Abstract:
High-thermal-conductivity and low-dielectricloss polymer nanocomposites have gained tremendous attention in microelectronics technology. Against this background, the present study deals with the development of a
high-thermal-conductivity, low-dielectric-constant, and lowloss polymer nanocomposite based on silver nanoparticle (AgNP)-decorated boron nitride nanosheets (BNNSs) as the filler in poly(methyl methacrylate) (PMMA) matrix. The nanocomposites were prepared through a facile solutionblending process. Elemental mapping of the prepared nanocomposite indicates the uniform distribution of filler particle in PMMA matrix. An impressive high-thermal conductivity (TC) enhancement of around 363% was achieved for nanocomposite of 0.35 Vf of hybrid filler (1.48 W/m K) compared to pristine PMMA (0.32 W/m K). The addition of AgNP reduces the thermal contact resistance (Rc) by bridging individual BNNS, thereby improving thermal transport. Measured TC values were fitted with a theoretical model that showed good agreement. Dielectric measurements performed at radiofrequencies and microwave frequencies revealed that the nanocomposites show a low dielectric constant (<5), low loss (10−2), and very low alternating current conductivity (10−7 S/cm).
The results suggest that silver-decorated BNNS is a promising hybrid filler for effective thermal management.