976 7.063 

U 7.723 4.637 6.180 

Rb 1.756 0.865 1.311 

Cs 0.091 0.087 0.089 

Total 4129.927 3555.284 3842.605 

Table 5.4: Rare earth elements of ilmenite. 

REE (ppm) Varkala Kovalam Average 

Ce 220.3621 85.34419 152.8531 

La 105.5647 45.73811 75.65141 

Sc 69.83426 71.92357 70.87891 

Nd 99.4649 35.79099 67.62794 

Pr 29.03324 11.09135 20.0623 

Sm 15.46153 5.558739 10.51014 

Y 7.079978 5.561397 6.320688 

Gd 8.389168 3.401906 5.895537 

Dy 2.573029 1.794721 2.183875 

Yb 1.087627 1.093897 1.090762 

Er 1.073025 1.021603 1.047314 

Eu 0.737404 0.684271 0.710838 

Tb 0.749758 0.397977 0.573868 

Ho 0.409325 0.349472 0.379399 

Lu 0.157865 0.158771 0.158318 

Tm 0.148507 0.158635 0.153571 

Total 562.1264 270.0696 416.098 
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Table 5.5: Major oxides of leucoxene. 

Major Oxides (%) Varkala Kovalam Average 

TiO2 74.569 72.543 73.556 

Fe2O3 17.495 20.038 18.7665 

Al2O3 1.993 2.007 2 

SiO2 1.618 1.708 1.663 

P2O5 0.692 0.661 0.6765 

MgO 0.443 0.537 0.49 

CaO 0.282 0.261 0.2715 

MnO 0.06294 0.125 0.09397 

Others 2.84506 2.12 2.48253 

Table 5.6: Rare earth elements of leucoxene. 

REE (ppm) Varkala Kovalam Average 

Ce 4085.674 179.136 2132.405 

La 1953.507 85.678 1019.592 

Nd 1641.108 78.605 859.857 

Pr 529.761 24.697 277.229 

Sm 243.327 12.542 127.934 

Gd 126.138 7.423 66.780 

Sc 71.620 74.667 73.143 

Y 62.957 13.672 38.314 

Dy 26.315 4.610 15.462 

Tb 9.605 0.931 5.268 

Er 6.378 2.444 4.411 

Eu 3.993 2.188 3.091 

Ho 3.164 0.901 2.033 

Yb 3.108 2.169 2.638 

Tm 0.569 0.352 0.461 

Lu 0.453 0.316 0.385 

Total 8767.677 490.331 4629.004 
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Table 5.7: Trace elements of leucoxene. 

Trace elements (ppm) Varkala Kovalam Average 

Nb 6574.076 2441.506 4507.791 

Ta 2475.159 351.158 1413.158 

V 2065.939 1626.037 1845.988 

Th 1547.400 178.914 863.157 

Zr 825.938 449.641 637.790 

Cr 764.264 632.009 698.136 

Pb 495.912 478.091 487.002 

Zn 422.056 553.974 488.015 

Ba 226.492 240.723 233.608 

Sr 116.552 135.060 125.806 

U 89.695 18.751 54.223 

Ga 61.534 39.957 50.746 

Hf 38.947 18.544 28.745 

Co 24.332 30.756 27.544 

Ni 18.504 20.666 19.585 

Cu 18.008 19.059 18.533 

Rb 1.615 1.613 1.614 

Cs 0.133 0.115 0.124 

Total 15766.558 7236.574 11501.566 

 

The SEM micrographs taken for the ilmenite are shown in Figure 5.8 (a-g).  Ilmenite 

grains are usually sub-rounded in shape with moderate relief (Figure 5.8(a-b)). Solution 

activities over along residence time results in formations of oriented crescentic pits (Figure 

5.8(d)). Chemical reactions cause the removal of large blocks, step-like features, and 

undulatory wavy surfaces (Figure 5.8(d-g)). Impact "V" marks caused by etching were also 

noticed (Figure 5.8(e-g)). Deep grooves are also formed at an angle oriented in an irregular 

manner. The SEM image indicates a minimum two stages of solution activities, in which the 

initial stage follows parting of planes.
36

 Similar morphological characteristics were shown by 

leucoxene (Figure 5.9). The surface morphological characteristics like pits, step-like features, 
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undulatory wavy surfaces, deep grooves, etc. clearly indicate the alteration of ilmenite to 

leucoxene.  

 

Figure 5.8: SEM images of ilmenite. 

 Table 5.8: Chemical composition of  ilmenite by SEM-EDS. 

 

 

Figure 5.10, Table 5.8 and Table 5.9 show the SEM-EDS results of ilmenite and 

leucoxene. The results show that ilmenite and leucoxene contain Ti and Fe majorly with 

minor impurities of silica, alumina, and magnesium might be due to inclusions and C is due 

to the carbon coating.
43

 

Element Weight (%) Atomic (%) 

Ti K 23.71 10.89 

Fe K 17.6 6.93 

Mg K 0.66 0.6 

Al K 0.38 0.31 

Si K 0.26 0.2 

O K 52.59 72.28 

C K 4.81 8.8 
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Figure 5.9: SEM images of leucoxene. 

  

Figure 5.10: SEM-EDS results (a) Ilmenite; (b) Leucoxene. 
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Table 5.9: Chemical composition of  leucoxene by SEM-EDS.  

Element Weight (%) Atomic (%) 

Ti K 19.97 8.68 

Fe K 6.87 2.56 

Mg K 0.41 0.35 

Al K 5.72 4.42 

Si K 5.79 4.29 

O K 61.24 79.7 

5.4.2. Rutile 

The rutile (TiO2) corresponds to a tetragonal system (space group D
14

4h – P42/mnm) 

with two TiO2 groups per unit cell. The XRD pattern of rutile was shown in Figure 5.11. The 

first-order Raman scattering provides four Raman active vibrations as A1g + B1g + B2g + Eg. 

The spectra show all the four Rama active vibrations at A1g=603, B1g=144, B2g=827, and Eg= 

443 (see Figure 5.12 and Table 5.10). The sharp and strongest peak at 443cm
-1

 belongs to 

doubly degenerate species Eg. The peaks at 248 and 603 also appear sharp but quite 

moderate. The peaks at 144 and 827 are comparatively broad and diffuse.  

 

 

Figure 5.11: XRD pattern of rutile. 
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The vibrational frequency at 144 corresponds to B1g mode is extremely weak due to 

the fact that the oxygens move strictly perpendicular around the titanium, which results in 

very less changes for Ti-O and O-O bond lengths. But in the case of mode B2g corresponds to 

827 cm
-1

, the oxygens move simultaneously towards and away from the central titanium 

results in changes of Ti-O bond lengths. Hence the Raman frequency for B2g is quite high 

compared to B1g. Krishnamurti has theoretically calculated the values of A2g and B2g as 582 

and 831, respectively.
44

 The Raman spectrum of rutile exhibits a moderate peak at 603 and a 

very weak peak at 827.
45

 The peak at ~ 248 cm
-1

 corresponds to second-order Raman 

scattering, but it is theoretically Raman inactive and may arise due to infra-red active doubly 

degenerate mode of Eu species.
46,47

   Krishnamurti have suggested that infrared active EU 

species have been observed to be weakly Raman active in violation of selection rules due to 

the variation in atomic weights of the titanium isotopes.
44

  All the Raman peaks obtained for 

the sample strictly follow the Raman modes of rutile, not with any other polymorphs such as 

anatase or brookite. 

 

Figure 5.12: Raman spectra of rutile. 
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Table 5.10: Raman active vibrational frequencies (cm
-1

) of rutile TiO2. 

 

 

 

 

 

The XPS spectra of rutile are shown in Figure 5.13. The Ti 2p are fitted as Ti
4+

2p1/2 at 

464.14 eV and Ti
4+

2p3/2 at 458.45 eV.
48

 The O1s shows two peaks at 529.80 eV corresponds 

to metallic oxide, and 532.10 eV corresponds to OH groups, chemisorbed oxygen, and 

organic oxygen present on the mineral surface.
49,50

   

 

Figure 5.13: XPS results of rutile (a) Wide scan XPS spectra, and high resolution scans of (b) 

Ti 2p, and  (c) O 1s. 

Symmetry Raman peaks (cm
-1

) 

B1g 144 

Eg 443 

A1g 603 

A2u x A2u 692 

B2g 827 
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The UV-Vis-NIR spectra of natural rutile are shown in Figure 5.14. The rutile (TiO2) 

shows strong absorption in the UV region with a sharp peak at 362nm, which can be assigned 

to  O
2−

 → Ti
4+

 charge transfer transitions.
35

 

 

Figure 5.14: UV-Vis-NIR spectra of rutile. 

The Tables 5.11- 5.13 gives the major oxides, trace elements, and RE elements 

present in rutile. The average TiO2 content is 95.718%. It follows by Nb2O5, SiO2, Fe2O3, 

Al2O3, and CaO. Apart from major oxides, the rutile usually holds trace elements in ppm 

level like V, Cr, Co, Ni, Cu, etc.  The rutile also contains radioactive elements like Th and U 

in the range of 0.924ppm to 0.103ppm. The average rare earth content estimated for rutile 

comes around 36.117ppm with a maximum for scandium (11.163 ppm) followed by Ce, La, 

Nd, Y, etc.  On comparing with the TiO2 content of rutile from Bhimunipatnam–Konada 

coast, Andhra Pradesh ranges 97.48 to 99.13%
51

, the results are comparable.  
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Table 5.11: Major oxides present in rutile. 

Major Oxides (%) Varkala Kovalam Average 

TiO2 95.921 95.515 95.718 

Nb2O5 0.85 0.677 0.7635 

SiO2 0.593 0.996 0.7945 

Fe2O3 0.336 0.289 0.3125 

Al2O3 0.268 0.294 0.281 

CaO 0.108 0.111 0.1095 

Others 1.924 2.118 2.021 

Table 5.12:  Trace elements of rutile. 

Trace elements (ppm) 
Varkala Kovalam Average 

V 4754.110 3597.031 4175.571 

Cr 2693.311 2516.003 2604.657 

Co 2270.896 2053.535 2162.216 

Ni 681.682 471.153 576.417 

Cu 481.990 441.372 461.681 

Zn 203.668 329.187 266.427 

Ga 122.097 239.105 180.601 

Rb 106.440 94.022 100.231 

Sr 75.909 67.791 71.850 

Zr 57.837 92.684 75.261 

Nb 15.657 18.565 17.111 

Cs 10.329 12.164 11.247 

Ba 7.555 12.353 9.954 

Hf 4.287 5.002 4.645 

Ta 1.062 0.852 0.957 

Pb 1.034 1.390 1.212 

Th 0.946 0.901 0.924 

U 0.098 0.109 0.103 

Total 11488.908 9953.220 10721.064 
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Table 5.13:  Rare earth elements of rutile. 

REE (ppm) Varkala Kovalam Average 

Sc 11.109 11.218 11.163 

Ce 8.211 10.297 9.254 

La 4.982 5.740 5.361 

Nd 4.285 4.812 4.548 

Y 2.484 1.428 1.956 

Pr 1.164 1.391 1.278 

Sm 0.649 0.820 0.735 

Gd 0.462 0.584 0.523 

Dy 0.367 0.364 0.366 

Yb 0.305 0.258 0.281 

Er 0.287 0.295 0.291 

Eu 0.103 0.125 0.114 

Ho 0.086 0.088 0.087 

Tb 0.064 0.073 0.069 

Tm 0.050 0.051 0.051 

Lu 0.044 0.037 0.041 

Total 34.653 37.580 36.117 

The SEM micrographs showing the morphological characteristics of rutile are given 

in Figure 5.15. Usually, rutile grains are seen in highly rounded in shape with varying relief 

from high to moderate (Figure 5.15 (a)). Irregular pits, deep fractures of solution grooves 

(Figure 5.15 (c)), embayments, removal of blocks (Figure 5.15 (d and g)), etch V's are   

noticed on the surface. This clearly indicates intense etching formed by long exposure to 

chemical activity. Precipitations are also noticed, especially with the grooves. Removal of 

blocks made a step-like appearance (Figure 5.15 (f)) for the mineral grains.
36

 The EDS results 

are given in Figure 5.16 and Table 5.14. The EDS results confirm that the mineral is rutile by 

indicating the high presence of Ti with the minor presence of Fe and other impurities such as 

Vanadium. The presence of V is also confirmed in ICPMS results.  
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Figure 5.15: SEM images of rutile. 

 

Figure 5.16: SEM-EDS results of rutile. 
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Table 5.14: Chemical composition of   rutile by SEM-EDS. 

 Element (a) (b) 

Weight (%) Atomic (%) Weight (%) Atomic (%) 

Ti K 56.31 29.81 34.62 15.05 

Fe K 0.4 0.18 0.14 0.05 

V K 1.08 0.54 - - 

O K 37.31 59.13 65.24 84.9 

C K 4.9 10.34 - - 

5.4.3 Monazite 

Monazite is a light rare-earth orthophosphates mineral with general formula MPO4  

where M = La to Gd. It belongs to the monoclinic system (space group 𝐶2ℎ
5 ) consists of four 

formula units per unit cell. The M and PO4 occupy the general C1 sites.  The monazite group 

shows varying geochemistry due to the addition of actinide elements like Th or U, a small 

quantity of Pb, substitution of Ce by light REEs and also the inclusion of heavy REEs, 

moreover, it may results in the formation of solid solutions also with other minerals.
52

 The 

ICP-MS analysis reveals that Chavara monazite from Kerala shows total REE contents 

(TREE) of 48.42% in which the light REE (LREE)  is 47.37%, and heavy lanthanides 

(HREE) is 10594ppm.  The ThO2  and U3O8 content normally ranges around 10.50% and 

0.04%.
18

  The XRD pattern of monazite is shown in Figure 5.17. The symmetry 

representation analysis shows that 36 Raman-active modes (Ag+Bg) are available from the 

optical modes for monazite–(Ce) as Γ = 18Ag + 17Au + 18Bg +16Bu.  The free (PO4)3- ion 

shows four normal modes, such as symmetric stretch v1(A1), antisymmetric stretch v3(F2), 

and bending v2(E) and v4(F2) vibrations. The Raman spectrum of monazite groups shows 

distinct peaks in the ranges 970-1075 cm
−1

 and below 620 cm
−1

.
53

 The Raman peaks in the 

range 970- 1075 cm
−1

are assigned to the internal PO4 stretching vibrations. The Raman 

modes of monazite were clearly shown in Figure 5.18 and Table 5.15.  The PO4 bending 

together with the external vibrations due to the movements of the Ce
3+

 ions and the [PO4]
3–

 

units are responsible for the peaks below 620 cm
-1

.
54

  The strong peak at 972 cm
-1

 

corresponds to symmetric stretching of the PO4 tetrahedrons has a contribution from both Ag 

and Bg mode. 
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Figure 5.17: XRD pattern of monazite. 

Table 5.15: Raman active frequencies (cm
-1

) of monazite. 

Symmetry Assignment Raman peaks (cm
-1

) 

Bg Lattice 89 

Ag Lattice 105 

Ag Lattice 151 

Bg Lattice 173 

Ag Lattice 181 

Ag /Bg Lattice 219 

Ag /Bg Lattice 227 

Ag Lattice 256 

Ag Lattice 276 

Ag/Bg Lattice 400 

Ag/Bg Lattice 419 

Ag/Bg v2 468 

Ag /Bg v4 621 

Ag /Bg v1 972 

Ag /Bg v3 1058 
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Figure 5.18: Raman peaks of monazite. 

 

Figure 5.19: UV-Vis-NIR spectra of monazite. 

The UV-Vis-NIR spectrum of monazite is shown in Figure 5.19.  Two absorption 

bands of 213nm and 274nm in the UV region correspond to the transition of 
2
F5/2 (ground 

state) to 
2
D5/2 and 

2
D3/2 levels (excited state). The weak extension noticed from 300 to 450nm 

corresponds to the presence of Ce
4+

. The peaks around 1465nm and 1964nm in the NIR 
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region corresponds to the presence of phosphate.
55

 The major oxides, rare earth elements, 

radioactive elements, and trace elements present in monazite are shown in Tables 5.16-5.19. 

The average P2O5 content is 23.769%, followed by SiO2, Cao, Al2O3, CdO, MgO, and Fe2O3. 

The results of major oxides, especially the values of P2O5, SiO2, Cao, Al2O3, etc. are 

comparable with the results obtained for monazite from Chavara in Kerala.
15

 The Th and U 

content of Varkala monazite is 6.312% and 0.304%, and that of Kovalam monazite is 6.359% 

and 0.30%. The average Th and U content are 6.336% and 0.312%. The TREE elements 

present in Varkala and Monazite samples are 40.76% and 42.599%, with an average of 

41.668%. The Ce present in maximum with an average of 20.318%, followed by La, Bd, Pr, 

Sm, Gd, etc. Trace elements such as Zn, Pb, Ga, Sr, Zr, etc.  also present in monazite in ppm-

level. The TREE for Chavara and Manavalakurichi monazite determined using ICP-MS are 

48.42%, and 56.61% also show a strong correlation with the current results.
18

  

Table 5.16: Major oxides of monazite. 

Major Oxides (%) Varkala Kovalam Average 

P2O5 24.153 23.385 23.769 

CaO 1.647 1.64 1.6435 

SiO2 1.309 2.906 2.1075 

Al2O3 0.62 1.922 1.271 

CdO 0.462 0.656 0.559 

Fe2O3 0.372 0.243 0.3075 

MgO 0.267 0.363 0.315 

Others 71.17 68.885 70.0275 

 

Table 5.17: Radioactive elements of monazite. 

Radioactive elements (%) Varkala Kovalam Average 

Th 6.312 6.359 6.336 

U 0.304 0.320 0.312 

Total 6.615 6.679 6.647 
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Table 5.18: Rare Earth elements of monazite. 

REE (%) Varkala Kovalam Average 

Ce 19.821 20.814 20.318 

La 8.613 9.155 8.884 

Nd 7.624 7.779 7.702 

Pr 2.494 2.577 2.535 

Sm 1.158 1.167 1.163 

Gd 0.6 0.625 0.613 

Y 0.235 0.27 0.252 

Dy 0.104 0.113 0.108 

Tb 0.045 0.05 0.047 

Er 0.018 0.02 0.019 

Ho 0.011 0.012 0.011 

Eu 0.008 0.011 0.01 

Yb 0.004 0.004 0.004 

Tm 0.001 0.001 0.001 

Lu 0.001 0.001 0.001 

Sc 0 0.001 0.001 

Total 40.736 42.599 41.668 

 

Table 5.19: Trace elements of monazite. 

Trace elements (ppm) Varkala Kovalam Average 

Zn 9479.575 9168.141 9323.858 

Pb 6901.717 7032.331 6967.024 

Ga 2082.117 2330.171 2206.144 

Sr 405.924 320.950 363.437 

Zr 310.761 2035.323 1173.042 

Ba 309.267 380.648 344.957 

Cu 161.784 106.686 134.235 

Ni 60.124 78.631 69.377 
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Cr 20.601 17.357 18.979 

V 18.450 15.625 17.038 

Rb 15.030 18.137 16.584 

Hf 10.565 59.074 34.820 

Nb 6.953 4.113 5.533 

Co 3.470 3.309 3.389 

Ta 1.708 2.429 2.068 

Cs 0.227 0.268 0.248 

Total (%) 1.979 2.157 2.068 

 

Figure 5.20: SEM images of monazite. 

Figure 5.20 gives the SEM photos of monazite. Figure 5.21 and Table 5.20 show the 

SEM-EDS results of monazite. The monazite is usually seen as highly rounded in shape with 

moderate relief (Figure 5.20 (a-d)). Irregular pits oriented in different directions (Figure 5.20 

(b and d)). Cleavage-controlled blocky fractures due to the removal of blocks (Figure 5.20 (e 

and f) were formed due to precipitation. Impact effects cause linear, curved, or irregular 

features, sometimes they coalesced on the surface (Figure 5.20 (e)). The morphology clearly 

indicates the polycyclic nature of the grains occurred due to high physical energy conditions, 

long transport, and solution effects of grains.
36

 The high content of rare earth elements (Ce, 

La, and Nd), radioactive elements (Th and U), and P confirms that the minerals are monazite. 

The SEM-EDS also shows the minor presence of Ca, and F 
15

, and the presence of carbon 

tapes used for fixing the grains may give the values of C 
56

.  
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Figure 5.21: SEM-EDS results of monazite. 

Table 5.20: Chemical composition of  monazite by SEM-EDS. 

Element Weight (%) Atomic (%) 

Ce L 14.31 2.3 

La L 6.99 1.13 

Nd L 4.8 0.75 

Th M 5.81 0.56 

U M 0.15 0.01 

P K 9.84 7.14 

Ca K 0.8 0.45 

F K 0.09 0.11 

O K 41.89 58.87 

C K 15.31 28.67 

5.4.4. Zircon 

Zircon having a tetragonal structure (I41/amd and Z = 4)
57

, formed by a chain of edge-

sharing and alternating SiO4 tetrahedra. The XRD pattern of zircon is shown in Figure 5.22. 

Theoretically 12 Raman active normal modes represented as 2A1g + 4B1g + B2g + 5Eg in 

which the internal modes are 2A1g + 2B1g + B2g + 2Eg  and external modes are 

2B1g(translatory) + 2Eg(translatory) + Eg(rotatory). The internal modes for zircon are listed in 

Table 5.21 along with their assignments, and the external modes are 207, 226, 356, 397 cm
-1 

(see Figure 5.23).   
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Figure 5.22: XRD pattern of zircon. 

 

Figure 5.23: Raman peaks of zircon. 
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 Table 5.21: Experimental Raman frequencies (cm
-1

) of Zircon. 

Symmetry Assignment Raman peaks (cm
-1

) 

Internal modes  

Si–O ν3 stretching 

1008 

B1g 

A1g Si–O ν1 stretching 978 

A1g Si–O ν2 bending 440 

B2g Si–O ν2 bending 270 

External modes 207, 225, 357, 395 

The radioactive decay of radionuclides, and their daughter products causes heavy 

damage to the crystalline structure of naturally occurring zircon.
58,59

 These  increase in  α-

decay radiation dose causes the two Si-O stretching modes features between 970 and 1010 

cm−1, especially the v3(SiO4) frequency mode, to become weaker and broader.
20,34

  Thus it 

results in a broad spectral feature between 850 and 1100 cm
−1

.
 60

 This state of high loss in the 

periodic crystal structure of zircon due to the radiation damage is termed as metamictization 

of zircon.
61

 Metamict is defined as a state of a periodic or amorphous.
62

 The zircon shows a 

clear, well-defined peak at 1009cm
-1

 corresponds to ν3 (SiO4) stretching.
63

 The well-resolved 

and sharp peaks indicate well-crystallized structure for zircon samples. 

The XPS peaks of the zircon are shown in Figure 5.24. The Zr 3d photo-peak 

decomposed into 3d5/2 at 182.95 eV and 3d3/2 at 185.52 eV.  The Si 2p spectra were also 

fitted with two Gaussian components of Si12p and  Si22p at 101.10 eV and 102.27 eV.
34

 The 

O1S represents a superposition of oxygen atoms such as O1 and O2 at 530.96 eV and  531.36 

eV.  The energy of O11s corresponds to regular atoms of the three-coordinated oxygen in 

ZrSiO4, and that of O21s corresponds to oxygen atoms of defect oxygen atoms assigned to 

defect SiO3
2−and SiO2

0.
64
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Figure 5.24: XPS results of zircon (a) Wide scan XPS spectra, and high resolution scans of 

(b) Zr3d, (c) Si2p, and (d) O1s. 

 

Figure 5.25: UV-Vis-NIR spectrum of zircon. 

The UV-Vis-NIR spectrum of zircon is given in Figure 5.25.  It helps to analyze the 

effect of natural radiation, and thereby the extent of   metmictization occurred in zircon. 
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Natural radiation in detrital zircon grain results in the replacement of zirconium with uranium 

atoms. This can be easily identified by analyzing UV-Vis-NIR spectroscopy.  The presence 

of U, Th, and rare earth elements cause f-f electron transition in zircon, which can be 

identified by sharp lines of absorption spectra below 600nm.
65

 But in the case of natural 

zircon, these sharp lines are weak and faint, denotes less chances of radiation damage.
66

 The 

results of Raman, XPS, and  UV-Vis-NIR spectroscopy clearly denote less metamictization 

and a well-crystallized structure for detrital zircon grains. Moreover, the maximum 

absorbance is shown by the zircon at 1115nm (~1113nm of laboratory spectrum). 

 The major oxides, rare earth elements, and trace elements present in zircon are 

tabulated in Table 5.22-5.24. The average ZrO2 content of zircon is 63.72% followed by SiO2, 

Al2O3, TiO2, etc. The average rare-earth content is estimated at about 1698.735ppm with a 

maximum for Ce (628.164ppm) followed by La, Nd, Y, Sc, Pr, etc. Few elements were 

present in ppm level like Zn, Pb, Hf, Th, U, Sr, etc. The results show good correlation with 

zircons grains from other parts of the country like zircon grains along the south-eastern part 

of  Tamil Nadu consists of ZrO2 in the range of  61.77 – 64.13% 
67

 and that from Chatrapur in 

Orissa  is 65.90% 
14

.  

Table 5.22: Major oxides of zircon. 

Major Oxides (%) Varkala Kovalam Average 

ZrO2 65.12 62.32 63.72 

SiO2 30.595 28.797 29.696 

Al2O3 1.113 5.943 3.528 

TiO2 0.82 0.59 0.705 

CaO 0.296 0.294 0.295 

Fe2O3 0.154 0.224 0.189 

Others 1.902 1.832 1.867 

Table 5.23: Table REE elements of zircon. 

REE (ppm) 
Varkala Kovalam Average 

Ce 605.217 651.110 628.164 

La 263.110 268.412 265.761 

Nd 222.091 251.125 236.608 
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Y 148.530 208.212 178.371 

Sc 125.295 177.532 151.413 

Pr 66.145 73.170 69.658 

Sm 34.413 41.249 37.831 

Yb 29.025 43.602 36.314 

Gd 22.802 28.227 25.515 

Er 20.136 29.262 24.699 

Dy 19.222 25.990 22.606 

Ho 5.447 7.646 6.547 

Lu 4.217 6.333 5.275 

Tm 3.745 5.557 4.651 

Tb 3.029 3.905 3.467 

Eu 1.658 2.058 1.858 

Total 1574.081 1823.390 1698.735 

Table 5.24: Trace elements of zircon. 

Trace elements (ppm) 
Varkala Kovalam Average 

Zn 11137.865 10114.336 10626.101 

Pb 3427.547 3425.908 3426.727 

Hf 1807.852 2548.040 2177.946 

Sr 402.665 359.472 381.068 

Ba 336.660 392.296 364.478 

Th 236.002 208.843 222.422 

Cu 184.012 149.404 166.708 

U 118.049 151.058 134.553 

Ni 71.288 66.734 69.011 

V 23.159 31.857 27.508 

Cr 21.826 44.276 33.051 

Rb 20.592 18.335 19.463 

Nb 14.700 11.691 13.196 

Ga 4.914 6.149 5.532 
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Co 3.980 3.251 3.615 

Ta 1.754 2.422 2.088 

Cs 0.221 0.232 0.226 

Total 17813.086 17534.302 17673.694 

Figure 5.26 shows the SEM micrographs of zircon. Zircons are usually stable and 

well-developed with rounded edges with high relief (Figure 5.26 (a-f)). The rounded edges 

show a long history of transportation. Inclusions, impact V’s, and irregular pts of different 

shapes are seen on the surface. Zoning effects were also noticed on the grains.
36

 

 

Figure 5.26: SEM images of zircon. 

 Figure 5.27 and Table 5.25 show the SED-EDS results of the zircon grains. The high 

content of Zr followed by Si confirms the mineral is zircon.
68

  

  

Figure 5.27: SEM-EDS results of zircon. 
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Table 5.25: Chemical composition of   zircon by SEM-EDS. 

Element Weight (%) Atomic (%) 

Zr L 45.35 13.94 

Si K 12.9 12.88 

O K 41.75 73.18 

5.4.5. Sillimanite  

Sillimanite (Al2SiO5) belongs to  aluminosilicates (space group Pbnm, Z =4) has an 

orthorhombic structure formed by chains of edge-sharing A1O6 octahedra along the c-axis 

(Pbnm) which are also linked by SiO4 and AlO4 tetrahedra.
69

 The XRD patterns are shown in 

Figure 5.28.  

 

Figure 5.28: XRD pattern of sillimanite. 

The modes of vibrations for sillimanite structure is Γ =13 Ag+8 B1g+ 13 B2g+8 B3g+ l l 

Au +16 B1u +11 B2u +16 B3u. The high Raman frequencies due to the v3 vibration of free SiO4 

tetrahedron are assigned to Si-O(c).
70

 Raman peaks around mid wave numbers are due to Al-O 

displacements, but the vibrations of the silicate and aluminate tetrahedra are difficult to 

distinguish in this region.
71

 The Raman modes, their symmetry, and assignments were clearly 

shown in Figure 5.29 and Table 5.26. The broadening of the Raman bands will occur due to 

an increase in disorder of A1-Si tetrahedra. The relatively sharp Raman bands of the 

sillimanite suggest that low A1/Si disorder levels.
29

 Furthermore, the Raman modes strictly 

discriminate sillimanite from other A12SiO5 polymorphs such as andalusite and kyanite. 
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Figure 5.29: Raman peaks of sillimanite. 

Table 5.26: Raman active frequencies (cm
-1

) of sillimanite. 

Symmetry Assignment Raman peaks (cm
-1

) 

B2g v3 1127, 1040 

B2g v1 956 

B3g v3 901 

Ag, B2g v3, v4 872 

Ag v1 781 

Ag T'(Oa:xy) 707 

B3g v4; T'(Al1:xy) 701 

Ag v4 525 

Ag v2; T'(All :z) 464 

Ag T'(All :z; Oa:x; Al2, Oc, 

Od:xy) 

402 

Ag T'(A12:xy; Oa :x) 367 

Ag R'(SiO4:Z); T'(Oa:xy, A12:y) 305 

B1g T'(Oa, Ob, A12:z; O
d
:yz) 261 
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B1g T'(All:xy; SiO4:z) 239 

Ag T' (A12, SiO4 : x) 135 

The XPS results of sillimanite are shown in Figure 5.30. The Si2p usually seen as a 

single Gaussian peak at 102.44eV.  The Si atoms in sillimanite are bonded tetrahedrally with 

O to form Al-O-Si linkages. The single peak clearly indicates that the electronic structure of 

Si linkages is not much influenced by Al atoms. The Al2p curve can be fitted into two peaks 

at 74.22 eV and 74.96 eV. These indicate that in sillimanite, Al atoms of sillimanite  are in 

octahedral and tetrahedral coordination. 
69

 Further it suggests that Al atoms in sillimanite can 

be classified into two types viz., one more ionically bonded like in kyanite and another one is 

more covalently bonded. The O1s spectra for sillimanite can be fitted at 530.77 eV and 

532.02 eV. The O atoms in sillimanite are 20 in total, where 12 are either charge-balanced or 

slightly over bonded whereas the remaining 8 are feebly under bonded. These make O atoms 

corresponds to O11s (530.77 eV) are more ionic compared to those that corresponds to O21s 

(532.02 eV).
32

  

The UV-Vis-NIR spectrum of sillimanite is shown in Figure 5.31. The sillimanite 

shows strong absorbance in 255, 1938, and 2232 nm in UV-Vis-NIR region. The major 

oxides, rare earth elements, and trace elements present in sillimanite are tabulated in Table 

5.27-5.29. The average Al2O3 and SiO2 content of sillimanite are 53.718%, and 43.814% 

followed P2O5, CaO, Fe2O3, etc. The sillimanite also possesses rare earths. The average total 

rare earth (TREE) is estimated to be 222.384ppm with a maximum for Ce (100.040ppm), 

followed by La, Nd, Sc, Y, etc. Minor elements were also present in ppm level like Zr, V, Cr, 

Zn, Ga, etc. On comparing other placer deposits of India, the values of sillimanite are quite 

comparable. The Al2O3 and SiO2 values for Kerala (Quilon) are 60.37% and 36.22%, Orissa 

are 57.60% and 40.30%, Tamil Nadu are 53.27% and 35.45%.
14,72
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Figure 5.30: XPS peaks of sillimanite. (a) Wide scan XPS spectra, and high resolution scans 

of (b) Al2p, (c) Si2p, and (d) O1s. 

 

Figure 5.31: UV-Vis-NIR spectra of sillimanite. 
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Table 5.27: Major oxides of sillimanite. 

Major Oxides (%) Varkala Kovalam Average 

Al2O3 48.589 58.846 53.718 

SiO2 48.839 38.789 43.814 

P2O5 0.782 0.922 0.852 

CaO 0.512 0.376 0.444 

Fe2O3 0.459 0.491 0.475 

Others 0.819 0.576 0.6975 

Table 5.28: Rare earth elements of sillimanite. 

REE (ppm) 
Varkala Kovalam Average 

Ce 6.539 193.541 100.040 

Nd 3.498 83.623 43.560 

La 3.262 92.053 47.657 

Sc 2.211 2.664 2.438 

Y 1.949 4.766 3.357 

Pr 0.880 24.661 12.771 

Sm 0.562 12.523 6.542 

Gd 0.423 6.500 3.461 

Yb 0.363 0.508 0.435 

Dy 0.330 1.544 0.937 

Er 0.326 0.575 0.450 

Ho 0.086 0.223 0.154 

Eu 0.071 0.237 0.154 

Tm 0.062 0.078 0.070 

Tb 0.059 0.526 0.293 

Lu 0.053 0.074 0.063 

Total 20.672 424.095 222.384 

 

 



Chapter 5 

172 
 

Table 5.29: Trace elements of sillimanite. 

Trace elements (ppm) Varkala Kovalam Average 

Zr 557.355 471.655 514.505 

V 326.035 401.858 363.946 

Cr 206.921 250.224 228.573 

Ba 122.796 236.752 179.774 

Zn 106.884 137.595 122.240 

Ga 49.302 62.624 55.963 

Pb 37.546 49.127 43.336 

Ta 16.636 24.315 20.475 

Hf 16.051 13.988 15.020 

Sr 14.296 13.653 13.975 

Cu 12.020 14.061 13.040 

Ni 11.070 11.635 11.353 

Nb 6.243 8.666 7.454 

Th 2.361 66.539 34.450 

U 1.169 4.234 2.701 

Rb 1.122 1.431 1.277 

Co 0.710 0.861 0.785 

Cs 0.087 0.111 0.099 

Total 1488.604 1769.329 1628.966 

 The SEM images of sillimanite are given in Figure 5.32. Sillimanite grains are seen 

as prismatic with rounded edges (Figure 5.32 (a-e)).  Conchoidal fractures with moderate 

relief can be seen. Removal of blocks and cleavage controlled step-like features besides the 

fracture plates next to crystal cleavage (Figure 5.32(g)). Irregular pits, grooves, impact V's, 

and solution channels formed by mechanical impact followed by chemical action. 

Smoothening of surface shows rolling topography.  Some precipitation features are also 

noticed on the surface (Figure 5.32(h)).
36

  The SEM-EDS results are shown in Figure 5.33 

and Table 5.30. The EDS shows the concentration of Al and Si, and thereby it confirms that 

the mineral in sillimanite.
73
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Figure 5.32: SEM images of sillimanite. 

 

Figure 5.33 SEM-EDS results of sillimanite. 

Table 5.30: Chemical composition of   sillimanite by SEM-EDS. 

Element Weight (%) Atomic (%) 

Al K 25.99 17.79 

Si K 13.84 9.1 

O K 50.65 58.47 

C K 9.52 14.64 
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5.4.6. Garnet 

Garnet is formed by a group of silicates. The general formula is  X3
2+

Y2
3+

(SiO4)3. It 

comprises of two groups viz.  pyralspite (Y =Al; X=Mg, Fe
2+

,  Mn,)  and  ugrandite (X= Ca; 

Y = Cr, Al, Fe
3+

).
74

 The XRD pattern of garnet is given in Figure 5.34. The composition of 

the garnet is very close to the almandine (Fe3Al2Si3O12), which falls under pyralspite group. 

The Raman active modes of  garnet also made clear discrimination from other silicate garnets 

such pyrope, spessartine, etc. Theoretically, the total number of vibrations for silicate garnets 

as Γ =3A1g+5A2g+8Eg+14F1g+14F2g+5A1u+5A2u +10Eu+17F1u+16F2u, in which the total 

Raman active modes (A1g, Eg, and F2g) are 25 and infrared active modes (F1u) are 17. 

 

 Figure 5.34: XRD pattern of garnet. 

The symmetry and mode assignments for the Raman spectra of garnet are given in 

Figure 5.35 and Table 5.31. The intense modes at 351, 522, and 921 cm
-1

 correspond to  

rotational, internal bending, and stretching vibrations of the SiO4 tetrahedra.
75

 The entire 

tetrahedral unit contributes to the vibration of R(SiO4)
4-

 whereas only the oxygen anions are 

involved in the vibrations of T(SiO4)
4-

. This results in low frequencies for T(SiO4)4  modes 

compared to  R(SiO4)
4-

. The F2g modes at low frequencies fall between 170 and 280 cm
-1

, and 

the weak mode in the Eg spectra at 255 cm
-1

 corresponds to X 
2+

(x, y) and X 
2+

(z)-

translations.  
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Figure 5.35: Raman peaks of garnet. 

Table 5.31: Assignments of Raman peaks (cm
-1

)  of garnet. 

Symmetry Assignment Raman peaks (cm
-1

) 

F2g  

(Si-O)stretching 

1045 

A1g 918 

F2g 866 

F2g  

 

 

(Si-O)bending 

635 

Eg 591 

Eg 522 

F2g 503 

F2g 476 

Eg 373 

F2g R(SiO4)
4-

 350 

Eg 323 

F2g 314 

F2g T(SiO4)
4-

 171 

Eg 163 
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Eg T(X
2+

) 255 

F2g 214 

 

 

Figure 5.36: XPS results of garnet. (a) Wide scan XPS spectra, and high resolution scans of 

(b) Fe 2p, (c) Al2p, (d) O1s, and (e) Si2p.   
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The XPS results of garnet are clearly shown in Figure 5.36. The Fe state of garnet splits 

into two sets corresponds to ferrous and Ferric. The 2p3/2 and 2p1/2 of the ferrous state is 

observed at 710.20 eV and 723.79 eV. The 2p3/2 and 2p1/2 of the ferric state is observed at  

714.02 eV and 728.19 eV. The Si 2p peak has been fitted into two Gaussian curves at 100.57 

eV and 101.83 eV which corresponds to Si 2p3/2 and Si 2p1/2of the bulk aluminosilicate frame 

work. The O1s can be convoluted into two Gaussian peaks O11s and  O21s at 530.96 eV and  

532.23 eV corresponds to bulk oxide and surface oxygen species. The Al2p peak was fitted at 

72.98 eV, and 74.14 eV corresponds to  2p3/2  and 2p1/2 of the bulk aluminosilicate 

framework.
33

  

The UV-Vis-NIR spectrum of garnet is given in Figure 5.37. The intense peak at 250nm 

corresponds to Fe
3+

 ion in garnet. It is due to the charge transfer of Fe
3+

 ion in the octahedral 

site with Fe
2+ 

in the dodecahedral site which  also the main reason determining the colour of 

garnet.
76

  In the NIR region, garnet shows major peaks at 1309, 1695, and 2253 nm can be 

attributed to the transition of eight coordinated Fe
2+

  from dz
2
 orbital ground state to dx

2
–y

2
, dxz 

and  dyz orbitals.
77

  

 

Figure 5.37 UV-Vis-NIR spectrum of garnet 

The major oxides, rare earth elements and trace elements present in garnet are given in 

Figure 5.32-5.34. The average Fe2O3 is 40.0005% which followed by SiO2 of 33.577%, Al2O3 
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of   17.33%, etc. The total rare earth elements present in garnet corresponds to 1093.529 ppm 

with a maximum for Ce (304.7325ppm) followed by Y, La, Nd, Sc, Pr, etc. Minor elements 

like Zr, Zn, Th, Ba, V, Cr, etc.  also present at ppm-level. The Fe2O3 content using ED-XRF 

of garnet from the Thiruchendur coast in Tamil Nadu ranges from 36.481-39.146%.
78

  

Table 5.32: Major oxides of garnet. 

Major Oxides (%) Varkala Kovalam Average 

Fe2O3 40.455 39.546 40.0005 

SiO2 33.454 33.7 33.577 

Al2O3 17.005 17.655 17.33 

MgO 5.353 6.19 5.7715 

CaO 1.236 1.009 1.1225 

P2O5 0.82 0.761 0.7905 

MnO 0.623 0.577 0.6 

TiO2 0.202 0.128 0.165 

CdO 0.153 0.14 0.1465 

Others 0.699 0.294 0.4965 

 

Table 5.33: Rare earth elements of garnet. 

REE (ppm) Varkala Kovalam Average 

Ce 456.9274 152.5375 304.7325 

Y 254.3044 194.5081 224.4063 

La 213.6151 72.66331 143.1392 

Nd 201.0812 69.03791 135.0595 

Sc 83.39019 77.4556 80.42289 

Pr 58.38995 19.75982 39.07488 

Dy 42.09932 32.66968 37.3845 

Gd 37.57541 25.52896 31.55218 

Sm 37.4646 17.64101 27.5528 

Er 29.15151 21.23576 25.19364 

Yb 26.90597 18.77554 22.84076 
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Ho 10.28881 7.714217 9.001511 

Tb 6.457932 4.976315 5.717124 

Tm 4.390967 3.104704 3.747836 

Lu 3.920614 2.736027 3.32832 

Eu 0.505571 0.243895 0.374733 

Total 1466.469 720.5884 1093.529 

 

Table 5.34: Trace elements of garnet. 

Trace elements (ppm) Varkala Kovalam Average 

Zr 578.461 74.248 326.355 

Zn 328.703 473.623 401.163 

Th 168.635 55.587 112.111 

Ba 122.586 127.348 124.967 

V 101.266 110.848 106.057 

Cr 78.585 99.678 89.132 

Pb 50.657 79.123 64.890 

Ta 44.340 6.503 25.422 

Co 43.338 46.577 44.958 

Nb 15.898 6.627 11.262 

Hf 15.170 2.149 8.660 

Cu 11.941 12.764 12.352 

Ni 11.244 12.507 11.875 

Ga 8.541 6.365 7.453 

U 7.869 2.840 5.355 

Sr 6.613 8.597 7.605 

Rb 1.317 1.941 1.629 

Cs 0.093 0.118 0.106 

Total 1595.258 1127.442 1361.350 

 

 The SEM images of the garnet are shown in Figure 5.38. Garnet grains are usually seen 

as highly angular with moderately high relief and show conchoidal fractures (Figure 5.38 (a-
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f)). Undulatory planes and embayments are formed due to the solution effect. Large 

depressions with precipitation are seen on the surface due to etching.  Removal of inclusions 

forms irregularly rounded pits (Figure 5.38 (b)).  Impact ―V‖ modified by etching forms 

grooves and pits.
36

  Figure5.39 and Table 5.35 show the SEM-EDS results of garnet. The 

EDS shows a high content of Fe K ranges 23.72-27.46% confirms the garnet belongs to the 

almandine group.  

 

Figure 5.38: SEM images of garnet. 
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 Figure 5.39: SEM-EDS results of garnet. 

Table 5.35: Chemical composition of garnet by SEM-EDS. 

Element (a) (b) 

Weight (%) Atomic (%) Weight (%) Atomic (%) 

Fe K 23.72 9.81 27.46 11.14 

Al K 12.35 10.57 9.31 7.81 

Si K 16.3 13.41 15.16 12.22 

Mg K 3.09 2.93 3.73 3.47 

Ca K 0.56 0.32 0.5 0.28 

Na K 1.18 1.19 - - 

O K 42.79 61.77 37.53 53.14 

CK - - 6.32 11.93 

 

5.4.7. Comparison with important coastal placer deposits of India 

The major geochemistry of the minerals collected from Varkala-Kovalam coast were 

compared with the chemical data of minerals from important placer deposits in India 

collected from Indian Rare Earths Limited,  Govt. of India (Table 5.36).  
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Table 5.36: Comparison of geochemical data with important coastal placer deposits of India. 

Minerals Compounds 

(%) 

Chavara 

Kerala 

Manavalakurichi 

Tamil Nadu 

Chatrapur 

Orissa 

Varkala-

Kovalam 

Rutile TiO2 95.05 94.4 94.5 95.72 

Ilmenite TiO2 60.1 55.5 50.5 54.83 

Leucoxene TiO2 70- 80  73.56 

Sillimanite Al2O3 59.3 - 56.6 53.72 

Zircon ZrO2 65.3 65.8 64.5 63.72 

Monazite REO - 55 - 64.17 

ThO2 - 9.2 - 7.21 

U - 0.30 - 0.31 

Garnet FeO - 26 27.9 35.99 

Al2O3 - 21 19.8 17.33 

The Chavara in Kerala, Manavalakurichi in Tamil Nadu and Chatrapur in Orissa are 

the three major placer deposits in India where the IREL have mineral processing units for 

recovering the minerals from beach sand. The major production of heavy minerals in India is 

controlled by these three major deposits. The major element present in each mineral which 

determines the grade of the minerals is compared with that of our study area. The ilmenite, 

leucoxene and rutile are used for the production of TiO2, therefore the TiO2 content of these 

mineral is very important in determining the industrial grade. The TiO2 content of rutile and 

leucoxene is 95.72% and 73.56% which comes closer to the TiO2 content of other placer 

deposits. But in case of ilmenite, its TiO2 content is observed much closer to Manavalakurichi 

deposits rather than the Chavara and Chatrapur. The study area Varkala-Kovalam is situated 

between these two deposits on the south west coast of India and has more influence from 

Manavalakurichi.  The average Al2O3 and ZrO2 values of 53.72% and 63.72% also come to 

other three placer deposits. Monazite acts as the primary source of rare earths. The REE, 

ThO2 and U content of the monazite recovered from Varkala-Kovalam are 64.17%, 7.21% 

and 0.31% which are also comparable with other placer deposits in India. The type of garnet 

exist in India is almandine with high content of iron. Moreover, the high content of iron 

suggests that the garnet type is almandine. All together, the characterisation results show 

good agreement with other major placer deposits in India.  
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5.5. Conclusion 

Detailed characterization of strategic heavy minerals such as ilmenite, rutile, zircon, 

sillimanite, garnet, and monazite recovered from the beach sands of Varkala-Kovalam coast, 

Kerala, south-west India has been performed in the context of a detailed study on 

geochemistry, crystal structure, and surface morphology. It is remarkable that the analysis  

provides useful information regarding the presence of rare earth elements and minor 

elements, degree of metamictization in zircon and monazite, surface chemistry, oxidation 

state of surface elements,  discrimination of isomorphous series ( almandine group of garnet), 

Ti-oxide polymorphs (anatase, brookite or rutile), A12SiO5 polymorphs (sillimanite or 

kyanite), opaque and non-opaque Fe–Ti oxide minerals (ilmenite or rutile) and the 

anisotropic crystal behaviour of the minerals due to physical or chemical processes and 

finally the  morphological changes  due to mechanical impacts and solution activity of 

chemicals during the long transportation and deposition of sediments. The characterisation 

results show good agreement with other major placer deposits in India. The study provides 

solid information to the scientific community and policymakers for determining the grade and 

potential applications of these strategic minerals.  
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Chapter 6 

Conclusion and future perspectives 

6.1. Summary and Conclusion 

In the present study, advanced remote sensing techniques were used for 

investigating the grain size and mineral distribution of beach sediments in the coast of 

Thiruvananthapuram district, Kerala, India using multispectral and hyperspectral data. An 

attempt has been also made to map other strategic minerals like the silica and deposits 

(Cherthala, Kerala), Fullerene bearing Barytes (Mangampet, Andhra Pradesh), Kaolin 

clay deposits (Thonnakkal, Kerala) and beach sediments of Cuddalore coast, Tamil Nadu 

using hyperspectral remote sensing techniques. 

The chapter 1 gives an introduction to remote sensing and its applications in 

mineral exploration. A literature review on various remote sensing techniques used for 

mineral exploration is discussed here in detail. 

In chapter 2, detailed investigation on grain size and mineral distribution of beach 

sediments along the coast of Thiruvananthapuram, the southernmost district of Kerala, 

India have been carried out. The variation in grain size was studied using the spectral 

indices derived from the visible-NIR-TIR bands of Landsat and ASTER remote sensing 

data. Further, an attempt has been made to map the distribution of strategic minerals 

present in beach sands using standardized hyperspectral analysis techniques. Individual 

heavy minerals of good quality were recovered from beach sands using a combination of 

magnetic, electrostatic and gravity separation units. The spectral signatures of 10 strategic 

minerals including beach minerals, silica sand, kaolin clay deposits, and Baryte mineral 

were measured using ASD Fieldspec® 3 spectroradiometer and used as the reference 

spectra for mineral mapping.  Grain Size Index maps showing the texture of beach 

sediments were successfully generated from the satellite imageries.  The hyperspectral 

analysis extracts two endmembers of ilmenite and light minerals (quartz) from the 

Landsat and ASTER imagery, which could be successfully, mapped using the SAM 

classification algorithm.  The same procedure was used for mapping silica deposits from 

Landsat and ASTER data. The Fullerene bearing Barytes (Mangampet, Andhra Pradesh) 

and Kaolin deposits (Thonnakkal, Kerala) were successfully derived from Landsat data 

using hyperspectral analysis followed by MTMF classification method. The satellite-
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derived maps have been validated with the results of laboratory analysis and field data 

which show strong correlation almost in all locations.  

In chapter 3, four widely used MLAs such as RFC, ANN, SVM, and MLC were 

compared for their efficiency in mapping beach minerals and silica sand deposits using 

Landsat 8 OLI imagery. The image pixels correspond to sampling locations were selected 

as the training sites. The random forest classifier (RFC) and Support vector machine 

(SVM) shows the highest Kappa coefficient and overall accuracy for mapping beach 

sediments and silica sand deposits.  

In chapter 4, EO-1 Hyperion data was used for mapping the strategic minerals of 

Cuddalore coast, Tamil Nadu using the hyperspectral analysis techniques followed by 

SAM classification.  The endmembers of garnet, zircon, sillimanite and light minerals 

(quartz) were derived from the satellite data and compared with spectral library of 

minerals. The band depth analysis of continuum removed laboratory spectra and image 

spectra helps to derive a strong correlation between band parameters and the 

corresponding mineral concentration. This relation was used to quantify minerals with the 

help of Random Forest Regression technique. Thus the concentration of zircon mineral 

along the coast of Cuddalore, Tamil Nadu was quantified using EO-1 Hyperion data. 

In chapter 5, detailed characterisation on structure, chemistry and surface 

morphology of beach minerals recovered from the beach sands of Varkala-Kovalam coast 

was carried out using advanced characterisation techniques. The crystal structure of the 

minerals was analysed using Raman spectroscopy and X-ray diffraction. The ED-XRF, 

HR-ICP-MS, SEM-EDS and XPS were used to analyze chemical composition and rare 

earth chemistry. Thermal properties of the samples were determined using TGA analysis. 

The surface morphological features of minerals were also analysed using SEM. The 

characterisation results show good agreement with the reported values for other major 

placer deposits in India.  

Summary of the thesis work with valid conclusions obtained from the present 

work are given in the Chapter 6 which also includes the future perspectives. 

 

 



Chapter 6 
 

193 
 

The major conclusions obtained from the present study are: 

 Effective recovery of heavy minerals from beach sediments was achieved by 

judicious combination of magnetic, electrostatic and gravity separation 

techniques.  

 A spectral library comprises of 10 strategic minerals comprising of beach 

minerals, kaolin clay mineral and baryte mineral were developed using 

laboratory spectral signatures.  

 Grain Size Index maps showing the texture of beach sediments were 

successfully generated using the satellite imageries.  

 Potential targets of heavy mineral occurrences were derived using 

hyperspectral analysis of  Landsat 8 OLI,  ASTER and EO-1 Hyperion  

imageries. 

 Machine learning algorithms like Random Forest classifier (RFC) and support 

vector machine (SVM) applied to Landsat 8 OLI imagery shows the best 

results for mapping beach minerals and silica sand deposits  

 The band parameters derived from continuum removed spectra shows a strong 

correlation with the corresponding mineral concentration. 

 The concentration of zircon mineral along the coast of Cuddaore, Tamil Nadu 

was quantified using continuum removed band depth analysis and RF 

regression technique applied to EO-1 Hyperion data. 

 The characterisation results of beach minerals from Varkala-Kovalam coast 

show good agreement with the reported values for other major placer deposits 

in India.  

6.2. Future perspectives 

 Mapping shallow subsurface to identify mineral occurrence using ground 

penetration radar (GPR). 

 Developing spectral library of other strategic minerals in India.  

 GIS- based 3d visualization of subsurface mineral occurrences. 

 Application of microwave and thermal remote sensing in mapping strategic 

minerals and ore deposit targeting.  
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