dc.contributor.author |
Mahesh, K V |
|
dc.contributor.author |
Rashada, R |
|
dc.contributor.author |
Kiran, M |
|
dc.contributor.author |
Mohamed, A P |
|
dc.contributor.author |
Ananthakumar, S |
|
dc.date.accessioned |
2024-02-27T09:59:34Z |
|
dc.date.available |
2024-02-27T09:59:34Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
RSC Advances;5,51242–51247 |
en_US |
dc.identifier.uri |
https://doi.org/10.1039/c5ra07756g |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/123456789/4771 |
|
dc.description.abstract |
Herein, we report the synthesis of ultrathin 2D Ti3SiC2 (MAXene)
nanosheets via a facile shear induced micromechanical cleavage
strategy. The very high dispersion stability, the UV absorption properties, high electrical conductivity and castability into thin films make
the newly derived Ti3SiC2 nanosheets an ideal candidate for many
functional applications. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Royal society of chemistry |
en_US |
dc.subject |
Ti3SiC2 |
en_US |
dc.subject |
MAXene nanosheets |
en_US |
dc.title |
Shear Induced Micromechanical Synthesis of Ti3SiC2 MAXene Nanosheets for Functional Applications |
en_US |
dc.type |
Article |
en_US |