Abstract:
In the present era of the Internet of Things (IoT) and sensor networks, clean and sustainable power sources are in huge demand, and triboelectric nanogenerators (TENGs) are a hot cake in green energy production. Here, we have developed a contact-separation mode TENG using liquid-phase exfoliated 2D-hexagonal boron nitride nanosheets (BNNSs) coated on biaxially-oriented polyethylene terephthalate (BoPET) and paper as counter triboelectric materials, which showed an impressive 70 times higher power output than simple BoPET-paper TENG assembly. Even under a moderate finger tapping force (~3 N), the developed BNNSs/BoPET-paper TENG device could generate an open circuit output voltage of ~200 V and a short circuit current density of ∼0.48 mA/m2. While under load testing, the peak value of electric power density for the BNNSs/BoPET-paper TENG device reached ~0.14 W/m2 at 200 MΩ resistive load. The incorporation of BNNSs has significantly enhanced the electron-accepting capabilities of the BoPET film which is evident from the enhanced dielectric permittivity of the BNNSs/BoPET assembly, and thus resulted in the enhanced electrical output of TENG. Additionally, the fabricated BNNSs-TENG was successfully demonstrated for powering electronic gadgets such as LCD clock, digital thermometer, and LEDs through cyclic finger tapping force.