DSpace Repository

Functionalization-Induced Self-Assembly of Polystyrene/Kaolinite in Situ Nanocomposites into Giant Vesicles

Show simple item record

dc.contributor.author Anju, P
dc.contributor.author Prasad, V S
dc.date.accessioned 2021-03-30T10:34:22Z
dc.date.available 2021-03-30T10:34:22Z
dc.date.issued 2020-02-07
dc.identifier.citation Langmuir; 36(7):1761-1767 en_US
dc.identifier.uri https://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.9b03996
dc.identifier.uri http://hdl.handle.net/123456789/3700
dc.description.abstract We report a facile functionalization strategy for fabrication of giant, inorganic–polymer hybrid vesicles by controlled aminosilyl/vinylsilyl functionalization (AS/VS) of the aluminol layer in kaolinite (Kaol) by intercalation and subsequent polymerization of styrene with the in situ polystyrene clay nanocomposite (PCN), followed by self-assembly in solvents. The synergistic effect of the AS/VS ratio on functionalization-assisted intercalation of Kaol was established in 1:3AS/VS-Kaol by the greater extent of formation of higher interlayer spacing corresponding to 1.12 nm compared to 1:1AS/VS-Kaol. As the AS/VS ratio was increased, the PCN synthesized showed an increase in molecular weight attributed to higher vinyl functionalization of Kaol. The PCN, 1:3AS/VS-Kaol/PS, showed self-assembly in tetrahydrofuran at 2.5 mg mL–1 into giant vesicles of 2–6 μm diameter with a wall thickness of 300–400 nm. This result is attributed to the functionalization-induced molecular mass-directed bilayer assembly of the delaminated, Janus-type, modified Kaol in a polar aprotic solvent by end-to-end hydrogen bonding involving terminal −OH groups along the wall and −NH2 groups laterally and further stabilized by the π–π interactions of the phenyl moiety along the periphery. Rhodamine-loaded vesicles showed a controlled release in buffer solutions of pH 7.0 and 9.0, attributed to the amino group-assisted pore formation. In a buffer solution of pH 4.0, rapid release of the dye was observed because of the collapse of the vesicle directed by protonation of the amino group. This study forms the first report on a novel method for the synthesis of rigid vesicles by functionalization-induced self-assembly of Kaol-based in situ PCN for possible applications in the cost-effective controlled delivery of drugs or cosmetics for topical applications. en_US
dc.language.iso en en_US
dc.publisher American Chemical Society en_US
dc.subject polystyrene en_US
dc.subject kaolinite en_US
dc.subject situ nanocomposites en_US
dc.title Functionalization-Induced Self-Assembly of Polystyrene/Kaolinite in Situ Nanocomposites into Giant Vesicles en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

  • 2020
    Research articles authored by NIIST researchers published in 2020

Show simple item record

Search DSpace


Advanced Search

Browse

My Account