Abstract:
The tunable excited-state properties of a new donor-pi-acceptor-pi-donor-type fluorophore 1 with a bipyridyl moiety and its ability to respond to different analytes in solution and on paper microchannels are described. Furthermore, the multiple analyte response of fluorophore 1 has been exploited to perform multiple logic operations. Molecule 1, by virtue of its excited-state charge transfer, exhibits solvatochromism and reversible modulation of its emission in response to multiple chemical inputs, thus resulting in different fluorescent signals. The intragand charge-transfer (ILCT) emission of 1 at 574 nm has been modulated to three emission outputs by using different chemical inputs, such as Zn(2+), H(+), and ethylenediaminetetraacetic acid (EDTA). Thus, different logic operations such as AND, 2-input-INH, 3-input-INH, IMP, and a combination of these logic operations could be achieved