DSpace Repository

Large Electrocaloric Effect with High Thermal and Electric Field Cycling Stability in Solution-Processed Y:HfO2 Thin Films

Show simple item record

dc.contributor.author Samanta, S
dc.contributor.author Anoop, G
dc.contributor.author Seol, W
dc.contributor.author Park, S M
dc.contributor.author Joh, H
dc.contributor.author Choi, J O
dc.contributor.author Ahn, D
dc.contributor.author Unithrattil, S
dc.contributor.author Kim, H
dc.contributor.author Yeom, J
dc.contributor.author Hong, S
dc.contributor.author Jo, JY
dc.date.accessioned 2023-01-18T11:26:13Z
dc.date.available 2023-01-18T11:26:13Z
dc.date.issued 2022
dc.identifier.citation Journal of Materials Chemistry A;10(18):9960-9970 en_US
dc.identifier.uri https://doi.org/10.1039/d1ta10229j
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/4192
dc.description.abstract The electrocaloric effect (ECE) – the zero-emission energy-efficient process in which an applied electric field can reversibly change the entropy in a polar material, is promising for environment-friendly and compact applications like microelectronic cooling and solid-state refrigeration. For such applications, the ECE material must endure numerous thermal and electric field cycles, and long-term thermal and electric field cycling stability of the ECE material should be investigated in detail. We investigated the performance and reliability of the ECE of solution-processed Y:HfO2 thin films in terms of isothermal entropy change, adiabatic temperature change, isothermal heat and refrigerant capacity under both thermal and electric field cycling. The ECE responses are investigated under thermal (303–423 K) and electric field (106) cycling processes. A large positive ECE response (temperature change, ΔTmax) of up to 24.8 K (with an ECE strength of 0.7 K cm MV−1) was achieved, originating from high polarization and sharp variation in polarization through the phase transition in Y:HfO2. The isothermal heat (Q) and refrigerant capacity (RC) were 7755 J kg−1 and 822 J kg−1, respectively. The Y:HfO2 thin films exhibited robust thermal cycling stability with negligible ΔTmax, Q, and RC variations after 40 thermal cycling processes. After 106 electric field cycles, ΔTmax, Q, and RC were 19.4 K, 6060 J kg−1 and 595 J kg−1, respectively. The large and reliable ECE in environment-friendly lead-free Y:HfO2 thin films deposited directly on a Si-substrate using a facile solution process outperformed the other HfO2-based and Pb-free ECE materials and will find applications in on-chip microelectronic cooling devices. en_US
dc.language.iso en en_US
dc.publisher Royal Society of Chemistry en_US
dc.subject electrocaloric effect en_US
dc.subject thermal en_US
dc.subject Y:HfO2 en_US
dc.title Large Electrocaloric Effect with High Thermal and Electric Field Cycling Stability in Solution-Processed Y:HfO2 Thin Films en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

  • 2022
    Research articles authored by NIIST researchers published in 2022

Show simple item record

Search DSpace


Advanced Search

Browse

My Account