DSpace Repository

Design-Specific Mechanistic Regulation of the Sensing Phenomena of Two Schiff Bases Towards Al3+

Show simple item record

dc.contributor.author Shweta
dc.contributor.author Neeraj
dc.contributor.author Asthana, S K
dc.contributor.author Mishra, R K
dc.contributor.author Upadhyay, K K
dc.date.accessioned 2017-05-17T05:17:20Z
dc.date.available 2017-05-17T05:17:20Z
dc.date.issued 2016-05-24
dc.identifier.citation RSC Advances, 6(60):55430-55437 en_US
dc.identifier.uri http://hdl.handle.net/123456789/2783
dc.description.abstract We report herein two optical probes (R1 and R2) for the fluorogenic detection of Al3+ at the level of 10−8 M. R1 and R2 were synthesized by simple Schiff base condensation of 4-amino-3-hydroxy-1-naphthalene sulfonic acid with 5-bromosalicaldehyde and 2-hydroxy-1-naphthaldehyde, respectively. The same were characterized by various spectroscopic techniques. R1 and R2 both underwent fluorescence emission upon their respective interactions with Al3+ in an ethanol : water mixture (4 : 1, v/v). The binding modes of the receptors with Al3+ were studied through 1H NMR spectroscopy, Job plots, and HR-MS, as well as through binding constant determination involving fluorescence titration data. The quenching of –C[double bond, length as m-dash]N isomerization and of photoinduced electron transfer (PET) seem to be responsible for the fluorogenic switch-on situation of R1 and R2 with Al3+. At the same time, excited state intramolecular proton transfer (ESIPT) also plays an important role in the ratiometric fluorescence response of R2, which is a consequence of a minor structural variation in R1 where the bromophenyl moiety is replaced with a naphthalene moiety. The mechanistic aspects of the sensing phenomenon are discussed in terms of 1H NMR titration as well as theoretical calculations at the density functional level. en_US
dc.language.iso en en_US
dc.publisher Royal Society of Chemistry en_US
dc.title Design-Specific Mechanistic Regulation of the Sensing Phenomena of Two Schiff Bases Towards Al3+ en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account