| dc.contributor.author | VITTALA, S K | |
| dc.contributor.author | RAVI, R | |
| dc.contributor.author | DEB, B | |
| dc.contributor.author | JOSHY, J | |
| dc.date.accessioned | 2021-04-16T08:26:04Z | |
| dc.date.available | 2021-04-16T08:26:04Z | |
| dc.date.issued | 2020 | |
| dc.identifier.citation | 10.1002/cplu.202000354 ;85(7):1534 -1541 | en_US |
| dc.identifier.uri | https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cplu.202000354 | |
| dc.identifier.uri | http://hdl.handle.net/123456789/3706 | |
| dc.description.abstract | The synthesis, optoelectronic characterization and device properties of a cross‐linkable fullerene derivative, [6,6]‐phenyl‐C61‐butyric benzoxazine ester (PCBB) is reported. PCBB shows all the basic photophysical and electrochemical properties of the parent compound [6,6]‐phenyl‐C61‐butyric methyl ester (PCBM). Thermal cross‐linking of the benzoxazine moiety in PCBB resulted in the formation of cross‐linked, solvent resistive adhesive films (C−PCBB). Atomic force microscopy (AFM) and optical microscopic studies showed dramatic reduction in the roughness and aggregation behaviour of P3HT‐PCBM polymer blend film upon incorporation of C−PCBB interlayer. An inverted bulk heterojunction solar cell based on the configuration ITO/ZnO/C−PCBB/P3HT‐PCBM/V2O5/Ag achieved 4.27 % power conversion efficiency (PCE) compared to the reference device ITO/ZnO/P3HT‐PCBM/V2O5/Ag (PCE=3.28 %). This 25 % increase in the efficiency is due to the positive effects of C‐PCBB on P3HT/C‐PCBB and PCBM/C‐PCBB heterojunctions. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Europian Chemical societies | en_US |
| dc.subject | cross-linking | en_US |
| dc.subject | electron transport | en_US |
| dc.subject | fullerenes | en_US |
| dc.subject | photovoltaics | en_US |
| dc.subject | solar cells | en_US |
| dc.title | A Cross‐Linkable Electron‐Transport Layer Based on a Fullerene−Benzoxazine Derivative for Inverted Polymer Solar Cells | en_US |
| dc.type | Article | en_US |