Abstract:
Nanotechnology involving cellulosic substrates has generated a great attention owing to their exceptional physical and chemical properties. Self-assembled nanostructures obtained from carbohydrate polymers are of interest in the biomedical field for the biocompatibility and non-toxic nature. In the present study modification of nano-fibrillated cellulose (NFC) synthesised from the husk fibers of Areca catechu nuts (AHF) was studied by controlled regio-selective amidation with oleylamine (OA) and characterized. The modified system (MNFC) with more than 66% OA content showed self-assembly into unilamellar vesicles of 2–5 μm diameters with a wall thickness of 300–600 nm in tetrahydrofuran (THF) at 2.5 mg mL−1. This result is attributed to the folding of MNFC into bilayers driven by long cis-unsaturated aliphatic chains in polar aprotic solvents stabilized by hydrogen bonded interactions within the fibrils. These giant vesicles formed can have applications in storage and delivery of drugs in topical applications.