dc.contributor.author |
VITTALA, S K |
|
dc.contributor.author |
RAVI, R |
|
dc.contributor.author |
DEB, B |
|
dc.contributor.author |
JOSHY, J |
|
dc.date.accessioned |
2021-04-16T08:26:04Z |
|
dc.date.available |
2021-04-16T08:26:04Z |
|
dc.date.issued |
2020 |
|
dc.identifier.citation |
10.1002/cplu.202000354 ;85(7):1534 -1541 |
en_US |
dc.identifier.uri |
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cplu.202000354 |
|
dc.identifier.uri |
http://hdl.handle.net/123456789/3706 |
|
dc.description.abstract |
The synthesis, optoelectronic characterization and device properties of a cross‐linkable fullerene derivative, [6,6]‐phenyl‐C61‐butyric benzoxazine ester (PCBB) is reported. PCBB shows all the basic photophysical and electrochemical properties of the parent compound [6,6]‐phenyl‐C61‐butyric methyl ester (PCBM). Thermal cross‐linking of the benzoxazine moiety in PCBB resulted in the formation of cross‐linked, solvent resistive adhesive films (C−PCBB). Atomic force microscopy (AFM) and optical microscopic studies showed dramatic reduction in the roughness and aggregation behaviour of P3HT‐PCBM polymer blend film upon incorporation of C−PCBB interlayer. An inverted bulk heterojunction solar cell based on the configuration ITO/ZnO/C−PCBB/P3HT‐PCBM/V2O5/Ag achieved 4.27 % power conversion efficiency (PCE) compared to the reference device ITO/ZnO/P3HT‐PCBM/V2O5/Ag (PCE=3.28 %). This 25 % increase in the efficiency is due to the positive effects of C‐PCBB on P3HT/C‐PCBB and PCBM/C‐PCBB heterojunctions. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Europian Chemical societies |
en_US |
dc.subject |
cross-linking |
en_US |
dc.subject |
electron transport |
en_US |
dc.subject |
fullerenes |
en_US |
dc.subject |
photovoltaics |
en_US |
dc.subject |
solar cells |
en_US |
dc.title |
A Cross‐Linkable Electron‐Transport Layer Based on a Fullerene−Benzoxazine Derivative for Inverted Polymer Solar Cells |
en_US |
dc.type |
Article |
en_US |