Abstract:
Hydrogen titanate (H2Ti3O7) nanotubes/nanosheets (HTN) are emerging class of adsorbent material which possess unique property of activating hydrogen peroxide (H2O2) to generate the reactive oxygen species (ROS), such as superoxide radical ions (O2.−) and hydroxyl radicals (·OH), effective in the decomposition of surface-adsorbed dye. However, HTN are non-magnetic which create hurdle in their effective separation from the treated aqueous solution. To overcome this issue, magnetic nanocomposites (HTNF) composed of HTN
and maghemite (γ-Fe2O3) nanoparticles have been processed by subjecting the core–shell magnetic photocatalyst consisting of γ-Fe2O3/silica (SiO2)/titania (TiO2), having varying amounts of TiO2 in the shell to the hydrothermal conditions. HTNF-5 magnetic nanocomposite consisting of 31 wt% H2Ti3O7, typically having nanotube morphology with the highest specific surface area (133 m2 g−1) and pore-volume (0.22 cm3 g−1), exhibits the highest capacity (74 mg g−1) for the adsorption of cationic methylene blue (MB) dye from an aqueous solution involving the electrostatic attraction