Abstract:
The Polytetrafluoroethylene-single walled carbon nanotube (PTFE-SWNT) composites are prepared and its dielectric properties are investigated as a function of SWNT loading both at 1 MHz and microwave frequencies. The relative permittivity and the conductivity increases with carbon nanotube loading. The addition of 0.02-volume fraction of SWNT increases the relative permittivity of the polymer from 2.1 to 7.5 x 10(6) and the conductivity from 4.887 x 10(-9) to 8.52 x 10(-3) S/CM at 1 MHz. As the volume fraction of SWNT increases from 0.01 to 0.05 the relative permittivity of the PTFE-SWNT composite increases from 4 to 6.6 at X-band (8-12 GHz) and the power attenuation coefficient varies from 9.5 to 17 dB/mm.