Abstract:
Mg2SiO4 (Forsterite) ceramics were synthesized by solid state route. The effect of lithium magnesium zinc borosilicate (LMZBS) glass addition on the densification temperature and microwave dielectric properties of forsterite ceramics was investigated. The crystal structure and microstructure of ceramic-glass composites were studied by X-ray diffraction and scanning electron microscopic techniques. The dielectric properties of the sintered samples were measured in the microwave frequency range by the resonance method. Addition of 0.5 wt% LMZBS glass improved densification with epsilon (r) = 7.3 and Qxf = 121,200 GHz. Addition of 15 wt% LMZBS glass lowered the sintering temperature to about 950 A degrees C with epsilon (r) = 6.75 and Qxf = 30,600 GHz. The reactivity of 15 wt% LMZBS glass added forsterite with silver was also studied. The result shows that forsterite doped with suitable amount of LMZBS glass is a possible material for LTCC and microwave substrate applications.