DSpace Repository

Room-Temperature Ferromagnetic Sr3YCo4O10+delta and Carbon Black-Reinforced Polyvinylidenefluoride Composites toward High-Performance Electromagnetic Interference Shielding

Show simple item record

dc.contributor.author V, Lalan
dc.contributor.author A P, Narayanan
dc.contributor.author K P, Surendran
dc.contributor.author S, Ganesanpotti
dc.date.accessioned 2020-02-26T09:34:08Z
dc.date.available 2020-02-26T09:34:08Z
dc.date.issued 2019-05-06
dc.identifier.citation ACS Omega; 4(5):8196-8206 en_US
dc.identifier.uri https://pubs.acs.org/doi/pdf/10.1021/acsomega.9b00454
dc.identifier.uri http://10.10.100.66:8080/xmlui/handle/123456789/3615
dc.description.abstract In this study, we fabricated composites of conducting carbon black (CB), room-temperature ferromagnetic Sr3YCo4O10+delta (SYCO) and polyvinylidenefluoride (PVDF) by the solution mixing and coagulation method for the first time. During the nucleation process of PVDF, the presence of SYCO and CB individually facilitates the crystallization of polar beta and semipolar gamma phases along with the nonpolar alpha phase in PVDF. The dc electrical conductivity of PVDF raised from 1.54 x 10(-8) to 9.97 S/m with the addition of 30 wt % of CB, and it is nearly constant with respect to the SYCO content. The PVDF/CB/SYCO composites (PCS) possess high permittivity and its variation is in accordance with the content of polar phases in PVDF. Moreover, the complex permittivity and permeability spectra from 10 MHz to 1 GHz indicate that the dielectric loss dictates over magnetic loss in these composites. The electromagnetic interference shielding effectiveness (EMI SE) of PCS composites is higher than that of PVDF/CB and PVDF/SYCO composites in the 8.2-18 GHz region. Addition of SYCO in the PVDF/CB matrix enhances shielding by dominated absorption with minimal reflection. The analysis of the shielding mechanism suggests that in addition to conducting and magnetic losses due to CB and SYCO, respectively, the synergy among CB, SYCO, and PVDF promotes shielding by matching the input impedance to that of free space, enhancing multiple internal reflections from SYCO and subsequent absorption by CB, eddy current losses, dielectric damping losses, interfacial polarization losses, and so forth. These different mechanisms result in an enhanced EMI SE of 50.2 dB for the PCS-40 composite for a thickness of 2.5 mm. en_US
dc.language.iso en en_US
dc.publisher American Chemical Society en_US
dc.subject PVDF en_US
dc.subject PCS en_US
dc.subject SYCO en_US
dc.subject Dielectric damping losses en_US
dc.title Room-Temperature Ferromagnetic Sr3YCo4O10+delta and Carbon Black-Reinforced Polyvinylidenefluoride Composites toward High-Performance Electromagnetic Interference Shielding en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

  • 2019
    Research articles authored by NIIST researchers published in 2019

Show simple item record

Search DSpace


Advanced Search

Browse

My Account