DSpace Repository

Highly efficient visible light sensitized red emission from europium tris[1-(4-biphenoyl)-3-(2-fluoroyl)propanedione](1,10-phenanthroline) complex grafted on silica nanoparticles

Show simple item record

dc.contributor.author Divya, V
dc.contributor.author Biju, S
dc.contributor.author Luxmi Varma, R
dc.contributor.author Reddy, M L P
dc.date.accessioned 2014-04-01T10:19:08Z
dc.date.available 2014-04-01T10:19:08Z
dc.date.issued 2010
dc.identifier.citation Journal of Materials Chemistry 20(25):5220-5227;20May2010 en_US
dc.identifier.issn 0959-9428
dc.identifier.uri http://ir.niist.res.in:8080/jspui/handle/123456789/1266
dc.description.abstract A novel class of efficient visible light sensitized antenna complexes of Eu(3+) based on the use of a highly conjugated b-diketonate, namely, 1-(4-biphenoyl)-3-(2-fluoroyl)propanedione (HBFPD) and 1,10-phenanthroline as an ancillary ligand has been designed, synthesized, characterized and their photophysical properties (PL) investigated. PL measurement results indicated that suitably expanded p-conjugation in the complex molecules makes the excitation band red shift to the visible region and hence the Eu(3+) complexes exhibit intense red emission under blue light excitation (440 nm) with a solid-state quantum yield of 32 +/- 3%, which is the highest so far reported in the literature. Further, in the present work, the visible sensitized Eu(3+) complex has been covalently anchored to the ordered mesoporous MCM-41 via the modified HBFPD ligand for the first time to the best of our knowledge. beta-Diketonate grafted to the coupling agent 3-(triethoxysilyl)propylisocyanate was used as the precursor for the preparation of mesoporous nanomaterials. MCM-41 consisting of ternary complex Eu(SiBFPD)(3)(phen) covalently bonded to the silica-based network, which was designated as Eu(SiBFPD)(3)(Phen)/MCM-41 (3), was obtained by interacting europium nitrate, SiBFPD-Na and 1,10-phenanthroline into the hybrid material via a ligand-exchange reaction. The designed material was further characterized by powder X-ray diffraction, dynamic light scattering (DLS) technique, thermogravimetric analysis, N(2) adsorption-desorption, SEM, TEM, FT-IR, FT-Raman, (13)C and (29)Si CPMAS NMR and photoluminescence spectroscopic techniques. The hybrid material covalently bonded to MCM-41 exhibits an efficient intramolecular energy transfer process from the silylated bdiketonate to the central Eu(3+), namely, the "antenna effect", which favored a stronger red/orange intensity ratio, longer lifetime, and high thermal stability than the precursor complex. en_US
dc.language.iso en en_US
dc.publisher Royal Society of Chemistry en_US
dc.subject Luminescent lanthanide ions en_US
dc.subject Conversion molecular device en_US
dc.subject Modified beta-diketone en_US
dc.subject Photophysical properties en_US
dc.subject Hybrid materials en_US
dc.subject Physical-characterization en_US
dc.subject Mesoporous silica en_US
dc.title Highly efficient visible light sensitized red emission from europium tris[1-(4-biphenoyl)-3-(2-fluoroyl)propanedione](1,10-phenanthroline) complex grafted on silica nanoparticles en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

  • 2010
    2010 Publications

Show simple item record

Search DSpace


Advanced Search

Browse

My Account