dc.description.abstract |
Hot tearing is known as one of the most critical solidification defects commonly encountered during casting practice. As most Mg alloys are initially prepared by casting, ingots must have superior quality with no casting defects for the further processing. Due to the extensive potential biodegradable applications of binary Mg-Ca alloys, it is of great importance to investigate their
hot tearing behavior. In the present study, the influence of Ca content (0.1, 0.2, 0.5, 1.0, and
2.0 wt pct) on hot tearing susceptibility (HTS) of Mg-Ca binary alloys was investigated using a constrained rod casting apparatus equipped with a load cell and data acquisition system. Tear volumes were quantified with 3D X-ray tomography. Results showed that the influence of Ca content on HTS followed a ‘‘K’’ shape: the HTS increased with increase in Ca content, reached a maximum at 0.5 to 1 wt pct Ca, and then decreased with further increasing the Ca content to 2.0 wt pct. The wide solidification range and reasonably high volume of intermetallic in the Mg-0.5 wt pct Ca and Mg-1 wt pct Ca alloys resulted in high HTS. Microstructure analysis suggested that the hot tear initiated at grain boundaries and propagated along them through
thin film rupture or across the eutectic |
en_US |